GROUP I-219ia, KH-219 ае,219іае,219,ібе,219іве

2.8. Practice Lesson № 7.
 Gradient and Directional Derivatives

Classwork	Answers
Derivative with respect to given direction. Gradient	
7.1. 1) $z=x^{2}+y^{2}$. Find grad z at the point (3, 2). 2) $z=\sqrt{4+x^{2}+y^{2}}$. Find grad z at the point $(2,1)$. 3) $z=\operatorname{arctg} \frac{y}{x}$. Find grad z at the point $\left(x_{0}, y_{0}\right)$.	1) $6 i+4 j$; 2) $\frac{1}{3}(2 i+j)$; 3) $\frac{-y_{0} i+x_{0} j}{x_{0}^{2}+y_{0}^{2}}$.
7.2. 1) Find the point at which gradient of the function $z=\ln \left(x+\frac{1}{y}\right)$ is the following $\bar{i}-\frac{16}{9} \bar{j}$.	1) $\left(-\frac{1}{3}, \frac{3}{4}\right) ;\left(\frac{7}{3},-\frac{3}{4}\right)$.
7.3. 1) Find derivative of the function $z=x^{2}-3 x^{2} y+3 x y^{2}+1$ at the point $M(3,1)$ with respect to direction from this point to point $(6,5)$. 2) Find derivative of the function $z=x^{2} y^{2}-x y^{3}-3 y-1$ at the point $(2,1)$ with respect to direction from this point to the origin.	1) 0 ; 2) $-\sqrt{5}$.
7.4. Find derivative of the function $z=\ln (x+y)$ at the point $(1,2)$, lying on	$\frac{\sqrt{2}}{3}$.

parabola $y^{2}=4 x$ with respect to direction of this parabola.	
7.5. Find derivative of the function $u=x^{2} y^{2}+z^{3}-x y z$ at the point $M(1,1,2)$ with respect to direction, generating with coordinate axes the angles $60^{\circ}, 45^{\circ}, 60^{\circ}$ relatively.	5.
7.6. To prove that a derivative of the function $u=f(x, y, z)$ with respect to direction of its gradient is equal to modulus of the gradient.	
Homework	Answers
Derivative with respect to given direction. Gradient	
7.7. 1) $z=\arcsin \frac{x}{x+y}$. Find an angle between gradients of this function at the points $(1,1)$ и $(3,4)$. 2) The functions $z=\sqrt{x^{2}+y^{2}}$ and $z=x-3 y+\sqrt{3 x y}$ are given. Find an angle between gradients of these functions at the point $(3,4)$.	1) $\cos \alpha \approx 0,99, \alpha=8^{\circ}$; 2) $\cos \alpha \approx-1,99$, $\alpha \approx 101^{\circ} 30^{\prime}$
7.8. Find the points at which modulus of the gradient of the function $z=\left(x^{2}+y^{2}\right)^{\frac{3}{2}}$ are equal to 2 .	2) Points lying on the circle $x^{2}+y^{2}=\frac{2}{3}$.
7.9. 1) Find derivative of the function $z=\arctan x y$ at the point $(1,1)$ with	1) $\frac{\sqrt{2}}{2}$;

respect to direction of bisector of the first coordinate angle.
2) Find derivative of the function
2) $\frac{\cos \alpha+\sin \alpha}{2}$.
$z=\ln \left(e^{x}+e^{y}\right)$ at the origin with respect to direction of the ray, generating the angle α with abscissa.
7.10. Find derivative of the function $z=\arctan \frac{y}{x}$ at the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, lying on the circle $x^{2}+y^{2}-2 x=0$ with respect to direction of this circle.
7.11. Find derivative of the function $u=x y z$ at the point $A(5,1,2)$ with respect
to direction from this point to point $B(9,4,14)$.
7.12. Find derivative of the function $u=\frac{1}{r}$, где $r^{2}=x^{2}+y^{2}+z^{2}$ with respect

$$
\frac{1}{r^{2}}
$$

to direction of its gradient.

2.9. Variants of the Control Tasks for Topic "Differential Calculus of the Function with Several Variables"

CARD № 1

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
S: x^{2}+y^{2}+z^{2}+6 z-4 x+8=0, \quad M_{0}(2,1,-1)
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0, u=\arctan \frac{x}{y}
$$

Task 3. Investigate for extreme the following function

$$
z=y \sqrt{x}-2 y^{2}-x+14 y
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=3 x+y-x y, \bar{D}: y=x, y=4, x=0 .
$$

Task 5. Find derivative of the function $\varphi=\sqrt{x y}+\sqrt{4-z^{2}}$ at the point $M_{0}(1,1,2)$ with respect to direction $\bar{l}=-2 \bar{i}+2 \bar{j}-\bar{k}$.

CARD № 2

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
S: x^{2}+z^{2}-4 y^{2}=-2 x y, \quad M_{0}(-2,1,2)
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0, u=\frac{y}{x} .
$$

Task 3. Investigate for extreme the following function

$$
z=x^{3}+8 y^{3}-6 x y+5 .
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=x y-x-2 y, \bar{D}: x=3, y=x, y=0 .
$$

Task 5. Find derivative of the function $\varphi=\ln \left(x^{2}+2 y\right)$ at the point $A(4,-4)$ of the parabola $y^{2}=4 x$ with respect to the direction of this curve.

CARD № 3

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
\mathrm{S}: x^{2}+y^{2}+z^{2}-x y+3 z=7, \quad M_{0}(1,2,1)
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3\left(x^{3}-y^{3}\right), u=\ln \frac{y}{x}+x^{3}-y^{3} .
$$

Task 3. Investigate for extreme the following function

$$
z=2 x^{3}+2 y^{3}-6 x y+5 .
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=x^{2}+2 x y-y^{2}-4 x, \bar{D}: x-y+1=0, x=3, y=0 .
$$

Task 5. Find derivative of the function $\varphi=\ln \left(x^{2}+4 x y+3 y^{2}\right)$ at the point $A(2,0)$ with respect to the direction of the vector collinear to the bisector of the $1^{\text {st }}$ coordinate angle.

CARD № 4

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
\mathrm{S}: x^{2}+y^{2}+z^{2}+6 y+4 x=8, \quad M_{0}(-1,1,2)
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0, u=\ln \left(x^{2}+(y+1)^{2}\right) .
$$

Task 3. Investigate for extreme the following function

$$
z=2 x y-3 x^{2}-2 y^{2}+10 .
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=x^{2}+y^{2}-2 x-2 y+8, \bar{D}: x=0, y=0, x+y-1=0 .
$$

Task 5. Find derivative of the function $\varphi=3 x z-\frac{z}{x}$ at the point $A(-1,2,3)$ with respect to the direction of $\vec{\ell}=\vec{i}-\vec{j}+\sqrt{2} \vec{k}$.

CARD № 5

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
S: 2 x^{2}-y^{2}+z^{2}-4 z+y=13, M_{0}(2,1,-1)
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
y \frac{\partial^{2} u}{\partial x \partial y}=(1+y \ln x) \frac{\partial u}{\partial x}, \quad u=x^{y} .
$$

Task 3. Investigate for extreme the following function

$$
z=x y(6-x-y) .
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=2 x^{3}-x y^{2}+y^{2}, \bar{D}: x=0, x=1, y=0, y=6 .
$$

Task 5. Find derivative of the function

$$
\varphi=2 \sqrt{y-z}+y \arctan x
$$

at the point $A(1,4,-5)$ with respect to the direction of $\vec{\ell}=4 \vec{i}-3 \vec{j}$.

CARD № 6

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
S: z=x^{2}+y^{2}-4 x y+3 x-15, \quad M_{0}(-1,3,4) .
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0, u=e^{x y} .
$$

Task 3. Investigate for extreme the following function

$$
z=(x-1)^{2}+2 y^{2} .
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=x^{2}-2 y^{2}+4 x y-6 x-1, \bar{D}: x=0, y=0, x+y-3=0 .
$$

Task 5. Find derivative of the function $\varphi=2 x^{2}-\ln \left(z^{2}+y^{2}\right)$ at the point $A(2,-1,1)$ with respect to the direction of $\vec{\ell}=\{0 ;-1 ; 0\}$.

CARD № 7

Task 1. Find equation of the tangent plane and normal straight line to given surface S at the point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

$$
S: z=x^{2}+2 y^{2}+4 x y-5 y-10, M_{0}(-7,1,8)
$$

Task 2. Verify, does the function u satisfy the given equation?

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, u=\operatorname{arctg} \frac{y}{x} .
$$

Task 3. Investigate for extreme the following function

$$
z=(x-5)^{2}+y^{2}+1 .
$$

Task 4. Find the greatest and the smallest values of the function $z=z(x, y)$ in domain \bar{D}, bounded by given curves:

$$
z=3 x^{2}+3 y^{2}-2 x-2 y+2, \bar{D}: x=0, y=0, x+y-1=0 .
$$

Task 5. Find derivative of the function $\varphi=\cos (x-2 y)+4 y z^{2}$ at the point $A(\pi / 2, \pi / 4,1)$ with respect to the direction of $\vec{\ell}=\{2 ;-1 ; 2\}$

