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Lecture 1 (20.03.2020) 

1. The Element of Area in Curvilinear Coordinates 

 

 Take in plane uOv  the elementary rectangular with vertices  vuQ ,1 , 

 vuuQ ,2  ,  vvuuQ  ,3 , and  vvuQ ,4  Fig. 3.13, and 

consider also the curvilinear quadrangle corresponding to it in plane xOy . Two 

pairs of the coordinate lines, Fig. 3.14, generate this quadrangle. Formulas of 

transformation are in the form  vugx , ,  vuhy , , then coordinates of its 

vertices will be defined as 

    vuhvugP ,,,1 ,     vuuhvuugP ,,,2  , 

    vvuuhvvuugP  ,,,3  and     vvuhvvugP  ,,,4 . 

Denote    22
vu  . Then supposing that the functions  vug ,  and 

 vuh ,  have continuous partial derivative 
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34PP   and 2.1 PP   will be equal, 2134 PPPP  . Analogously 3241 PPPP   and 

hence figure 4321 PPPP   is parallelogram. Its area may be approximately 

calculated as |[ 3221 , PPPP  ]|. But 

















 v

v

h
v

v

g
PP ,32  and consequently  

|[ 3221 , PPPP  ]|= 

= kvu

v

h

u

h
v

g

u

g

v
v

h
v

v

g

u
u

h
u

u

g

k

v
v

h
v

v

g

u
u

h
u

u

g

kji

































































0

0 . 

The determinant 

 

v

h

u

h
v

g

u

g

vuJ
















,  

or another form is called Jacob’s determinant or Jacobian of the functions 

 vug ,  and  vuh ,  and denoted by 
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|[ 3221 , PPPP  ]|=   kvuvuJ
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 Here and lower it is supposed that the partial derivatives 
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Thus 

  vuvuJS PPPP  ,
4321

.    (3.13) 

From this it follows that the area of quadrangle 4321 PPPP   up value  2o  is equal 

to   vuvuJ , . Therefore the value  dudvvuJ ,  is taken as element of area 

in curvilinear coordinates. 

In particular for polar coordinates we have  

 cosx ,  siny , 

and hence  

  





















cossin

sincos
,

yy

xx

J . 

Since 0  then element of area in polar 

coordinates will be equal to  

 ddds .    (3.14) 

Consequently the figure 4321 PPPP  up smallest 

value of higher order we can consider as rectangular 

with sides 21PP  and 41PP  

(Fig. 3.15). 

 

2. Change of the Variables in the Double Integrals 

 

Let the integral   
D

Idxdyyxf ,  be given over the domain D . Suppose that 

the domain D is transformed by formulas (3.10) in domain G  of 

plane uOv . We suppose that this mapping is one-to-one 

correspondence. Divide the domain G  into subdomains 

nGGG  ,..,, 21  with areas n ,...,, 21  by an 

arbitrary way. Then the domain D  will be divided into 

subdomains nDDD  ,..,, 21  by associated lines with areas 

nsss  ,..,, 21  (Fig. 3.16). In each subdomain kD  take an arbitrary point and 

form integral sum  
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On base of formula (3.13) 

  kkkk Js  , , 

where  kk  ,  is some point of domain kG . Let us take as the point  kk yx ,  

such point of the domain kD , which is transformed exactly at the point 

 kk  ,  (since the integral exists then a point  kk yx ,  in integral sum may be 

chosen by any way). In other words, we suppose  

 kkk gx  , ,  kkk hy  , . 

Then the integral sum takes the form: 
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Assuming that the function  yxf ,  is continuous in the domain D  and passing 

to limit we get  

       
D

dvuJvuhvugfI ,,,, , 

that is 

         
GD

dvuJvuhvugfdxdyyxf ,,,,, . (3.15) 

This is formula of change of the variables in the double integrals. In particular 

case for polar coordinates this formula is presented as 

    
GD

ddfdxdyyxf sin,cos, .  (3.16) 

Example 1. Calculate the volume of the solid bounded by plane 0z  and 

surfaces   11 22
 yx  and 

22 yxz   (Fig. 3.17).  

                                                             
 It may be shown that formula (3.15) is also valid in case if imagination (3.11) of the domain G 

on domain D is one to one correspondence only inner points of these domains. 



Solution. We have  

  
D

dxdyyxV 22
. 

Let us pass to polar coordinates. In the given case 

    32222 sincossin,cos f , 

therefore on base of (3.16) we get 

 
G

ddV 3
. 

Rewrite the equation of the domain boundary D  (Fig. 3.18) in the form  

xyx 222  . 

In polar coordinates this equation takes the following form 
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Or 
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Note. While solving the concrete problems the domain G  may be not shown on 

figure but limits of integration for every variables  and   we can determine 

using the kind of domain projection D . 
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3. Physical Application of the Double Integral 

 

3.1. Calculation of the Mass of an Inhomogeneous Plate 

It was shown (formula 3.3), that mass of the plate, that fills domain D  on the 

plane xOy  and has density ),( yx , is expressed by formula 

 
D

dxdyyxm , . 

3.2. Calculation of the Inertia Moment of the Plate 

The moment of inertia I of a material point M of mass m relatively to some point 

O is defined as product of mass m by the square of its distance r from the point 

O: 

2
0 mrI  . 

The moment of inertia of a material points system nmmm ,...,, 21  relatively to O 

is the sum of moments of inertia of the individual points of the system: 
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Let us determine the moment of inertia of material plate, filling in the domain D  

and the density of which is given by function 

 yx, . 

Divide this plate into elementary parts kD , 

where nk ...,,2,1  (Fig. 3.20). The moment of 

inertia of the domain kD  relatively to point О is 

approximately equal to 
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And hence the moment of all plate will be approximately equal to integral sum  
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Passing to limit as the diameter of each elementary subdomains approaches 

zero we get the exact value for moment of inertia of the given plate: 

    
D

dxdyyxyxI ,22
0 . 

If the plate is homogeneous, that is   constyx  ,  then we obtain: 

  
D

dxdyyxI 22
0 . 

It is obviously that the moments of inertia relatively to the axis Ox and Oy will 

be equal respectively:  

  
D

x dxdyyxyI ,2
,   

D
y dxdyyxxI ,2

. 

Whence in particular it follows that  

yx III 0 . 

3. The Coordinates of the Gravity Center of the Material Plate 

Divide the plate into parts nDDD  ,...,, 21 . In each subdomains kD  

choose an arbitrary point  kkk yxM , . Considering the plate as discrete model of n 

material points nMMM ,...,, 21  with masses   1111 ,  yxm , 

  2222 ,  yxm , …,   nnnn yxm  ,  we obtain abscissa of the 

gravity center: 
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then passing to limit when at 0  we obtain the exact formula  
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and similarly for ordinate we have: 
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If the plate is homogeneous, then reducing by number   the both fractions 

we get: 

S

xdxdy

x D
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S
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y D
c


 , 

where S  is area of the plate. 

Example. Find the center of gravity of the 

homogeneous figure, bounded by lines 
2xy   

and 1y  (Fig. 3.21). 

Solution. It is clear that 0cx . Further 
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Lecture 2 (03.04.2020) 

1. Definition and Properties of the Triple Integral 

 

A triple integral is natural generalization of the theory of the double integrals on 

the 3-dimension space.  

Let a function  zyxf ,,  be given in closed domain D  of the 3 - dimension 

space R3. Divide the domain D  by some surfaces on n  subdomains 

nDDD  ,...,, 21  with volumes nVVV  ,...,, 21 . In each subdomains kD  we 

take an arbitrary point  kkkk zyxM ,,  and calculate the value  kkk zyxf ,, . Let 

us form the sum  

   kkkk VzyxfS ,,
~

. 

It is called integral sum of function  zyxf ,, in domain D . 

The maximum diameter among all diameters of subdomains 1D , 2D ,…, 

nD  denote by . Let  approaches zero 0 . It means that the domain D  will 

be divided infinitely and each subdomain kD  will contracts to appropriate point 

kM . If there exists limit  ,~
lim

0



S  which independents on ways of partition of the 

domain D  and choice of the points then this limit is called the triple integral of 

function  zyxf ,,  over the domain D  and denoted by 

 
D

dvzyxf ,, . 

So by definition we have  
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k
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Namely from this definition it follows full analogy between the double and triple 

integrals and in particular their properties. 

For example, instead of equality 

D
D

Sds   



now we will have  

D
D

VdV  , 

where DV  is volume of domain D . 

Exactly as for definite integral we can establish the following theorem.  

Theorem. If function  zyxf ,,  is continuous in domain D , then integral 

 
V

dVzyxf ,,  will exist.(Without proof). 

The triple integral has not geometrical sense, but it has physical sense. Let 

function is non-negative   0,, zyxf  for all   Dzyx ,, . Then this function 

 zyxf ,,  may be considered as density of substances in domain D . In this case 

the value   kkkk Vzyxf ,,  is approximately equal to mass of substance in domain 

kD . Adding these masses and passing to limit as 0 , we get that integral 

 
D

dvzyxf ,,  is mass of substance in over domain D . 

 

2. Calculation of the Triple Integral in the Cartesian Coordinates System 

 

Let domain V is regular in direction Oz axis and  yxgz ,1  and 

 yxgz ,2  be equations of the lower and upper boundaries of the domain D  (Fig. 

4.1). It means that any straight line parallel to Oz cuts the boundary domain at no 

more than two points. And B  is 2-dimension domain obtained as result of projection 

of the solid V  on the plane xOy  (Fig. 4.2). Suppose that  xhy 1  and  xhy 2

  bxa   are equations of the lower and upper boundaries of the domain D . 

Then analogously to the double integral we can prove the following formula for 

calculation of the triple integral by threefold iterated integral: 

                                                             
 There are supposed that functions  1 , ,g x y   2 , ,g x y   1 ,h x   2h x  are single-valued. 
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Note, that the order of integration may be changed. The value dxdydzdv   

is called element of volume in Cartesian coordinates. 

Rule of Finding Limits of Integration  

We take the following steps to reduce a triple integral to an iterated one. 

1. Divide the domain into regular subdomains in the direction Oz , if it is 

necessary, that is if some line parallel to z-axis has more than two common points 

with boundary of the solid V.  

2. Fix arbitrary  x and y  inside domain D, which is projection  of  

the solid V on plane xOy. Let a line parallel to z-axis cut the boundary of the given 

solid V at two points with coordinates  yxgz ,11   and  yxgz ,22  . The 

expressions  yxg ,1  and  yxg ,2  should be taken as the limits of integration with 

respect to z. So we obtain that  
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 3. The domain of definition D of the function of x, y (obtained after integration 

with respect to z) is the projection of the given domain V on the xOy-plane. After 

calculation of the integral  
 

 


yxg

yxg

dzzyxf
,

,

2

1

,, , where the variables x and y are 

constants we go to the double integral over domain D. The rule of finding limits of 

integration for the double integral is known. So we get  
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Example 1. Find the limits of the triple integral of a function f  taken over the 

sphere 
2222 azyx  . (Fig. 4.4) 
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Solution. This solid is regular in direction Oz and its projection on the plane xOy is 

circle. Thus 
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Example 2. Calculate a mass of solid bounded by planes 0x , 0y , 

1 yx  and cones 
22 yxz   and 

222 yxz  , if its density at each 

point is equal   xyzzyx  ,,  (Fig 4.5). 

Solution. Using the physical sense of the triple integral we get 
V

xyzdvm . 

By virtue of formula (4.1) we have 
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It is clear that the triple integrals may be applied to calculation of the moments 

of inertia and coordinates of gravity center 

also. 

Example 2. Calculate mass of the solid 

bounded by the cylinder yx 22   and planes 

220  zy,z , if at each point its volumes 

density is numerically equal to z-coordinate of 

its point.  

Solution. The cylindrical solid (Fig. 4.6) is 

bounded from above by the plane yz 22  . This plane cuts the plane 0z  on 

the line 1y . Mass of the solid filling up the domain V is calculated with help of 

the triple integral: 

 
V

dxdydzzyxm ,, , where  ,,, zyx  is volumes density. In our case 

  zzyx  ,,  and  
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Fig. 4.6 
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