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Lecture 1 (20.03.2020)

1. The Element of Area in Curvilinear Coordinates

Take in plane uOv the elementary rectangular with vertices Ql(U,V),
Q,(u+Au,v), Qi(u+Au,v+Av), and Q,(u,v+Av) Fig. 3.13, and
consider also the curvilinear quadrangle corresponding to it in plane XOy. Two
pairs of the coordinate lines, Fig. 3.14, generate this quadrangle. Formulas of
transformation are in the form X = g(u,v), y = h(u, V), then coordinates of its
vertices will be defined as

P.(g(u,v),h(u,v)),P,(g(u+Au,v),h(u +Au,v)),
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P,(g(u+Au,v+Av),h(u+Au,v+Av)) and P,(g(u,v+Av),h(u,v+Av)).

Denote 0 = \/(Au)2 +(AV)2 . Then supposing that the functions g(u,V) and
og og oh

oh ~
h(u,v) have continuous partial derivative —, —, — and — in domain G
ou ov ou

, we can change up to value 0(8) the points P, P,, P, and P, by points

P/, P,, P;, P, with following coordinates:

R (g(u,v),h(u,v)),
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P,P; and P/P; will be equal, P,P; = PP;. Analogously PP, =P,P; and

Since @_{Gg u, @Au} and TPS’—{(;Q u, a—hAu} then vectors
u

hence figure P/P,P;P, is parallelogram. Its area may be approximately
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calculated as |[ PP, P,P; ]|. But PP, = {8 Av, —AV} and consequently
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The determinant
a
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J(u,v)= o on
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or another form is called Jacob’s determinant or Jacobian of the functions
o(g,h)

g(u,v) and h(u,v) and denoted by

o(u,v)

(PP}, PP 1= 3 (u, v)AUAVK .

So

0
9 ah 69 and — oh are evaluated at

*) Here and lower it is supposed that the partial derivatives
"ou v ov

the point (u,v).



Thus
Serpspp; =|J (U, V)}AUAY. (3.13)

From this it follows that the area of quadrangle PP, P;P, up value 0(82 ) is equal

to |J (U, V) AUAV. Therefore the value |J(u,v)dudv is taken as element of area

in curvilinear coordinates.
In particular for polar coordinates we have

X=pCoS®, Y=psing,

and hence
X ox
oo O cose —psing
Y Y| |sing pcose
op 09
Since p>0 then element of area in polar o
coordinates will be equal to o
ds = pdpde. (3.14) )
4
Consequently the figure P,P,P,P, up smallest P
value of higher order we can consider as rectangular ,"-I\f"?,/pl
with sides PP,=Ap and PP,=pAeo 5~ .

2. Change of the Variables in the Double Integrals

Let the integral [[ f (X, y)dxdy =1 be given over the domain D. Suppose that
D

the domain D is transformed by formulas (3.10) in domain G of
plane UOV. We suppose that this mapping is one-to-one
@ correspondence. Divide the domain G into subdomains

AG,,AG,,..,AG,, with areas Ac,,Aoc,,...,AC

by an

n

f 316 X arbitrary way. Then the domain D will be divided into
ig. 3.

subdomains AD,,AD,,..,AD, by associated lines with areas

As,,As,,..,As, (Fig. 3.16). In each subdomain AD, take an arbitrary point and

form integral sum



~ n

S =3 (%, Vi )As, .

k=1
On base of formula (3.13)

As, =|J (x> M )‘Ack’
where (ik, nk) is some point of domain AG, . Let us take as the point (xk, yk)
such point of the domain AD,, which is transformed exactly at the point

(&k, nk) (since the integral exists then a point (Xk : yk) in integral sum may be

chosen by any way). In other words, we suppose

X = Q(QK,HK), Y = h(»ik,nk)-

Then the integral sum takes the form:

S = 3 f(g(E0 M m))IE A,

Assuming that the function f(x, y) is continuous in the domain D and passing

to limit we get
I :ij f(g(u,v),h(u,v)}I(u,v)ds,
that is
g f(x, y)dxdy :jGj f(g(u,v) h(u,v))I(u,v)ds®.  (3.15)

This is formula of change of the variables in the double integrals. In particular
case for polar coordinates this formula is presented as

[ f(x,y)dxdy = [[ f (pcose,psine)pdpde. (3.16)
D G

Example 1. Calculate the volume of the solid bounded by plane z=0 and

surfaces (X —1)2 +y®=land z = X2 + y2 (Fig. 3.17).

*) 1t may be shown that formula (3.15) is also valid in case if imagination (3.11) of the domain G
on domain D is one to one correspondence only inner points of these domains.



Solution. We have

Fig. 3.17

Fig. 3.18

v :g(x2 + yz)dxdy.

Let us pass to polar coordinates. In the given case

f(pcose,psing)p = (pz cos® @+ p?sin? (p)p =p°,
therefore on base of (3.16) we get

V = [[p°dpdo.
G

Rewrite the equation of the domain boundary D (Fig. 3.18) in the form

X2 +y% =2x.
In polar coordinates this equation takes the following form
p? =2pCose.
Or
p =2C0S®.
Hence on base of (3.16)
n n 2cosg T
V= T (Zcfsq)p?’dp]d(p = % Tp‘l do = 4% TCOS4 odo =
3 %, :

T

2
(L+cos2¢)’dp= | (1+ 2COSZ@+%+%COS4(pjd(p = gn.
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Note. While solving the concrete problems the domain G may be not shown on

figure but limits of integration for every variables pand ¢ we can determine
using the kind of domain projection D.



3. Physical Application of the Double Integral

3.1. Calculation of the Mass of an Inhomogeneous Plate

It was shown (formula 3.3), that mass of the plate, that fills domain D on the
plane XOy and has density p(X,Y), is expressed by formula

m= ijp(x, y)dxdy.

3.2. Calculation of the Inertia Moment of the Plate

The moment of inertia | of a material point M of mass m relatively to some point
O is defined as product of mass m by the square of its distance r from the point
O:

2
I, =mr-.

The moment of inertia of a material points system m,,m,,...,m, relatively to O

is the sum of moments of inertia of the individual points of the system:
I=n 2
lo=22M1".
i=1

Let us determine the moment of inertia of material plate, filling in the domain D
and the density of which is given by function

p(x, y). ’ AD,
Divide this plate into elementary parts AD,, A |

where k=1,2,...,n (Fig. 3.20). The moment of re |

inertia of the domain AD, relatively to point Ois O X'k X
approximately equal to Fig. 3.20

(Alo)k = rszmk = (XE + yf )P(Xk » Yk )AGk'

And hence the moment of all plate will be approximately equal to integral sum
k=n

k=n
Iy = kZ_:l(Alo)k = Z(XE + ylf)p(xk’yk )AGk :

k=1



Passing to limit as the diameter of each elementary subdomains approaches
zero we get the exact value for moment of inertia of the given plate:

lo = [ (x2 + yz)p(x, y )dxdy .
D
If the plate is homogeneous, that is p(x, y)z p =const then we obtain:
l, = pﬂ(x2 + yz)dxdy.
D

It is obviously that the moments of inertia relatively to the axis Ox and Oy will
be equal respectively:

|, :gyzp(x, y)dxdy, 1, = gxzp(x, y )dxdy .

Whence in particular it follows that
lo=1,+1,.
3. The Coordinates of the Gravity Center of the Material Plate

Divide the plate into parts AD,,AD,,...,AD, . In each subdomains AD,
choose an arbitrary point M, (Xk ' Vi ) Considering the plate as discrete model of n

material  points M, M,,...,M with masses Am, = p(x,, ¥, )AG,,

n
Am, =p(X,, ¥,)AG,, ..., Am, =p(xn, y,)AG, we obtain abscissa of the
gravity center:

n n
2. X Amy Zxkp(xk’ Yk )Ack
L _ ka |

(o} n n
2. Am, > p(xk ' Yk )AGk
k=1 k=1

then passing to limit when at A — O we obtain the exact formula

[ xp(x, y)dxdy

* = E}gp(x, Yoxdy

and similarly for ordinate we have:



[ 'yp(x, y)dxdy

D

Ve = ([o(, y)ay

If the plate is homogeneous, then reducing by number p the both fractions

we get:
[ xdxdy [[ ydxdy
x =D ’ _D ’ y

c S Ye S |
where S is area of the plate. & /
Example. Find the center of gravity of the 1 5 1
homogeneous figure, bounded by lines y = X° _

Fig. 3.21

and y =1 (Fig. 3.21).

Solution. It is clear that X, = 0. Further

1/ 1 1 1
H yds = I(Jydyjdx :EJ‘y2 |§<2 dx :} I(l—XA')dX _
D 25 25

| X2

hence Yo =



Lecture 2 (03.04.2020)

1. Definition and Properties of the Triple Integral

A triple integral is natural generalization of the theory of the double integrals on
the 3-dimension space.

Let a function f (X, Y, Z) be given in closed domain D of the 3 - dimension
space R3. Divide the domain D by some surfaces on n subdomains
AD,,AD,,...,AD, with volumes AV,,AV,,...,AV, . In each subdomains AD, we
take an arbitrary point M (xk Yios zk) and calculate the value f(Xk » Yior Zy ) Let

us form the sum

S =% f (% Yo 2)AVY, .
It is called integral sum of function f(x, Y, Z)in domain D.

The maximum diameter among all diameters of subdomains AD,, AD,,...,
AD,, denote by A. Let A approaches zero A — 0. It means that the domain D will
be divided infinitely and each subdomain AD, will contracts to appropriate point

-~

M, . If there exists limit Ixirr(l)(Sx ), which independents on ways of partition of the
—>

domain D and choice of the points then this limit is called the triple integral of
function f(X, Y, Z) over the domain D and denoted by

jg f(x,y,z)dv.

So by definition we have
[I] f(x,y,z)dv :x“mo;lf(x"’ Ve, Z AV, .
D =

Namely from this definition it follows full analogy between the double and triple
integrals and in particular their properties.

For example, instead of equality

HdS:SD

D



now we will have
flfav =V,
D

where V is volume of domain D.
Exactly as for definite integral we can establish the following theorem.

Theorem. |If functionf(x, y,z) is continuous in domain D, then integral

I] f(x,y,2)dV will exist.(Without proof).
Vv

The triple integral has not geometrical sense, but it has physical sense. Let
function is non-negative f(X,y,z)>0 for all (X,y,z)e D. Then this function

f(X, y,Z) may be considered as density of substances in domain D. In this case
the value f (Xk » Yier Zi )AVk is approximately equal to mass of substance in domain
AD, . Adding these masses and passing to limit as A — 0, we get that integral

I f (X, ¥, )dv is mass of substance in over domain D.
D

2. Calculation of the Triple Integral in the Cartesian Coordinates System

Let domain V is regular in direction Oz axis and Zzgl(x, y) and

Z= gz(x, y) be equations of the lower and upper boundaries of the domain D (Fig.

4.1). It means that any straight line parallel to Oz cuts the boundary domain at no
more than two points. And B is 2-dimension domain obtained as result of projection

of the solid V on the plane XOy (Fig. 4.2). Suppose that Yy = hl(x) and y = h,(x)
") (a <X< b) are equations of the lower and upper boundaries of the domain D.

Then analogously to the double integral we can prove the following formula for
calculation of the triple integral by threefold iterated integral:

*) There are supposed that functions g, (X, y), 9,(x,y), h(x), hy(x) are single-valued.



y= hz(x)

x 9 ; .
i y:hl(x) |
Of a b "
Fig. 4.1 Fig. 4.2.
b [h2(x)[ 92(x,y)
[I] f(x,y,z)dv :j{ [ { [ £(x, y,z)dz}dy}dx. (4.1)
a (h(x)[ g1(xy)

Note, that the order of integration may be changed. The value dv = dxdydz

is called element of volume in Cartesian coordinates.
Rule of Finding Limits of Integration
We take the following steps to reduce a triple integral to an iterated one.

1. Divide the domain into regular subdomains in the direction Oz, if it is
necessary, that is if some line parallel to z-axis has more than two common points
with boundary of the solid V.

2. Fix arbitrary x andy inside domain D, which is projection of
the solid V on plane xOy. Let a line parallel to z-axis cut the boundary of the given
solid V at two points with coordinates z; = gl(x, y) and Z, = gz(x, y). The
expressions gl(x, y) and gz(x, y) should be taken as the limits of integration with

respect to z. So we obtain that

j\{j f(x,y,z)dxdydz = gdxdygz?’?(x, y,z)dz.

g (x.y)



3. The domain of definition D of the function of x, y (obtained after integration
with respect to z) is the projection of the given domain V on the xOy-plane. After

Fig. 4.3
g2(x.y)
calculation of the integral jf(x,y,z)dz, where the variables x and y are
g (x.y)

constants we go to the double integral over domain D. The rule of finding limits of
integration for the double integral is known. So we get

hy(x) g2(xy)
ﬂj f(x,y, z)dxdydz—jdx Jdy [f(xy,z)dz.
a  m(x) glxy)
Example 1. Find the limits of the triple integral of a function f taken over the

sphere x* + y2 +2° =a’ (Fig. 4.4)



Solution. This solid is regular in direction Oz and its projection on the plane xOy is

y

AAA
SNV

circle. Thus

(I f(x,y,z)dxdydz=[dx [dy  [f(x,y,z)dz.

—a _\/az_xz _J(az_xz_yz)

Example 2. Calculate a mass of solid bounded by planes x=0, y=0,

X+ Yy =1 and cones z =X*+ y2 and Z = 2/x° + y2 , If its density at each

z

[EY

x+y=1

@) X

Fig. 4.5
point is equal p(x, Y, Z) = Xyz (Fig 4.5).

Solution. Using the physical sense of the triple integral we get m = [[[ xyzdv.
v

By virtue of formula (4.1) we have

1| 1x( 2 x%+y? 1| 1x [2x3+y?
m={[| [| [xyzdzdy|dx=[|x[y [zdz{dy |dx=
0f 0 [/x24y2 0| o0 2, 2

XT+Yy



= %}(xljx yz gdyjdx = %}{ l]XyB(x2 + yz)dy}dx =

0 0 0 0

1-x

dx =

2,,2 4

3 [;;(x yry )dy}dx_gix[xzy %j

1
_2£ ’

0

1
:gjx[ZXZ(l—x)2+(l—x)4]dx:

0

:gj(2x3—4x4+2x5+x—4x2+6x3—4x4+x5)dx:
1
=§j(8x3—8x4+3x5+x—4x2)dx:
i PRIESEINE

o 9O 5 2 2 3) 40

It is clear that the triple integrals may be applied to calculation of the moments
of inertia and coordinates of gravity center

V4
also.

Example 2. Calculate mass of the solid

bounded by the cylinder X% = 2y and planes

z=0, 2y+z=2, if at each point its volumes ) y
0

density is numerically equal to z-coordinate of /

its point. X

: N : : . Fig. 4.6
Solution. The cylindrical solid (Fig. 4.6) is

bounded from above by the plane z =2 —2Y. This plane cuts the plane Zz=0 on

the line y =1. Mass of the solid filling up the domain V is calculated with help of
the triple integral:

m = [[[3(x,y,z)dxdydz, where 8(X,Y,z,) is volumes density. In our case
\Y

8(x,y,2)=12 and



V2y  2-2y 1 , 2y
m= mzdxdydz_jdy | dxj zdz:Zj(l—y) dy [dx=
Tay

2 —/2

<

=i( y)'\/2ydy =442 i( 2y+ny=

5 7
_4\/—£ y? —§y2+§y2}l 642
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