Practical Lesson No. 1, 2. Calculation of Double Integrals in Polar System of Coordinates (13.03.2020, 20.03.2020)

Class work

Answers

To pass to polar system coordinates ρ and ϕ ($x = \rho \cos \phi$, $y = \rho \sin \phi$ in the double integral $\iint f(x,y)dxdy$ and find

the limits of the integration

1. D is a circle:

1)
$$x^2 + y^2 \le R^2$$
;

- 2) $x^2 + y^2 \le ax$; 3) $x^2 + y^2 \le by$.

- 1) $\int_{0}^{2\pi} d\varphi \int_{0}^{R} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho;$
- 2) $\int_{-\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{a\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho;$
- 3) $\int_{0}^{\pi} d\varphi \int_{0}^{b\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho.$
- **2.** *D* is common part of the following domains $x^2 + y^2 \le ax$ и $x^2 + y^2 \le by$.

$$\int_{0}^{arctg} d\varphi \int_{0}^{a} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho +$$

$$+\int_{arctg}^{\frac{\pi}{2}} d\varphi \int_{0}^{a\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho$$

3. *D* is domain given by the following inequalities: $x \ge 0$,

$$y \ge 0$$
, $(x^2 + y^2)^3 \le 4a^2x^2y^2$.

$$\int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{a\sin 2\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho.$$

2.To calculate double integral by passing to polar system coordinate

4.
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^2 - x^2}} \ln(1 + x^2 + y^2) dy$$
.

$$\frac{\pi}{4} \Big[\Big(1 + R^2 \Big) \ln \Big(1 + R^2 \Big) - R^2 \Big].$$

5.
$$\iint_{D} \arctan \frac{y}{x} dx dy, \text{ where } D \text{ is part of}$$
the rang: $x^2 + y^2 \ge 1$, $x^2 + y^2 \le 9$,
$$y \ge \frac{x}{\sqrt{3}}, y \le x\sqrt{3}.$$

$$\frac{\pi^2}{6}$$

- 3. Using the double integrals calculate the solid volumes bounded by given surfaces (It is assumed that all parameters included in condition of the problems are positive values)
- **6.** Cylinder $x^2 + y^2 = 4$ and planes z = 0 and z = x + y + 10.

 40π .

7. Cylinder $x^2 + y^2 = R^2$, paraboloid $Rz = 2R^2 + x^2 + y^2$ and plane z = 0.

 $\frac{5}{2}\pi R^3$.

8. Cylinders $x^2 + y^2 = x$ and $x^2 + y^2 = 2x$, paraboloid $z = x^2 + y^2$ and planes x + y = 0, x - y = 0 and plane z = 0.

 $\frac{15}{8} \left(\frac{3\pi}{8} + 1 \right).$

Homework

Answers

- 1. To find integration limits in double integrals $\iint_D f(x, y) dx dy$ passing to polar coordinates ρ and φ $(x = \rho \cos \varphi, y = \rho \sin \varphi)$
- 1. D is domain bounded by circles $x^2 + y^2 = 4x$, $x^2 + y^2 = 8x$ and straight lines y = x and y = 2x.

 $\int_{\frac{\pi}{4}}^{arctg 2} d\varphi \int_{4\cos\varphi}^{8\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho$

2. *D* is inner part of the right lobe of the Bernoulli lemniscate $(x^2 + y^2)^2 = a^2(x^2 - y^2).$

 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int_{0}^{a\sqrt{\cos 2\varphi}} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho$

2. To calculate the given doub	le integrals passing	to polar coordinates:
--------------------------------	----------------------	-----------------------

3.
$$\iint_{D} \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dx dy$$
. Domain *D* is

defined by inequalities $x^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$.

$$4. \iint\limits_{D} \sqrt{R^2 - x^2 - y^2} dx dy,$$

$$\frac{R^3}{3}\left(\pi-\frac{4}{3}\right)$$
.

where *D* is a circle $x^2 + y^2 \le Rx$.

3. Using the double integrals calculate the solid volumes bounded by given surfaces (It is assumed that all parameters included in condition of the problems are positive values)

5. Cylinder
$$x^2 + y^2 = 2x$$
, planes $2x - z = 0$ and $4x - z = 0$.

$$2\pi$$
.

6. Cylinder
$$x^2 + y^2 = 2ax$$
, paraboloid $z = \frac{x^2 + y^2}{a}$ and plane $z = 0$.

$$\frac{3}{2}\pi a^3$$
.

7. Hyperbolic paraboloid
$$z = \frac{xy}{a}$$
, $\frac{a^3}{24}$ cylinder $x^2 + y^2 = ax$ and plane $z = 0$ ($x \ge 0, y \ge 0$).*

$$\frac{a^3}{24}$$
.

8. Cylinders
$$x^2 + y^2 = 2x$$
, $\frac{3}{2}(\frac{\pi}{2} - 1)$. and $z = 0$.

$$\frac{3}{2}\left(\frac{\pi}{2}-1\right).$$

Distance learning materials for students

Е-118іа.е, Е-318іб.е, Е-118іл.е, Е-618іб.е, МІТ-203.8і

Practical Lesson № 3, 4. Calculation of the Triple Integrals in Cartesian System **Coordinates (27.03.2020, 03.04.2020)**

(= : : : : : : : : : : : : : : : : : : :		
Classwork	Answers	
1. Calculate the triple integrals and	choose the true answer	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a) $I = 0$;	
1. $I = \int_{-1}^{1} x dx \int_{0}^{2} dy \int_{a}^{0} dz$;	b) $I = (1 \cdot 1 \cdot (-a)) = -a;$	
2. $I = \int_{a}^{0} dx \int_{0}^{2} dz \int_{-1}^{0} dy$.	c) $I = ((-a) \cdot 2 \cdot 1) = -2a$;	
a = 0 = -1	$d) I = (a \cdot 1 \cdot 1) = a.$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a) $I = 0$;	
3. $I = \int_{2}^{3} dx \int_{-a}^{a} z dz \int_{5}^{6} dy$.	b) I = -a;	
$ \begin{array}{ccccc} 0 & 1 & a \\ A & I - \int dx \int dx \int dz \end{array} $	c) $I = a$; d) $I = 2a$.	
4. $I = \int_{-1}^{0} dx \int_{0}^{1} dy \int_{0}^{a} dz$.	d) I = 2a.	
2. Restore the domain of integration		
Find the domain G of the integration taking	a) G is a part of the rotation	
into account the limits of integration:	paraboloid $z = x^2 + y^2$,	

5. $I = \int_{-R}^{R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} dy \int_{x^2 + y^2}^{R^2} f(x, y, z) dz$.

6.
$$I = \int_{-R}^{R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \int_{-R^2}^{-x^2 - y^2} f(x, y, z) dz$$
.

paraboloid $z = x^2 + y^2$, bounded by plane $z = R^2$.

b) G is part of the rotation paraboloid $z = -x^2 - y^2$ bounded by plane $z = -R^2$.

7.
$$I = \int_{-R}^{R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} dy \int_{\sqrt{x^2 + y^2}}^{R} f(x, y, z) dz$$
.

8.
$$I = \int_{-R}^{R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \int_{-R}^{-\sqrt{x^2 + y^2}} f(x, y, z) dy$$
.

a) G is upper part of the cone $x^2 + y^2 = z^2$ bounded by plane z = R.

b) G is the left-hand part of the cone $x^2 + z^2 = y^2$ bounded by plane z = -R.

Homework

Answers

1. Calculate the triple integrals and choose the true answer

1.
$$I = \int_{0}^{a} x dx \int_{0}^{x} y dy \int_{0}^{y} z dz$$
.

2.
$$I = \int_{0}^{a} dx \int_{0}^{x} y dy \int_{0}^{y} z dz$$
.

a)
$$I = \frac{a^4}{24}$$
;

b)
$$I = \frac{a^4}{8}$$
;

$$c) I = \frac{a^4}{48};$$

d)
$$I = \frac{a^5}{40}$$
.

3.
$$I = \int_{0}^{a} dx \int_{0}^{x} dy \int_{0}^{xy} dz$$
.

4.
$$I = \int_{0}^{a} x dx \int_{0}^{x} y dy \int_{0}^{xy} z dz$$
.

a)
$$I = \frac{a^4}{8}$$
;

b)
$$I = \frac{a^5}{10}$$
;

$$c) I = \frac{a^6}{12};$$

$$d) I = \frac{a^7}{14}.$$

2. Restore domain of integration

Find the domain G of the integration taking into account the limits of integration:

5.

$$I = \int_{-R}^{R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} dy \int_{-\sqrt{R^2 - x^2 - y^2}}^{0} f(x, y, z) dz.$$

6.
$$I = \int_{-R}^{R} dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \int_{0}^{\sqrt{R^2 - x^2 - y^2}} f(x, y, z) dy$$
.

a) G is an upper part of the sphere

 $x^2 + y^2 + z^2 = R^2$, which is bounded by plane z = 0.

b) G is a right-hand part of the sphere –

 $x^2 + y^2 + z^2 = R^2$, which is bounded by plane y = 0.

7.

$$I = \int_{-\sqrt{3}R}^{\sqrt{3}R} dx \int_{-\sqrt{3}R^2 - x^2}^{\sqrt{3}R^2 - x^2} dy \int_{\sqrt{R^2 + x^2 + y^2}}^{2R} f(x, y, z) dz.$$

8.

$$I = \int_{-\sqrt{3}R}^{\sqrt{3}R} dx \int_{-\sqrt{3}R^2 - x^2}^{\sqrt{3}R^2 - x^2} \int_{-2R}^{-\sqrt{R^2 + x^2 + y^2}} f(x, y, z) dz$$

a) G is an upper part of the

hyperboloid

$$x^{2} + y^{2} - z^{2} = -R^{2}$$
,
which is bounded by plane

z = 2R. b) G is a lower part of the

hyperboloid $x^2 + y^2 - z^2 = -R^2,$

which is bounded by plane,
$$z = -2R$$
.

