Matrix Representation of Linear Operators

6.1. Consider the linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y) = (3x + 4y, 2x - 5y) and the following bases of \mathbb{R}^2 :

$$E = \{e_1, e_2\} = \{(1, 0), (0, 1)\}$$
 and $S = \{u_1, u_2\} = \{(1, 2), (2, 3)\}$

- (a) Find the matrix A representing F relative to the basis E.
- (b) Find the matrix B representing F relative to the basis S.
- (a) Because E is the usual basis, the rows of A are simply the coefficients in the components of F(x, y); that is, using $(a, b) = ae_1 + be_2$, we have

$$F(e_1) = F(1,0) = (3,2) = 3e_1 + 2e_2$$
 and so $A = \begin{bmatrix} 3 & 4 \\ 2 & -5 \end{bmatrix}$

Note that the coefficients of the basis vectors are written as columns in the matrix representation.

(b) First find $F(u_1)$ and write it as a linear combination of the basis vectors u_1 and u_2 . We have

$$F(u_1) = F(1,2) = (11,-8) = x(1,2) + y(2,3),$$
 and so
$$x + 2y = 11$$
$$2x + 3y = -8$$

Solve the system to obtain x = -49, y = 30. Therefore,

$$F(u_1) = -49u_1 + 30u_2$$

Next find $F(u_2)$ and write it as a linear combination of the basis vectors u_1 and u_2 . We have

$$F(u_2) = F(2,3) = (18,-11) = x(1,2) + y(2,3),$$
 and so
$$x + 2y = 18$$
$$2x + 3y = -11$$

Solve for x and y to obtain x = -76, y = 47. Hence,

$$F(u_2) = -76u_1 + 47u_2$$

Write the coefficients of u_1 and u_2 as columns to obtain $B = \begin{bmatrix} -49 & -76 \\ 30 & 47 \end{bmatrix}$

(b') Alternatively, one can first find the coordinates of an arbitrary vector (a, b) in \mathbb{R}^2 relative to the basis S. We have

$$(a,b) = x(1,2) + y(2,3) = (x+2y, 2x+3y),$$
 and so
$$x + 2y = a$$
$$2x + 3y = b$$

Solve for x and y in terms of a and b to get x = -3a + 2b, y = 2a - b. Thus,

$$(a,b) = (-3a+2b)u_1 + (2a-b)u_2$$

Then use the formula for (a, b) to find the coordinates of $F(u_1)$ and $F(u_2)$ relative to S:

$$F(u_1) = F(1,2) = (11, -8) = -49u_1 + 30u_2$$

 $F(u_2) = F(2,3) = (18, -11) = -76u_1 + 47u_2$ and so $B = \begin{bmatrix} -49 & -76 \\ 30 & 47 \end{bmatrix}$

6.2. Consider the following linear operator G on \mathbb{R}^2 and basis S:

$$G(x,y) = (2x - 7y, 4x + 3y)$$
 and $S = \{u_1, u_2\} = \{(1,3), (2,5)\}$

- (a) Find the matrix representation $[G]_S$ of G relative to S.
- (b) Verify $[G]_S[v]_S = [G(v)]_S$ for the vector v = (4, -3) in \mathbb{R}^2 .

First find the coordinates of an arbitrary vector v = (a, b) in \mathbb{R}^2 relative to the basis S. We have

$$\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad \text{and so} \quad \begin{aligned} x + 2y &= a \\ 3x + 5y &= b \end{aligned}$$

Solve for x and y in terms of a and b to get x = -5a + 2b, y = 3a - b. Thus,

$$(a,b) = (-5a+2b)u_1 + (3a-b)u_2$$
, and so $[v] = [-5a+2b, 3a-b]^T$

(a) Using the formula for (a, b) and G(x, y) = (2x - 7y, 4x + 3y), we have

$$G(u_1) = G(1,3) = (-19,13) = 121u_1 - 70u_2$$
 and so $[G]_S = \begin{bmatrix} 121 & 201 \\ -70 & -116 \end{bmatrix}$

(We emphasize that the coefficients of u_1 and u_2 are written as columns, not rows, in the matrix representation.)

(b) Use the formula $(a, b) = (-5a + 2b)u_1 + (3a - b)u_2$ to get

$$v = (4, -3) = -26u_1 + 15u_2$$

 $G(v) = G(4, -3) = (20, 7) = -131u_1 + 80u_2$

Then

$$[v]_{s} = [-26, 15]^{T}$$
 and $[G(v)]_{s} = [-131, 80]^{T}$

Accordingly,

$$[G]_S[v]_S = \begin{bmatrix} 121 & 201 \\ -70 & -116 \end{bmatrix} \begin{bmatrix} -26 \\ 15 \end{bmatrix} = \begin{bmatrix} -131 \\ 80 \end{bmatrix} = [G(v)]_S$$

6.3. Consider the following 2×2 matrix A and basis S of \mathbb{R}^2 :

$$A = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$$
 and $S = \{u_1, u_2\} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -7 \end{bmatrix} \right\}$

The matrix A defines a linear operator on \mathbb{R}^2 . Find the matrix B that represents the mapping A relative to the basis S.

First find the coordinates of an arbitrary vector $(a,b)^T$ with respect to the basis S. We have

$$\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 3 \\ -7 \end{bmatrix} \quad \text{or} \quad \begin{array}{c} x + 3y = a \\ -2x - 7y = b \end{array}$$

Solve for x and y in terms of a and b to obtain x = 7a + 3b, y = -2a - b. Thus,

$$(a,b)^T = (7a+3b)u_1 + (-2a-b)u_2$$

Then use the formula for $(a,b)^T$ to find the coordinates of Au_1 and Au_2 relative to the basis S:

$$Au_1 = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -6 \\ -7 \end{bmatrix} = -63u_1 + 19u_2$$

$$Au_2 = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -7 \end{bmatrix} = \begin{bmatrix} -22 \\ -27 \end{bmatrix} = -235u_1 + 71u_2$$

Writing the coordinates as columns yields

$$B = \begin{bmatrix} -63 & -235 \\ 19 & 71 \end{bmatrix}$$

- **6.4.** Find the matrix representation of each of the following linear operators F on \mathbb{R}^3 relative to the usual basis $E = \{e_1, e_2, e_3\}$ of \mathbb{R}^3 ; that is, find $[F] = [F]_F$:
 - (a) F defined by F(x,y,z) = (x+2y-3z, 4x-5y-6z, 7x+8y+9z).
 - (b) F defined by the 3×3 matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 5 & 5 \end{bmatrix}$.
 - (c) F defined by $F(e_1) = (1,3,5), F(e_2) = (2,4,6), F(e_3) = (7,7,7).$ (Theorem 5.2 states that a linear map is completely defined by its action on the vectors in a basis.)
 - (a) Because E is the usual basis, simply write the coefficients of the components of F(x, y, z) as rows:

$$[F] = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -5 & -6 \\ 7 & 8 & 9 \end{bmatrix}$$

(b) Because E is the usual basis, [F] = A, the matrix A itself.

(c) Here

$$F(e_1) = (1,3,5) = e_1 + 3e_2 + 5e_3$$

$$F(e_2) = (2,4,6) = 2e_1 + 4e_2 + 6e_3$$
 and so $[F] = \begin{bmatrix} 1 & 2 & 7 \\ 3 & 4 & 7 \\ 5 & 6 & 7 \end{bmatrix}$

That is, the columns of [F] are the images of the usual basis vectors.

- **6.5.** Let G be the linear operator on \mathbb{R}^3 defined by G(x, y, z) = (2y + z, x 4y, 3x).
 - (a) Find the matrix representation of G relative to the basis

$$S = \{w_1, w_2, w_3\} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$$

(b) Verify that [G][v] = [G(v)] for any vector v in \mathbb{R}^3 .

First find the coordinates of an arbitrary vector $(a, b, c) \in \mathbb{R}^3$ with respect to the basis S. Write (a, b, c) as a linear combination of w_1, w_2, w_3 using unknown scalars x, y, and z:

$$(a,b,c) = x(1,1,1) + y(1,1,0) + z(1,0,0) = (x+y+z, x+y, x)$$

Set corresponding components equal to each other to obtain the system of equations

$$x + y + z = a$$
, $x + y = b$, $x = c$

Solve the system for x, y, z in terms of a, b, c to find x = c, y = b - c, z = a - b. Thus,

$$(a, b, c) = cw_1 + (b - c)w_2 + (a - b)w_3$$
, or equivalently, $[(a, b, c)] = [c, b - c, a - b]^T$

(a) Because G(x, y, z) = (2y + z, x - 4y, 3x),

$$G(w_1) = G(1, 1, 1) = (3, -3, 3) = 3w_1 - 6x_2 + 6x_3$$

 $G(w_2) = G(1, 1, 0) = (2, -3, 3) = 3w_1 - 6w_2 + 5w_3$
 $G(w_3) = G(1, 0, 0) = (0, 1, 3) = 3w_1 - 2w_2 - w_3$

Write the coordinates $G(w_1)$, $G(w_2)$, $G(w_3)$ as columns to get

$$[G] = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & -1 \end{bmatrix}$$

(b) Write G(v) as a linear combination of w_1, w_2, w_3 , where v = (a, b, c) is an arbitrary vector in \mathbb{R}^3 ,

$$G(v) = G(a, b, c) = (2b + c, a - 4b, 3a) = 3aw_1 + (-2a - 4b)w_2 + (-a + 6b + c)w_3$$

or equivalently,

$$[G(v)] = [3a, -2a - 4b, -a + 6b + c]^T$$

Accordingly,

$$[G][v] = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & -1 \end{bmatrix} \begin{bmatrix} c \\ b - c \\ a - b \end{bmatrix} = \begin{bmatrix} 3a \\ -2a - 4b \\ -a + 6b + c \end{bmatrix} = [G(v)]$$

6.6. Consider the following 3×3 matrix A and basis S of \mathbb{R}^3 :

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{bmatrix} \quad \text{and} \quad S = \{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$$

The matrix A defines a linear operator on \mathbb{R}^3 . Find the matrix B that represents the mapping A relative to the basis S. (Recall that A represents itself relative to the usual basis of \mathbb{R}^3 .)

First find the coordinates of an arbitrary vector (a, b, c) in \mathbb{R}^3 with respect to the basis S. We have

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 or
$$\begin{aligned} x + z &= a \\ x + y + 2z &= b \\ x + y + 3z &= c \end{aligned}$$

Solve for x, y, z in terms of a, b, c to get

$$x = a + b - c$$
, $y = -a + 2b - c$, $z = c - b$

thus,
$$(a,b,c)^T = (a+b-c)u_1 + (-a+2b-c)u_2 + (c-b)u_3$$

Then use the formula for $(a, b, c)^T$ to find the coordinates of Au_1 , Au_2 , Au_3 relative to the basis S:

$$A(u_1) = A(1,1,1)^T = (0,2,3)^T = -u_1 + u_2 + u_3 A(u_2) = A(1,1,0)^T = (-1,-1,2)^T = -4u_1 - 3u_2 + 3u_3 A(u_3) = A(1,2,3)^T = (0,1,3)^T = -2u_1 - u_2 + 2u_3$$
 so
$$B = \begin{bmatrix} -1 & -4 & -2 \\ 1 & -3 & -1 \\ 1 & 3 & 2 \end{bmatrix}$$

- **6.7.** For each of the following linear transformations (operators) L on \mathbb{R}^2 , find the matrix A that represents L (relative to the usual basis of \mathbb{R}^2):
 - (a) L is defined by L(1,0) = (2,4) and L(0,1) = (5,8).
 - (b) L is the rotation in \mathbb{R}^2 counterclockwise by 90°.
 - (c) L is the reflection in \mathbb{R}^2 about the line y = -x.
 - (a) Because $\{(1,0), (0,1)\}$ is the usual basis of \mathbb{R}^2 , write their images under L as columns to get

$$A = \begin{bmatrix} 2 & 5 \\ 4 & 8 \end{bmatrix}$$

(b) Under the rotation L, we have L(1,0) = (0,1) and L(0,1) = (-1,0). Thus,

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(c) Under the reflection L, we have L(1,0) = (0,-1) and L(0,1) = (-1,0). Thus,

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

6.8. The set $S = \{e^{3t}, te^{3t}, t^2e^{3t}\}$ is a basis of a vector space V of functions $f: \mathbb{R} \to \mathbb{R}$. Let \mathbb{D} be the differential operator on V; that is, $\mathbb{D}(f) = df/dt$. Find the matrix representation of \mathbb{D} relative to the basis S.

Find the image of each basis function:

$$\begin{array}{lll} \mathbf{D}(e^{3t}) &= 3e^{3t} &= 3(e^{3t}) + 0(te^{3t}) + 0(t^2e^{3t}) \\ \mathbf{D}(te^{3t}) &= e^{3t} + 3te^{3t} &= 1(e^{3t}) + 3(te^{3t}) + 0(t^2e^{3t}) \\ \mathbf{D}(t^2e^{3t}) &= 2te^{3t} + 3t^2e^{3t} = 0(e^{3t}) + 2(te^{3t}) + 3(t^2e^{3t}) \end{array} \quad \text{and thus,} \quad [\mathbf{D}] = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Change of Basis

The coordinate vector $[v]_S$ in this section will always denote a column vector; that is,

$$[v]_S = [a_1, a_2, \dots, a_n]^T$$

6.13. Consider the following bases of R²:

$$E = \{e_1, e_2\} = \{(1, 0), (0, 1)\}$$
 and $S = \{u_1, u_2\} = \{(1, 3), (1, 4)\}$

- (a) Find the change-of-basis matrix P from the usual basis E to S.
- (b) Find the change-of-basis matrix Q from S back to E.

- (c) Find the coordinate vector [v] of v = (5, -3) relative to S.
- (a) Because E is the usual basis, simply write the basis vectors in S as columns: $P = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$
- (b) **Method 1.** Use the definition of the change-of-basis matrix. That is, express each vector in E as a linear combination of the vectors in S. We do this by first finding the coordinates of an arbitrary vector v = (a, b) relative to S. We have

$$(a,b) = x(1,3) + y(1,4) = (x+y,3x+4y)$$
 or $\begin{cases} x+y=a\\ 3x+4y=b \end{cases}$

Solve for x and y to obtain x = 4a - b, y = -3a + b. Thus,

$$v = (4a - b)u_1 + (-3a + b)u_2$$
 and $[v]_S = [(a, b)]_S = [4a - b, -3a + b]^T$

Using the above formula for $[v]_S$ and writing the coordinates of the e_i as columns yields

$$\begin{array}{lll} e_1 = (1,0) = \ 4u_1 - 3u_2 \\ e_2 = (0,1) = -u_1 + \ u_2 \end{array} \quad \text{ and } \quad Q = \begin{bmatrix} \ 4 & -1 \\ \ -3 & 1 \end{bmatrix}$$

Method 2. Because $Q = P^{-1}$, find P^{-1} , say by using the formula for the inverse of a 2 × 2 matrix. Thus,

$$P^{-1} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}$$

- (c) **Method 1.** Write v as a linear combination of the vectors in S, say by using the above formula for v = (a, b). We have $v = (5, -3) = 23u_1 - 18u_2$, and so $[v]_S = [23, -18]^T$.
 - **Method 2.** Use, from Theorem 6.6, the fact that $[v]_S = P^{-1}[v]_E$ and the fact that $[v]_E = [5, -3]^T$:

$$[v]_S = P^{-1}[v]_E = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} 23 \\ -18 \end{bmatrix}$$

- **6.14.** The vectors $u_1 = (1, 2, 0)$, $u_2 = (1, 3, 2)$, $u_3 = (0, 1, 3)$ form a basis S of \mathbb{R}^3 . Find
 - (a) The change-of-basis matrix P from the usual basis $E = \{e_1, e_2, e_3\}$ to S.
 - (b) The change-of-basis matrix Q from S back to E.
 - (b) The change-of-basis matrix Q from S back to E.

 (a) Because E is the usual basis, simply write the basis vectors of S as columns: $P = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 0 & 2 & 3 \end{bmatrix}$
 - (b) **Method 1.** Express each basis vector of E as a linear combination of the basis vectors of S by first finding the coordinates of an arbitrary vector v = (a, b, c) relative to the basis S. We have

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + z \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \quad \text{or} \quad \begin{aligned} x + y &= a \\ 2x + 3y + z &= b \\ 2y + 3z &= c \end{aligned}$$

Solve for x, y, z to get x = 7a - 3b + c, y = -6a + 3b - c, z = 4a - 2b + c. Thus,

$$v = (a, b, c) = (7a - 3b + c)u_1 + (-6a + 3b - c)u_2 + (4a - 2b + c)u_3$$

or
$$[v]_S = [(a,b,c)]_S = [7a - 3b + c, -6a + 3b - c, 4a - 2b + c]^T$$

Using the above formula for $[v]_S$ and then writing the coordinates of the e_i as columns yields

$$\begin{array}{lll} e_1 = (1,0,0) = & 7u_1 - 6u_2 + 4u_3 \\ e_2 = (0,1,0) = & -3u_1 + 3u_2 - 2u_3 \\ e_3 = (0,0,1) = & u_1 - u_2 + u_3 \end{array} \quad \text{and} \quad Q = \begin{bmatrix} 7 & -3 & 1 \\ -6 & 3 & -1 \\ 4 & -2 & 1 \end{bmatrix}$$

Method 2. Find P^{-1} by row reducing M = [P, I] to the form $[I, P^{-1}]$:

$$M = \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 2 & 3 & 1 & | & 0 & 1 & 0 \\ 0 & 2 & 3 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 2 & 3 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 4 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 7 & -3 & 1 \\ 0 & 1 & 0 & | & -6 & 3 & -1 \\ 0 & 0 & 1 & | & 4 & -2 & 1 \end{bmatrix} = [I, P^{-1}]$$

Thus,
$$Q = P^{-1} = \begin{bmatrix} 7 & -3 & 1 \\ -6 & 3 & -1 \\ 4 & -2 & 1 \end{bmatrix}$$
.

- **6.15.** Suppose the x-axis and y-axis in the plane \mathbb{R}^2 are rotated counterclockwise 45° so that the new x'-axis and y'-axis are along the line y = x and the line y = -x, respectively.
 - (a) Find the change-of-basis matrix P.
 - (b) Find the coordinates of the point A(5,6) under the given rotation.
 - (a) The unit vectors in the direction of the new x'- and y'-axes are

$$u_1 = (\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2})$$
 and $u_2 = (-\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2})$

(The unit vectors in the direction of the original x and y axes are the usual basis of \mathbb{R}^2 .) Thus, write the coordinates of u_1 and u_2 as columns to obtain

$$P = \begin{bmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix}$$

(b) Multiply the coordinates of the point by P^{-1} :

$$\begin{bmatrix} \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} \frac{11}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \end{bmatrix}$$

(Because P is orthogonal, P^{-1} is simply the transpose of P.)

6.16. The vectors $u_1 = (1, 1, 0)$, $u_2 = (0, 1, 1)$, $u_3 = (1, 2, 2)$ form a basis S of \mathbb{R}^3 . Find the coordinates of an arbitrary vector v = (a, b, c) relative to the basis S.

Method 1. Express v as a linear combination of u_1, u_2, u_3 using unknowns x, y, z. We have

$$(a,b,c) = x(1,1,0) + y(0,1,1) + z(1,2,2) = (x+z, x+y+2z, y+2z)$$

this yields the system

$$x+z=a$$
 $x+y+2z=b$ or $y+z=-a+b$ or $y+z=-a+b$ $y+2z=c$ $x+z=a$ $y+z=-a+b$

Solving by back-substitution yields x = b - c, y = -2a + 2b - c, z = a - b + c. Thus,

$$[v]_S = [b-c, -2a+2b-c, a-b+c]^T$$

Method 2. Find P^{-1} by row reducing M = [P, I] to the form $[I, P^{-1}]$, where P is the change-of-basis matrix from the usual basis E to S or, in other words, the matrix whose columns are the basis vectors of S.

We have

$$M = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -2 & 2 & -1 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{bmatrix} = [I, P^{-1}]$$

$$\text{Thus,} \quad P^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix} \text{ and } [v]_S = P^{-1}[v]_E = \begin{bmatrix} 0 & 1 & -1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} b - c \\ -2a + 2b - c \\ a - b + c \end{bmatrix}$$

6.17. Consider the following bases of \mathbb{R}^2 :

$$S = \{u_1, u_2\} = \{(1, -2), (3, -4)\}$$
 and $S' = \{v_1, v_2\} = \{(1, 3), (3, 8)\}$

- (a) Find the coordinates of v = (a, b) relative to the basis S.
- (b) Find the change-of-basis matrix P from S to S'.

- (c) Find the coordinates of v = (a, b) relative to the basis S'.
- (d) Find the change-of-basis matrix Q from S' back to S.
- (e) Verify $Q = P^{-1}$.
- (f) Show that, for any vector v = (a, b) in \mathbb{R}^2 , $P^{-1}[v]_S = [v]_{S'}$.
- (a) Let $v = xu_1 + yu_2$ for unknowns x and y; that is,

$$\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 3 \\ -4 \end{bmatrix} \quad \text{or} \quad \begin{array}{c} x + 3y = a \\ -2x - 4y = b \end{array} \quad \text{or} \quad \begin{array}{c} x + 3y = a \\ 2y = 2a + b \end{array}$$

Solve for x and y in terms of a and b to get $x = -2a - \frac{3}{2}b$ and $y = a + \frac{1}{2}b$. Thus,

$$(a,b) = (-2a - \frac{3}{2})u_1 + (a + \frac{1}{2}b)u_2$$
 or $[(a,b)]_S = [-2a - \frac{3}{2}b, a + \frac{1}{2}b]^T$

(b) Use part (a) to write each of the basis vectors v_1 and v_2 of S' as a linear combination of the basis vectors u_1 and u_2 of S; that is,

$$v_1 = (1,3) = (-2 - \frac{9}{2})u_1 + (1 + \frac{3}{2})u_2 = -\frac{13}{2}u_1 + \frac{5}{2}u_2$$

$$v_2 = (3,8) = (-6 - 12)u_1 + (3 + 4)u_2 = -18u_1 + 7u_2$$

Then P is the matrix whose columns are the coordinates of v_1 and v_2 relative to the basis S; that is,

$$P = \begin{bmatrix} -\frac{13}{2} & -18\\ \frac{5}{2} & 7 \end{bmatrix}$$

(c) Let $v = xv_1 + yv_2$ for unknown scalars x and y:

$$\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} 3 \\ 8 \end{bmatrix} \quad \text{or} \quad \begin{array}{c} x + 3y = a \\ 3x + 8y = b \end{array} \quad \text{or} \quad \begin{array}{c} x + 3y = a \\ -y = b - 3a \end{array}$$

Solve for x and y to get x = -8a + 3b and y = 3a - b. Thus,

$$(a,b) = (-8a + 3b)v_1 + (3a - b)v_2$$
 or $[(a,b)]_S = [-8a + 3b, 3a - b]^T$

(d) Use part (c) to express each of the basis vectors u_1 and u_2 of S as a linear combination of the basis vectors v_1 and v_2 of S':

$$u_1 = (1, -2) = (-8 - 6)v_1 + (3 + 2)v_2 = -14v_1 + 5v_2$$

$$u_2 = (3, -4) = (-24 - 12)v_1 + (9 + 4)v_2 = -36v_1 + 13v_2$$

Write the coordinates of u_1 and u_2 relative to S' as columns to obtain $Q = \begin{bmatrix} -14 & -36 \\ 5 & 13 \end{bmatrix}$.

(e)
$$QP = \begin{bmatrix} -14 & -36 \\ 5 & 13 \end{bmatrix} \begin{bmatrix} -\frac{13}{2} & -18 \\ \frac{5}{2} & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

(f) Use parts (a), (c), and (d) to obtain

$$P^{-1}[v]_S = Q[v]_S = \begin{bmatrix} -14 & -36 \\ 5 & 13 \end{bmatrix} \begin{bmatrix} -2a - \frac{3}{2}b \\ a + \frac{1}{2}b \end{bmatrix} = \begin{bmatrix} -8a + 3b \\ 3a - b \end{bmatrix} = [v]_{S'}$$

Linear Operators and Change of Basis

6.23. Consider the linear transformation F on \mathbb{R}^2 defined by F(x,y) = (5x - y, 2x + y) and the following bases of \mathbb{R}^2 :

$$E = \{e_1, e_2\} = \{(1, 0), (0, 1)\}$$
 and $S = \{u_1, u_2\} = \{(1, 4), (2, 7)\}$

- (a) Find the change-of-basis matrix *P* from *E* to *S* and the change-of-basis matrix *Q* from *S* back to *E*.
- (b) Find the matrix A that represents F in the basis E.
- (c) Find the matrix B that represents F in the basis S.

(a) Because E is the usual basis, simply write the vectors in S as columns to obtain the change-of-basis matrix P. Recall, also, that $Q = P^{-1}$. Thus,

$$P = \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}$$
 and $Q = P^{-1} = \begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix}$

(b) Write the coefficients of x and y in F(x,y) = (5x - y, 2x + y) as rows to get

$$A = \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix}$$

(c) **Method 1.** Find the coordinates of $F(u_1)$ and $F(u_2)$ relative to the basis S. This may be done by first finding the coordinates of an arbitrary vector (a, b) in \mathbb{R}^2 relative to the basis S. We have

$$(a,b) = x(1,4) + y(2,7) = (x + 2y, 4x + 7y),$$
 and so
$$x + 2y = a$$
$$4x + 7y = b$$

Solve for x and y in terms of a and b to get x = -7a + 2b, y = 4a - b. Then

$$(a,b) = (-7a + 2b)u_1 + (4a - b)u_2$$

Now use the formula for (a, b) to obtain

$$F(u_1) = F(1,4) = (1,6) = 5u_1 - 2u_2$$

 $F(u_2) = F(2,7) = (3,11) = u_1 + u_2$ and so $B = \begin{bmatrix} 5 & 1 \\ -2 & 1 \end{bmatrix}$

Method 2. By Theorem 6.7, $B = P^{-1}AP$. Thus,

$$B = P^{-1}AP = \begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ -2 & 1 \end{bmatrix}$$

6.24. Let $A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$. Find the matrix B that represents the linear operator A relative to the basis $S = \{u_1, u_2\} = \{[1, 3]^T, [2, 5]^T\}$. [Recall A defines a linear operator $A: \mathbb{R}^2 \to \mathbb{R}^2$ relative to the usual basis E of \mathbb{R}^2].

Method 1. Find the coordinates of $A(u_1)$ and $A(u_2)$ relative to the basis S by first finding the coordinates of an arbitrary vector $[a, b]^T$ in \mathbb{R}^2 relative to the basis S. By Problem 6.2,

$$[a,b]^T = (-5a + 2b)u_1 + (3a - b)u_2$$

Using the formula for $[a, b]^T$, we obtain

$$A(u_1) = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \end{bmatrix} = -53u_1 + 32u_2$$

$$A(u_2) = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 19 \\ 3 \end{bmatrix} = -89u_1 + 54u_2$$

$$B = \begin{bmatrix} -53 & -89 \\ 32 & 54 \end{bmatrix}$$

and

Thus,

Method 2. Use $B = P^{-1}AP$, where P is the change-of-basis matrix from the usual basis E to S. Thus, simply write the vectors in S (as columns) to obtain the change-of-basis matrix P and then use the formula

for P^{-1} . This gives

$$P = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \quad \text{and} \quad P^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$$
Then
$$B = P^{-1}AP = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} -53 & -89 \\ 32 & 54 \end{bmatrix}$$

6.25. Let $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 5 & -4 \\ 1 & -2 & 2 \end{bmatrix}$. Find the matrix B that represents the linear operator A relative to the

$$S = \{u_1, u_2, u_3\} = \{[1, 1, 0]^T, [0, 1, 1]^T, [1, 2, 2]^T\}$$

[Recall A that defines a linear operator $A: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the usual basis E of \mathbb{R}^3 .]

Method 1. Find the coordinates of $A(u_1)$, $A(u_2)$, $A(u_3)$ relative to the basis S by first finding the coordinates of an arbitrary vector v = (a, b, c) in \mathbb{R}^3 relative to the basis S. By Problem 6.16,

$$[v]_S = (b-c)u_1 + (-2a+2b-c)u_2 + (a-b+c)u_3$$

Using this formula for $[a, b, c]^T$, we obtain

$$A(u_1) = [4, 7, -1]^T = 8u_1 + 7u_2 - 4u_3,$$
 $A(u_2) = [4, 1, 0]^T = u_1 - 6u_2 + 3u_3$
 $A(u_3) = [9, 4, 1]^T = 3u_1 - 11u_2 + 6u_3$

Writing the coefficients of u_1, u_2, u_3 as columns yields

$$B = \begin{bmatrix} 8 & 1 & 3 \\ 7 & -6 & -11 \\ -4 & 3 & 6 \end{bmatrix}$$

Method 2. Use $B = P^{-1}AP$, where P is the change-of-basis matrix from the usual basis E to S. The matrix P (whose columns are simply the vectors in S) and P^{-1} appear in Problem 6.16. Thus,

$$B = P^{-1}AP = \begin{bmatrix} 0 & 1 & -1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 2 & 5 & -4 \\ 1 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 1 & 3 \\ 7 & -6 & -11 \\ -4 & 3 & 6 \end{bmatrix}$$

Similarity of Matrices

- **6.27.** Let $A = \begin{bmatrix} 4 & -2 \\ 3 & 6 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
- (b) Verify tr(B) = tr(A). (c) Verify det(B) = det(A).
- (a) First find P^{-1} using the formula for the inverse of a 2 × 2 matrix. We have

$$P^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Then

$$B = P^{-1}AP = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 4 & -2\\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 25 & 30\\ -\frac{27}{2} & -15 \end{bmatrix}$$

- (b) tr(A) = 4 + 6 = 10 and tr(B) = 25 15 = 10. Hence, tr(B) = tr(A).
- (c) det(A) = 24 + 6 = 30 and det(B) = -375 + 405 = 30. Hence, det(B) = det(A).
- **6.28.** Find the trace of each of the linear transformations F on \mathbb{R}^3 in Problem 6.4.

Find the trace (sum of the diagonal elements) of any matrix representation of F such as the matrix representation $[F] = [F]_E$ of F relative to the usual basis E given in Problem 6.4.

- (a) tr(F) = tr([F]) = 1 5 + 9 = 5.
- (b) tr(F) = tr([F]) = 1 + 3 + 5 = 9.
- (c) tr(F) = tr([F]) = 1 + 4 + 7 = 12.

Matrix Representations of General Linear Mappings

- **6.31.** Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear map defined by F(x, y, z) = (3x + 2y 4z, x 5y + 3z).
 - (a) Find the matrix of F in the following bases of \mathbb{R}^3 and \mathbb{R}^2 :

$$S = \{w_1, w_2, w_3\} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$$
 and $S' = \{u_1, u_2\} = \{(1, 3), (2, 5)\}$

- (b) Verify Theorem 6.10: The action of F is preserved by its matrix representation; that is, for any $v \text{ in } \mathbf{R}^3$, we have $[F]_{S,S'}[v]_S = [F(v)]_{S'}$.
- (a) From Problem 6.2, $(a,b) = (-5a + 2b)u_1 + (3a b)u_2$. Thus,

$$F(w_1) = F(1, 1, 1) = (1, -1) = -7u_1 + 4u_2$$

$$F(w_2) = F(1, 1, 0) = (5, -4) = -33u_1 + 19u_2$$

$$F(w_3) = F(1, 0, 0) = (3, 1) = -13u_1 + 8u_2$$

Write the coordinates of $F(w_1)$, $F(w_2)$, $F(w_3)$ as columns to get

$$[F]_{S,S'} = \begin{bmatrix} -7 & -33 & 13 \\ 4 & 19 & 8 \end{bmatrix}$$

(b) If v = (x, y, z), then, by Problem 6.5, $v = zw_1 + (y - z)w_2 + (x - y)w_3$. Also,

$$F(v) = (3x + 2y - 4z, \ x - 5y + 3z) = (-13x - 20y + 26z)u_1 + (8x + 11y - 15z)u_2$$
$$[v]_S = (z, \ y - z, \ x - y)^T \quad \text{and} \quad [F(v)]_{S'} = \begin{bmatrix} -13x - 20y + 26z \\ 8x + 11y - 15z \end{bmatrix}$$

Thus,
$$[F]_{S,S}[v]_S = \begin{bmatrix} -7 & -33 & -13 \\ 4 & 19 & 8 \end{bmatrix} \begin{bmatrix} z \\ y-x \\ x-y \end{bmatrix} = \begin{bmatrix} -13x - 20y + 26z \\ 8x + 11y - 15z \end{bmatrix} = [F(v)]_{S}$$

6.32. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be the linear mapping defined as follows:

$$F(x_1, x_2, \ldots, x_n) = (a_{11}x_1 + \cdots + a_{1n}x_n, a_{21}x_1 + \cdots + a_{2n}x_n, \ldots, a_{m1}x_1 + \cdots + a_{mn}x_n)$$

- (a) Show that the rows of the matrix [F] representing F relative to the usual bases of \mathbb{R}^n and \mathbb{R}^m are the coefficients of the x_i in the components of $F(x_1, \ldots, x_n)$.
- (b) Find the matrix representation of each of the following linear mappings relative to the usual basis of \mathbb{R}^n :
 - (i) $F: \mathbb{R}^2 \to \mathbb{R}^3$ defined by F(x, y) = (3x y, 2x + 4y, 5x 6y).
 - (ii) $F: \mathbb{R}^4 \to \mathbb{R}^2$ defined by F(x, y, s, t) = (3x 4y + 2s 5t, 5x + 7y s 2t).
 - (iii) $F: \mathbb{R}^3 \to \mathbb{R}^4$ defined by F(x, y, z) = (2x + 3y 8z, x + y + z, 4x 5z, 6y).
- (a) We have

$$F(1,0,\ldots,0) = (a_{11},a_{21},\ldots,a_{m1}) \\ F(0,1,\ldots,0) = (a_{12},a_{22},\ldots,a_{m2}) \\ F(0,0,\ldots,1) = (a_{1n},a_{2n},\ldots,a_{mn})$$
 and thus,
$$[F] = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{bmatrix}$$

(b) By part (a), we need only look at the coefficients of the unknown x, y, \ldots in $F(x, y, \ldots)$. Thus,

(i)
$$[F] = \begin{bmatrix} 3 & -1 \\ 2 & 4 \\ 5 & -6 \end{bmatrix}$$
, (ii) $[F] = \begin{bmatrix} 3 & -4 & 2 & -5 \\ 5 & 7 & -1 & -2 \end{bmatrix}$, (iii) $[F] = \begin{bmatrix} 2 & 3 & -8 \\ 1 & 1 & 1 \\ 4 & 0 & -5 \\ 0 & 6 & 0 \end{bmatrix}$

- **6.33.** Let $A = \begin{bmatrix} 2 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix}$. Recall that A determines a mapping $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(v) = Av, where vectors are written as columns. Find the matrix [F] that represents the mapping relative to the following bases of \mathbb{R}^3 and \mathbb{R}^2 :
 - (a) The usual bases of \mathbb{R}^3 and of \mathbb{R}^2 .
 - (b) $S = \{w_1, w_2, w_3\} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ and $S' = \{u_1, u_2\} = \{(1, 3), (2, 5)\}.$
 - (a) Relative to the usual bases, [F] is the matrix A.
- (b) From Problem 6.2, $(a,b) = (-5a + 2b)u_1 + (3a b)u_2$. Thus,

$$F(w_1) = \begin{bmatrix} 2 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = -12u_1 + 8u_2$$

$$F(w_2) = \begin{bmatrix} 2 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ -3 \end{bmatrix} = -41u_1 + 24u_2$$
$$F(w_3) = \begin{bmatrix} 2 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = -8u_1 + 5u_2$$

Writing the coefficients of $F(w_1)$, $F(w_2)$, $F(w_3)$ as columns yields $[F] = \begin{bmatrix} -12 & -41 & -8 \\ 8 & 24 & 5 \end{bmatrix}$.

6.34. Consider the linear transformation T on \mathbb{R}^2 defined by T(x,y) = (2x - 3y, x + 4y) and the following bases of \mathbb{R}^2 :

$$E = \{e_1, e_2\} = \{(1,0), (0,1)\}$$
 and $S = \{u_1, u_2\} = \{(1,3), (2,5)\}$

- (a) Find the matrix A representing T relative to the bases E and S.
- (b) Find the matrix B representing T relative to the bases S and E.

(We can view T as a linear mapping from one space into another, each having its own basis.)

(a) From Problem 6.2, $(a, b) = (-5a + 2b)u_1 + (3a - b)u_2$. Hence,

$$T(e_1) = T(1,0) = (2,1) = -8u_1 + 5u_2$$
 and so $A = \begin{bmatrix} -8 & 23 \\ 5 & -13 \end{bmatrix}$

(b) We have

$$T(u_1) = T(1,3) = (-7,13) = -7e_1 + 13e_2 \\ T(u_2) = T(2,5) = (-11,22) = -11e_1 + 22e_2$$
 and so $B = \begin{bmatrix} -7 & -11 \\ 13 & 22 \end{bmatrix}$

6.35. How are the matrices A and B in Problem 6.34 related?

By Theorem 6.12, the matrices A and B are equivalent to each other; that is, there exist nonsingular matrices P and Q such that $B = Q^{-1}AP$, where P is the change-of-basis matrix from S to E, and Q is the change-of-basis matrix from E to S. Thus,

$$P = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}, \qquad Q = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}, \qquad Q^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$
$$Q^{-1}AP = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -8 & -23 \\ 5 & -13 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} -7 & -11 \\ 13 & 22 \end{bmatrix} = B$$

and

6.36. Prove Theorem 6.14: Let $F: V \to U$ be linear and, say, rank(F) = r. Then there exist bases V and of U such that the matrix representation of F has the following form, where I_r is the r-square identity matrix:

$$A = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

Suppose dim V = m and dim U = n. Let W be the kernel of F and U' the image of F. We are given that rank (F) = r. Hence, the dimension of the kernel of F is m - r. Let $\{w_1, \ldots, w_{m-r}\}$ be a basis of the kernel of F and extend this to a basis of V:

$$\{v_1, \dots, v_r, w_1, \dots, w_{m-r}\}$$

$$u_1 = F(v_1), \ u_2 = F(v_2), \ \dots, \ u_r = F(v_r)$$

Set