Practice_ 18.03. 2020

GROUP I-219ia, КН-219 ae, 219iae, 219, ібе, 219іве

Practice Lesson № 5. Geometrical Applications

of the Differential Calculus for Function with

Two Variables

Classwork	Answers	
Geometrical applications		
5.1. Form an equations of the tangent line and normal plane to given curve:	$x - 6a = \frac{y - 18a}{6} = \frac{z - 72a}{36};$	
$x = at$, $y = \frac{1}{2}at^2$, $z = \frac{1}{3}at^3$ at the	x + 6y + 36z = 2706a	
point $(6a, 18a, 72a)$.		
5.2. Form an equations of the tangent	$x - 1 _ y - 3 _ z - 4$.	
line and normal plane to given	$\frac{12}{12} - \frac{-4}{-4} - \frac{-3}{3}$,	
curve: $y^2 + z^2 = 25$, $x^2 + y^2 = 10$ at	12x - 4y + 3z - 12 = 0.	
the point (1, 3, 4).		
5.3. On line $r\left\{\cos t, \sin t, e^t\right\}$ find the	$\int \sqrt{3} 1 \frac{\pi}{6}$	
point, at which the tangent line will	$r_0 \left(\frac{1}{2}, \frac{1}{2}, e \right)$	
be parallel to the		
$plane \sqrt{3x} + y - 4 = 0.$		
5.4. Form equations of tangent planes	8x - 8y - z = 4;	
and normal to the surface	x-2 y-1 z-4	
$z = 2x^2 - 4y^2$ at the point (2, 1, 4).	$\frac{-1}{8} = \frac{-8}{-8} = \frac{-1}{-1}$.	
5.5. Form equations of tangent planes	$x-y+2z-\frac{\pi}{2}=0;$	

and normal to the surface $z = \operatorname{arctg} \frac{y}{x}$	$\frac{x-1}{x-1} = \frac{y-1}{x-1} = \frac{z-\frac{\pi}{2}}{2}.$
at the point $\left(1, 1, \frac{\pi}{4}\right)$.	1 -1 2
5.6. Form equations of tangent planes	x + 11y + 5z - 18 = 0;
and normal to the surface	x-1 $y-2$ $z+1$
$x^{3} + y^{3} + z^{3} + xyz - 6 = 0$ at the point	$\frac{1}{1} = \frac{1}{11} = \frac{5}{5}$.
(1, 2, -1).	
5.7. Form an equation of the tangent	2x + y - z = 2.
plane to surface $z = xy$, if this plane	
is perpendicular to straight line	
$\frac{x+2}{2} = \frac{y+2}{2} = \frac{z-1}{-1}.$	
5.8. To surface $x^2 - y^2 - 3z = 0$ draw	4x - 2y - 3z = 3.
tangent plane passing through point	
A(0, 0, -1) and parallel to straight	
line $\frac{x}{2} = \frac{y}{1} = \frac{z}{2}$.	
Homework	Answers
5.9. Form equations of the tangent	$x - \frac{\pi}{2} + 1$
line and normal plane to given curve	$\frac{2}{1} = \frac{y-1}{1} = \frac{z-2\sqrt{2}}{\sqrt{2}};$
$x = t - \sin t$, $y = 1 - \cos t$, $z = 4\sin \frac{t}{2}$	$1 \qquad 1 \qquad \sqrt{2}$
at the point $(\pi/2 - 1, 1, 2\sqrt{2})$.	$x + y + \sqrt{2\chi} = \frac{-}{2} + 4.$
5.10. Form equations of the tangent	$\frac{x+2}{z+1} = \frac{y-1}{z+1} = \frac{z-6}{z+1}$
line and normal plane to given curve	-
line and normal plane to given curve	27 28 4

the point $(-2, 1, 6)$.	
5.11. Form equations of tangent	x+y-z-1=0;
planes and normal to the surface	$x - 1 _ y - 1 _ z - 1$
z = xy at the point $(1, 1, 1)$.	$\frac{1}{1} = \frac{1}{1} = \frac{1}{-1}$.
5.12. Form equations of tangent	17x + 11y + 5z = 60;
planes and normal to the surface	x-3 $y-4$ $z+7$
$z = \sqrt{x^2 + y^2} - xy$ at the point	$\frac{17}{17} = \frac{11}{11} = \frac{1}{5}$.
(3, 4, -7).	
5.13. To ellipsoid $x^2 + 2y^2 + z^2 = 1$	$x - y + 2z = \sqrt{\frac{11}{2}}$ and
draw the tangent plane, which is	$\sqrt{1-1}$ $\sqrt{2}$ $\sqrt{2}$
parallel to plane $x - y + 2z = 0$.	$x - y + 2z = -\sqrt{\frac{11}{2}}.$
5.14. Show that the surfaces	
$x + 2y - \ln z + 4 = 0$ and	
$x^2 - xy - 8x + z + 5 = 0$	
are touching to each other (they have	
the common tangent plane) at the	
point $(2, -3, 1)$.	