GROUP I-219ia, KH-219 ae, 219iae, 219, i6e, 219ibe

2.8. Practice Lesson № 7.

Gradient and Directional Derivatives

Classwork	Answers	
Derivative with respect to given direction. Gradient		
7.1. 1) $z = x^2 + y^2$. Find grad z at the	1) $6i + 4j;$	
point (3, 2).	2) $\frac{1}{2}(2i+j);$	
2) $z = \sqrt{4 + x^2 + y^2}$. Find grad z at the		
point (2, 1).	3) $\frac{-y_0 l + x_0 J}{x_0^2 + y_0^2}$.	
3) $z = \operatorname{arctg} \frac{y}{x}$. Find grad z at the point	0 20	
$(x_0, y_0).$		
7.2. 1) Find the point at which gradient	$(1)\left(-\frac{1}{3},\frac{3}{2}\right):\left(\frac{7}{3},\frac{3}{3}\right)$	
of the function $z = \ln\left(x + \frac{1}{y}\right)$ is the	3'4)'(3'4)'	
following $\overline{i} - \frac{16}{9} \overline{j}$.		
7.3. 1) Find derivative of the function	1) 0;	
$z = x^2 - 3x^2y + 3xy^2 + 1$ at the point		
M(3, 1) with respect to direction from		
this point to point (6, 5).		
2) Find derivative of the function	2) $-\sqrt{5}$.	
$z = x^2 y^2 - xy^3 - 3y - 1$ at the point		
(2, 1) with respect to direction from this		
point to the origin.		
7.4. Find derivative of the function	$\sqrt{2}$	
$z = \ln(x + y)$ at the point (1, 2), lying on	3.	

Answers
5.

Derivative with respect to given direction. Gradient	
7.7. 1) $z = \arcsin \frac{x}{x+y}$. Find an angle	1) $\cos \alpha \approx 0.99$, $\alpha = 8^{\circ}$; 2) $\cos \alpha \approx -1.99$,
between gradients of this function at the points $(1,1)$ μ $(3,4)$.	α ≈101°30′.
2) The functions $z = \sqrt{x^2 + y^2}$ and	
$z = x - 3y + \sqrt{3xy}$ are given. Find an	
angle between gradients of these	
functions at the point $(3,4)$.	
7.8. Find the points at which modulus	2) Points lying on the
of the gradient of the function	circle $x^{2} + y^{2} = \frac{2}{-}$.
$z = (x^2 + y^2)^{\frac{3}{2}}$ are equal to 2.	3
7.9.	$\sqrt{2}$
1) Find derivative of the function	$ 1) \frac{\sqrt{2}}{2};$
$z = \arctan xy$ at the point (1,1) with	

respect to direction of bisector of the	
first coordinate angle.	$\cos \alpha + \sin \alpha$
2) Find derivative of the function	$2) \frac{\cos \alpha + \sin \alpha}{2}.$
$z = \ln(e^x + e^y)$ at the origin with respect	
to direction of the ray, generating the	
angle α with abscissa.	
7.10. Find derivative of the function	1
$z = \arctan \frac{y}{x}$ at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, lying	$\overline{2}$.
on the circle $x^2 + y^2 - 2x = 0$ with	
respect to direction of this circle.	
7.11. Find derivative of the function	98
u = xyz at the point $A(5,1,2)$ with respect	13
to direction from this point to point	
B(9,4,14).	
7.12. Find derivative of the function	1
$u = \frac{1}{r}$, где $r^2 = x^2 + y^2 + z^2$ with respect	$\overline{r^2}$.
to direction of its gradient.	

2.9. Variants of the Control Tasks for Topic "Differential Calculus of the Function with Several Variables"

CARD № 1

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S: $x^{2} + y^{2} + z^{2} + 6z - 4x + 8 = 0$, $M_{0}(2,1,-1)$.

Task 2. Verify, does the function *u* satisfy the given equation?

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0, \ u = \arctan\frac{x}{y}.$$

Task 3. Investigate for extreme the following function $z = y\sqrt{x} - 2y^2 - x + 14y$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

$$z = 3x + y - xy$$
, \overline{D} : $y = x$, $y = 4$, $x = 0$.

Task 5. Find derivative of the function $\phi = \sqrt{xy} + \sqrt{4-z^2}$ at the point $M_0(1, 1, 2)$ with respect to direction $\bar{l} = -2\bar{i} + 2\bar{j} - \bar{k}$.

CARD № 2

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S:
$$x^{2} + z^{2} - 4y^{2} = -2xy$$
, $M_{0}(-2,1,2)$;

Task 2. Verify, does the function *u* satisfy the given equation?

$$x^{2}\frac{\partial^{2} u}{\partial x^{2}} + 2xy\frac{\partial^{2} u}{\partial x \partial y} + y^{2}\frac{\partial^{2} u}{\partial y^{2}} = 0, \ u = \frac{y}{x}.$$

Task 3. Investigate for extreme the following function

$$z = x^3 + 8y^3 - 6xy + 5.$$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

$$z = xy - x - 2y$$
, \overline{D} : $x = 3$, $y = x$, $y = 0$.

Task 5. Find derivative of the function $\varphi = \ln(x^2 + 2y)$ at the point A(4,-4) of the parabola $y^2 = 4x$ with respect to the direction of this curve.

CARD № 3

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S: $x^2 + y^2 + z^2 - xy + 3z = 7$, $M_0(1,2,1)$.

Task 2. Verify, does the function *u* satisfy the given equation?

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3(x^3 - y^3), \ u = \ln \frac{y}{x} + x^3 - y^3.$$

Task 3. Investigate for extreme the following function

$$z = 2x^3 + 2y^3 - 6xy + 5.$$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

 $z = x^{2} + 2xy - y^{2} - 4x$, $\overline{D} : x - y + 1 = 0$, x = 3, y = 0.

Task 5. Find derivative of the function $\varphi = \ln(x^2 + 4xy + 3y^2)$ at the point A(2,0) with respect to the direction of the vector collinear to the bisector of the 1st coordinate angle.

CARD № 4

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S:
$$x^{2} + y^{2} + z^{2} + 6y + 4x = 8$$
, $M_{0}(-1,1,2)$.

Task 2. Verify, does the function *u* satisfy the given equation?

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 0, u = \ln \left(x^{2} + (y+1)^{2} \right).$$

Task 3. Investigate for extreme the following function

$$z = 2xy - 3x^2 - 2y^2 + 10.$$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

$$z = x^{2} + y^{2} - 2x - 2y + 8$$
, $\overline{D} : x = 0, y = 0, x + y - 1 = 0$.

Task 5. Find derivative of the function $\phi = 3xz - \frac{z}{x}$ at the point A(-1,2,3) with respect to the direction of $\vec{\ell} = \vec{i} - \vec{j} + \sqrt{2}\vec{k}$.

CARD № 5

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S:
$$2x^2 - y^2 + z^2 - 4z + y = 13$$
, $M_0(2,1,-1)$.

Task 2. Verify, does the function *u* satisfy the given equation?

$$y \frac{\partial^2 u}{\partial x \partial y} = (1 + y \ln x) \frac{\partial u}{\partial x}, \qquad u = x^y.$$

Task 3. Investigate for extreme the following function

$$z = xy(6 - x - y).$$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

$$z = 2x^3 - xy^2 + y^2$$
, \overline{D} : $x = 0$, $x = 1$, $y = 0$, $y = 6$.

Task 5. Find derivative of the function

$$\varphi = 2\sqrt{y-z} + y \arctan x$$

at the point A(1,4,-5) with respect to the direction of $\vec{\ell} = 4\vec{i} - 3\vec{j}$.

CARD № 6

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S: $z = x^{2} + y^{2} - 4xy + 3x - 15$, $M_{0}(-1,3,4)$.

Task 2. Verify, does the function *u* satisfy the given equation?

$$x^2 \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2} = 0, \ u = e^{xy}.$$

Task 3. Investigate for extreme the following function

$$z = (x - 1)^2 + 2y^2$$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

 $z = x^{2} - 2y^{2} + 4xy - 6x - 1$, \overline{D} : x = 0, y = 0, x + y - 3 = 0.

Task 5. Find derivative of the function $\varphi = 2x^2 - \ln(z^2 + y^2)$ at the point A(2,-1,1) with respect to the direction of $\vec{\ell} = \{0;-1;0\}$.

CARD № 7

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_0(x_0, y_0, z_0)$

S:
$$z = x^{2} + 2y^{2} + 4xy - 5y - 10$$
, $M_{0}(-7,1,8)$.

Task 2. Verify, does the function *u* satisfy the given equation?

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad u = \operatorname{arctg} \frac{y}{x}.$$

Task 3. Investigate for extreme the following function

$$z = (x-5)^2 + y^2 + 1.$$

Task 4. Find the greatest and the smallest values of the function z = z(x, y) in domain \overline{D} , bounded by given curves:

 $z = 3x^{2} + 3y^{2} - 2x - 2y + 2$, $\overline{D} : x = 0, y = 0, x + y - 1 = 0$.

Task 5. Find derivative of the function $\varphi = \cos(x - 2y) + 4yz^2$ at the point $A(\pi/2, \pi/4, 1)$ with respect to the direction of $\vec{\ell} = \{2; -1; 2\}$