Practice 1. (Linear Algebra)

Topic: Rank of the matrix.

Example. Calculate the rank of the matrix: $A=\left(\begin{array}{ccc}0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -10 \\ 2 & 3 & 0\end{array}\right)$.
Solution. Let us interchange the $1^{\text {st }}$ and the $2^{\text {nd }}$ rows.

$$
\begin{aligned}
& A \sim\left(\begin{array}{ccc}
-1 & -4 & 5 \\
0 & 2 & -4 \\
3 & 1 & 7 \\
0 & 5 & -10 \\
2 & 3 & 0
\end{array}\right) \sim \sim\left\|\begin{array}{l}
e_{2} \cdot \frac{1}{2} \rightarrow e_{2} \\
e_{1} \cdot 3+e_{3} \rightarrow e_{3} \\
e_{4} \cdot \frac{1}{5} \rightarrow e_{4} \\
e_{1} \cdot 2+e_{5} \rightarrow e_{5}
\end{array}\right\| \sim\left(\begin{array}{ccc}
-1 & -4 & 5 \\
0 & 1 & -2 \\
0 & -11 & 22 \\
0 & 1 & -2 \\
0 & -5 & 10
\end{array}\right) \sim\left\|e_{3} \cdot\left(\frac{-1}{11}\right) \rightarrow e_{3}\right\| e_{5} \cdot\left(-\frac{1}{5}\right) \rightarrow e_{5} \| \\
&\left(\begin{array}{ccc}
-1 & -4 & 5 \\
0 & 1 & -2
\end{array}\right) .
\end{aligned}
$$

The number of non-zero rows of the transformed matrix equivalent to the initial one is 2 . Therefore $\operatorname{rang}(A)=2$.

Present given matrices in row echelon form and define their ranks
1.

$$
\left(\begin{array}{cccc}
2 & -1 & 5 & 6 \\
1 & 1 & 3 & 5 \\
1 & -5 & 1 & -3
\end{array}\right) \cdot{ }_{2 .} \quad\left(\begin{array}{ccccc}
1 & 2 & -1 & 1 & -3 \\
3 & -1 & 1 & 6 & 11 \\
1 & -1 & -1 & 4 & -3
\end{array}\right) .
$$

Topic: Investigation of system compatibility

While solving systems of m linear equations with n unknowns at the same time with the matrix of the given system $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right)$ we also should consider a matrix obtained from A by adding the column of free terms. This matrix is called an extended matrix of the given system and marked as

$$
\tilde{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right) .
$$

Obviously, $\operatorname{rang}(\tilde{A})$ is either equal to $\operatorname{rang}(A)$ or greater on 1 . The investigation of compatibility of SLAE of m equations with n unknowns is carried out using the theorem by Kronecker - Kapelly.

Theorem. In order to let SLAE of m equations with n unknowns be compatible it is necessary and enough for the rank of the extended matrix to be equal to the rank of the initial matrix, i.e. $\operatorname{rang}(\tilde{A})=\operatorname{rang}(A)=r$.

It may be shown that if $r=n$ then the system has the single solution, and if $r<n$, the system has an uncountable set of solutions, i.e. it is indefinite. The mentioned above reasonings are presented on fig.1.1:

Figure 1.1
Example. Investigate the compatibility of the given system:

$$
\left\{\begin{array}{c}
2 x_{1}-3 x_{2}+5 x_{3}+7 x_{4}=1 \\
4 x_{1}-6 x_{2}+2 x_{3}+3 x_{4}=2 \\
2 x_{1}-3 x_{2}-11 x_{3}-15 x_{4}=1
\end{array}\right.
$$

Solution. Let us investigate the compatibility of the given system:

$$
\begin{gathered}
\left.\tilde{A}=\left(\begin{array}{cccc|c}
2 & -3 & 5 & 7 & 1 \\
4 & -6 & 2 & 3 & 2 \\
2 & -3 & -11 & -15 & 1
\end{array}\right) \sim \begin{array}{l}
e_{2}+e_{1}(-2) \rightarrow e_{2} \\
e_{3}+e_{1}(-1) \rightarrow e_{3}
\end{array} \begin{array}{ccccc}
2 & -3 & 5 & 7 & 1 \\
0 & 0 & -8 & -11 & 0 \\
0 & 0 & -16 & -22 & 0
\end{array}\right) \\
\sim_{\sim}^{e_{3}+e_{2}(-2) \rightarrow e_{3}} \sim \\
e_{2}(-1) \rightarrow e_{2}
\end{gathered} \sim\left(\begin{array}{cccc|cc|}
2 & -3 & 5 & 7 & 1 \\
0 & 0 & 8 & 11 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc|c}
2 & -3 & 5 & 7 & 1 \\
0 & 0 & 8 & 11 & 0
\end{array}\right) .
$$

It is obvious that the system is compatible because the ranks of the main matrix and the extended one are equal, i.e. $\operatorname{rang}(A)=\operatorname{rang}(\tilde{A})=2$.

Investigate given systems on compatibility.

1. $\left\{\begin{array}{l}x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=4 \\ x_{2}-x_{3}+x_{4}=-3 \\ x_{1}+3 x_{2}-3 x_{4}=1 \\ -7 x_{2}+3 x_{3}+x_{4}=-3\end{array}\right.$ 2. $\left\{\begin{array}{l}x_{1}+2 x_{2}-x_{3}+x_{4}=1 ; \\ 3 x_{1}+x_{2}+2 x_{3}-x_{4}=2 ; \\ 2 x_{1}+3 x_{2}-x_{3}+3 x_{4}=0 ; \\ 4 x_{1}+2 x_{2}+2 x_{3}+x_{4}=1 .\end{array}\right.$
