Practice 1. ( Linear Algebra)

Topic: Rank of the matrix.
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Example. Calculate the rank of the matrix: A=| 3 1 7
0 5 -10
2 3 0
Solution. Let us interchange the 1%tand the 2" rows.
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The number of non-zero rows of the transformed matrix equivalent to the

initial one is 2. Therefore rang(A)=2.
Present given matrices in row echelon form and define their ranks
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Topic: Investigation of system compatibility
While solving systems of m linear equations with n unknowns at the same time
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with the matrix of the given system 4=| 2% % 2" | we also should
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consider a matrix obtained from A by adding the column of free terms. This matrix is
called an extended matrix of the given system and marked as
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Obviously, rang(A) is either equal to rang(A) or greater on 1. The investigation of
compatibility of SLAE of m equations with n unknowns is carried out using the
theorem by Kronecker — Kapelly.

Theorem. In order to let SLAE of m equations with n unknowns be compatible
it is necessary and enough for the rank of the extended matrix to be equal to the rank
of the initial matrix, i.e. rang( A)=rang(A)=r.

It may be shown that if r =n then the system has the single solution, and if
r<n, the system has an uncountable set of solutions, i.e. it is indefinite. The
mentioned above reasonings are presented on fig.1.1:

System of System is incompatible (no solutions),

linear algebraic if rang A= rang A
equations

Y

Y
System is compatible (at least one solution), if rang A=rang A

Y
System is indefinite (an uncountable
set of solutions),

if rangA=rangA<n

System is definite (the single
solution),

if rangA=rangA=n

Figure 1.1

Example. Investigate the compatibility of the given system:
2% —3Xy +5%X3 + 7%, =1
4% —6Xy +2X3+3X, =2 .
2% —3X, —11%5 —15x%, =1
Solution. Let us investigate the compatibility of the given system:
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It is obvious that the system is compatible because the ranks of the main matrix
and the extended one are equal, i.e. rang(A)=rang( A)=2.
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Investigate given systems on compatibility.

X; —2Xy +3X3 —4X, =4 X +2X%— X + X =1
L Xo — X3+ X4 =—3 5 3X + X% +2X— X =2;
X +3X, —3%X, =1 2X+3% — x5 +3x,=0;
—TXy +3X3+ X4 =—3 Ax +2X% +2x+ X =1.






