Practice_ 13.03. 2020

GROUP I-219ia, KH-219 ae,219iae,

1.19. Practice Lesson №4. Extrema of a Function

Classwork	Answers	
Find the stationary points of the following functions:		
4.1. $z = 2x^3 + xy^2 + x^2 + y^2$.	(0,0),(-5/3,0),(-1,2),	
	(-1,-2).	
4.2. $z = xy(a-x-y)$.	(0,0), (0,a), (a,0),	
	(a/3, a/3).	
4.3. $z = \sin x + \sin y + \cos(x + y)$	$(\pi/6,\pi/6).$	
$\left(0 \le x \le \frac{\pi}{4}, \ 0 \le y \le \frac{\pi}{4}\right).$		
4.4. $z = y\sqrt{1+x} + x\sqrt{1+y}$.	(-2/3,-2/3)	
4.5. $u = 3 \ln x + 2 \ln y + 5 \ln z +$	(6,4,10).	
$+\ln(22-x-y-z).$		
4.6. Find the stationary points of the	(-2,0), $(16/7,0)$, every	
function $z(x, y)$ defined by implicitly:	point will be stationary	
$2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0.$	point only for one of	
	branches of the function.	
4.7 *. Find point of extrema of the	(0,0).	
given function	Note. To prove that	
$z = 2xy - 3x^2 - 2z^2 + 10.$	stationary point is maximum	
	point it is enough to present	
	the function in the following	
	form:	
	$z = 10 - (x - y)^2 - 2x^2 - y^2$.	
4.8. Find the points of extrema of the	(-1,1).	

function $z = x^2 + xy + y^2 + x - y + 1$.		
4.9. To prove that function		
$z = x^4 + y^4 - 2x^2 - 4xy - 2y^2$ has		
minimum at the points: $x = \sqrt{2}$,		
$y = \sqrt{2} \text{ and } x = -\sqrt{2}, y = -\sqrt{2}.$		
4.10. Find stationary points of the	The point (6,4) is point of	
function $z = x^3 y^2 (12 - x - y)$, if it is	maximum.	
known that $x > 0$, $y > 0$. Investigate		
the character of these points.		
Homework	Answers	
Find the stationary points of the	following functions:	
4.11. $z = e^{2x}(x + y^2 + 2y)$.	(1/2,-1).	
4.12. $z = (2ax - x^2)(2by - y^2).$	(0,0), (0,2b), (a,b), (2a,0), (2a,2b).	
4.13. $z = \frac{a + bx + cy}{\sqrt{1 + x^2 + y^2}}$.	(b/a,c/a).	
4.14. $u = 2x^2 + y^2 + 2z - xy - xz$	(2,1,7).	
4.15. Let the function z be given implicitly: $5x^2 + 5y^2 + 5z^2 - 2xy - 2xz - 2yz - 72 = 0.$ Find its stationary points.		
4.16. Find the extrema points of the $(2,-2)$.		
function $z = 4(x - y) - x^2 - y^2$.		
4.17. To prove that the func $z = x^2 + xy + y^2 + \frac{a^3}{x} + \frac{a^2}{y}$ has minimum at the point $x = y = \frac{a}{\sqrt[3]{3}}$.	tion	

4.18. To prove that the function	
$z = x^3 + y^2 - 6xy - 39x + 18y + 20$ has	
minimum at the point $x = 5$, $y = 6$.	
4.19. Find the stationary points of the	The function has no
function $z = x^3 + y^3 - 3xy$ and investigate	extrema at the point
their for extremum.	(0,0). The point $(1,1)$
	is minimum point.