Practice_ 13.03. 2020 ## GROUP I-219ia, KH-219 ae,219iae, ## 1.19. Practice Lesson №4. Extrema of a Function | Classwork | Answers | | |--|-------------------------------------|--| | Find the stationary points of the following functions: | | | | 4.1. $z = 2x^3 + xy^2 + x^2 + y^2$. | (0,0),(-5/3,0),(-1,2), | | | | (-1,-2). | | | 4.2. $z = xy(a-x-y)$. | (0,0), (0,a), (a,0), | | | | (a/3, a/3). | | | 4.3. $z = \sin x + \sin y + \cos(x + y)$ | $(\pi/6,\pi/6).$ | | | $\left(0 \le x \le \frac{\pi}{4}, \ 0 \le y \le \frac{\pi}{4}\right).$ | | | | 4.4. $z = y\sqrt{1+x} + x\sqrt{1+y}$. | (-2/3,-2/3) | | | 4.5. $u = 3 \ln x + 2 \ln y + 5 \ln z +$ | (6,4,10). | | | $+\ln(22-x-y-z).$ | | | | 4.6. Find the stationary points of the | (-2,0), $(16/7,0)$, every | | | function $z(x, y)$ defined by implicitly: | point will be stationary | | | $2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0.$ | point only for one of | | | | branches of the function. | | | 4.7 *. Find point of extrema of the | (0,0). | | | given function | Note. To prove that | | | $z = 2xy - 3x^2 - 2z^2 + 10.$ | stationary point is maximum | | | | point it is enough to present | | | | the function in the following | | | | form: | | | | $z = 10 - (x - y)^2 - 2x^2 - y^2$. | | | 4.8. Find the points of extrema of the | (-1,1). | | | function $z = x^2 + xy + y^2 + x - y + 1$. | | | |---|--|--| | 4.9. To prove that function | | | | $z = x^4 + y^4 - 2x^2 - 4xy - 2y^2$ has | | | | minimum at the points: $x = \sqrt{2}$, | | | | $y = \sqrt{2} \text{ and } x = -\sqrt{2}, y = -\sqrt{2}.$ | | | | 4.10. Find stationary points of the | The point (6,4) is point of | | | function $z = x^3 y^2 (12 - x - y)$, if it is | maximum. | | | known that $x > 0$, $y > 0$. Investigate | | | | the character of these points. | | | | Homework | Answers | | | Find the stationary points of the | following functions: | | | 4.11. $z = e^{2x}(x + y^2 + 2y)$. | (1/2,-1). | | | 4.12. $z = (2ax - x^2)(2by - y^2).$ | (0,0), (0,2b), (a,b), (2a,0), (2a,2b). | | | 4.13. $z = \frac{a + bx + cy}{\sqrt{1 + x^2 + y^2}}$. | (b/a,c/a). | | | 4.14. $u = 2x^2 + y^2 + 2z - xy - xz$ | (2,1,7). | | | 4.15. Let the function z be given implicitly: $5x^2 + 5y^2 + 5z^2 - 2xy - 2xz - 2yz - 72 = 0.$ Find its stationary points. | | | | 4.16. Find the extrema points of the $(2,-2)$. | | | | function $z = 4(x - y) - x^2 - y^2$. | | | | 4.17. To prove that the func $z = x^2 + xy + y^2 + \frac{a^3}{x} + \frac{a^2}{y}$ has minimum at the point $x = y = \frac{a}{\sqrt[3]{3}}$. | tion | | | 4.18. To prove that the function | | |--|--------------------------| | $z = x^3 + y^2 - 6xy - 39x + 18y + 20$ has | | | minimum at the point $x = 5$, $y = 6$. | | | 4.19. Find the stationary points of the | The function has no | | function $z = x^3 + y^3 - 3xy$ and investigate | extrema at the point | | their for extremum. | (0,0). The point $(1,1)$ | | | is minimum point. |