$$f'_{x}, \frac{\partial f}{\partial x}, f'_{y}, \frac{\partial f}{\partial y}$$

are used. So the definition of partial derivatives can be formulated in the following way: f'_x is the derivative of the function f(x, y) with respect to the variable x, provided the variable y is constant; f'_y is the derivative with to y calculated on the assumption that x is constant.

1.6. Practice Lesson № 1. Evaluation of the Partial Derivatives

Classwork	Answers
	of the given functions with respect to each es (x, y, z, u, v) are variables):
1.1. $z = x^3y - y^3x$.	$\frac{\partial z}{\partial x} = 3x^2y - y^3; \frac{\partial z}{\partial y} = x^3 - 3y^2x.$
1.2. $z = \frac{x^3 + y^3}{x^2 + y^2}$.	$\frac{\partial z}{\partial x} = \frac{x^4 + 3x^2y^2 - 2xy^3}{(x^2 + y^2)^2};$
	$\frac{\partial z}{\partial y} = \frac{y^4 + 3x^2y^2 - 2x^3y}{\left(x^2 + y^2\right)^2}.$
1.3. $z = x\sqrt{y} + \frac{y}{\sqrt[3]{x}}$.	$\frac{\partial z}{\partial x} = \sqrt{y} - \frac{y}{3\sqrt[3]{x^4}}; \frac{\partial z}{\partial y} = \frac{x}{2\sqrt{y}} + \frac{1}{\sqrt[3]{x}}.$
1.4. $z = arctg \frac{x}{y}$.	$\frac{\partial z}{\partial x} = \frac{y}{x^2 + y^2}; \frac{\partial z}{\partial y} = -\frac{x}{x^2 + y^2}.$
1.5. $z = x^y$.	$\frac{\partial z}{\partial x} = yx^{y-1}; \frac{\partial z}{\partial y} = x^y \ln x.$
1.6. $z = \ln \frac{\sqrt{x^2 + y^2} - x}{\sqrt{x^2 + y^2} + x}$.	$\frac{\partial z}{\partial x} = -\frac{2}{\sqrt{x^2 + y^2}}; \frac{\partial z}{\partial y} = \frac{2x}{y\sqrt{x^2 + y^2}}.$

T	∂z ∂z ∂z
1.7. $z = \ln tg \frac{x}{y}$	$\frac{\partial}{\partial x} = \frac{2x}{y \sin \frac{2x}{y}}, \frac{\partial}{\partial y} = \frac{2x}{y^2 \sin \frac{2x}{y}}.$
1.8. $z = \ln(x + \ln y)$.	$\frac{\partial z}{\partial x} = \frac{1}{x + \ln y}; \frac{\partial z}{\partial y} = \frac{1}{y(x + \ln y)}.$
1.9. $z = \sin \frac{x}{y} \cos \frac{y}{x}$.	$\frac{\partial z}{\partial x} = \frac{1}{-\cos \frac{x}{-\cos \frac{y}{x}} + \frac{y}{\cos \frac{x}{x}} \sin \frac{x}{-\sin \frac{y}{x}}};$
	$\frac{\partial z}{\partial y} = -\frac{x}{y^2} \cos \frac{x}{y} \cos \frac{y}{x} - \frac{1}{x} \sin \frac{x}{y} \sin \frac{y}{x}.$
1.10. $z = (1 + xy)^y$.	$\frac{\partial z}{\partial x} = y^2 (1 + xy)^{y-1};$
	$\frac{\partial z}{\partial y} = xy(1+xy)^{y-1} + (1+xy)^y \ln(1+xy).$
1.11. $z = x^{xy}$.	$\frac{\partial z}{\partial x} = x^{x^{y}} x^{y-1} (y \ln x + 1); \frac{\partial z}{\partial y} = x^{y} x^{x^{y}} \ln^{2} x.$
1.12. $u = xy + yz + zx$.	$\frac{\partial u}{\partial x} = y + z; \frac{\partial u}{\partial y} = x + z; \frac{\partial u}{\partial z} = x + y.$
1.13. $u = x^3 + yz^2 + 3yx - x + z.$	$\frac{\partial u}{\partial x} = 3x^2 + 3y - 1; \frac{\partial u}{\partial y} = z^2 + 3x;$
	$\frac{\partial u}{\partial z} = 2yz + 1.$
1.14. $u = e^{x(x^2 + y^2 + z^2)}$.	$\frac{\partial u}{\partial x} = (3x^2 + y^2 + z^2)e^{x(x^2 + y^2 + z^2)};$
	$\frac{\partial u}{\partial y} = 2xye^{x(x^2+y^2+z^2)}; \frac{\partial u}{\partial z} = 2xze^{x(x^2+y^2+z^2)}.$
1.15. $u = \ln(x + y + z)$.	$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} = \frac{1}{x + y + z}.$
1.16. $u = x^{y^2}$.	$\frac{\partial u}{\partial x} = y^z x^{y^z - 1}; \frac{\partial u}{\partial y} = z y^{z - 1} x^{y^z} \ln x;$

Homework	Answers
$+\arcsin\frac{x+y}{xy}$.	$\frac{\partial z}{\partial y} = -\frac{1}{y^2} \sqrt{\frac{xy - x - y}{xy + x + y}}.$
1.18. $z = \sqrt{1 - \left(\frac{x+y}{xy}\right)^2} +$	$\frac{\partial z}{\partial x} = -\frac{1}{x^2} \sqrt{\frac{xy - x - y}{xy + x + y}};$
	$\frac{\partial z}{\partial y} = -\frac{x}{(1+\sqrt{xy})\sqrt{xy-x^2y^2}}.$
1.17. $z = 2\sqrt{\frac{1-\sqrt{xy}}{1+\sqrt{xy}}}$.	$\frac{\partial z}{\partial x} = -\frac{y}{(1+\sqrt{xy})\sqrt{xy-x^2y^2}};$
	$\frac{\partial u}{\partial z} = x^{y^z} \cdot \ln x \cdot y^z \cdot \ln y.$

Find the partial derivatives of the given functions with respect to each independent variables (x, y, z, u, v are variables):

1.19.
$$z = (5x^{2}y - y^{3} + 7)^{3}.$$

$$\frac{\partial z}{\partial x} = 3(5x^{2}y - y^{3} - 7)^{2}10xy;$$

$$\frac{\partial z}{\partial y} = 3(5x^{2}y - y^{3} + 7)^{2}(5x^{2} - 3y^{2}).$$
1.20.
$$z = \ln(x + \sqrt{x^{2} + y^{2}}).$$

$$\frac{\partial z}{\partial x} = \frac{1}{\sqrt{x^{2} + y^{2}}};$$

$$\frac{\partial z}{\partial y} = \frac{y}{x^{2} + y^{2} + x\sqrt{x^{2} + y^{2}}}.$$