$$
f_{x}^{\prime}, \frac{\partial f}{\partial x}, f_{y}^{\prime}, \frac{\partial f}{\partial y}
$$

are used. So the definition of partial derivatives can be formulated in the following way: f_{x}^{\prime} is the derivative of the function $f(x, y)$ with respect to the variable x, provided the variable y is constant; f_{y}^{\prime} is the derivative with to y calculated on the assumption that x is constant.

1.6. Practice Lesson № 1. Evaluation of the Partial Derivatives

Classwork

Answers

Find the partial derivatives of the given functions with respect to each independent variables (x, y, z, u, v are variables):

1.1. $z=x^{3} y-y^{3} x$.	$\frac{\partial z}{\partial x}=3 x^{2} y-y^{3} ; \frac{\partial z}{\partial y}=x^{3}-3 y^{2} x$.
1.2. $z=\frac{x^{3}+y^{3}}{x^{2}+y^{2}}$.	$\frac{\partial z}{\partial x}=\frac{x^{4}+3 x^{2} y^{2}-2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} ;$
1.3. $z=x \sqrt{y}+\frac{y}{\sqrt[3]{x}}$.	$\frac{\partial z}{\partial y}=\frac{y^{4}+3 x^{2} y^{2}-2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}$.
1.4. $z=\operatorname{arctg} \frac{x}{y}$.	$\frac{\partial z}{\partial x}=\frac{\sqrt{y}-\frac{y}{3 \sqrt[3]{x^{4}}} ; \frac{\partial z}{\partial y}=\frac{x}{2 \sqrt{y}}+\frac{1}{\sqrt[3]{x}} .}{x^{2}+y^{2}} ; \frac{\partial z}{\partial y}=-\frac{x}{x^{2}+y^{2}}$.
1.5. $z=x^{y}$.	$\frac{\partial z}{\partial x}=y x^{y-1} ; \frac{\partial z}{\partial y}=x^{y} \ln x$.
1.6. $z=\ln \frac{\sqrt{x^{2}+y^{2}}-x}{\sqrt{x^{2}+y^{2}}+x}$.	$\frac{\partial z}{\partial x}=-\frac{2}{\sqrt{x^{2}+y^{2}}} ; \frac{\partial z}{\partial y}=\frac{2 x}{y \sqrt{x^{2}+y^{2}}}$.

	$\frac{\partial u}{\partial z}=x^{y^{z}} \cdot \ln x \cdot y^{z} \cdot \ln y$.
1.17. $z=2 \sqrt{\frac{1-\sqrt{x y}}{1+\sqrt{x y}}}$.	$\begin{aligned} & \frac{\partial z}{\partial x}=-\frac{y}{(1+\sqrt{x y}) \sqrt{x y-x^{2} y^{2}}} \\ & \frac{\partial z}{\partial y}=-\frac{x}{(1+\sqrt{x y}) \sqrt{x y-x^{2} y^{2}}} . \end{aligned}$
$\begin{aligned} & \text { 1.18. } z=\sqrt{1-\left(\frac{x+y}{x y}\right)^{2}}+ \\ & +\arcsin \frac{x+y}{x y} . \end{aligned}$	$\begin{aligned} & \frac{\partial z}{\partial x}=-\frac{1}{x^{2}} \sqrt{\frac{x y-x-y}{x y+x+y}} \\ & \frac{\partial z}{\partial y}=-\frac{1}{y^{2}} \sqrt{\frac{x y-x-y}{x y+x+y}} . \end{aligned}$
Homework	Answers
Find the partial derivatives of the given functions with respect to each independent variables (x, y, z, u, v are variables):	
1.19. $z=\left(5 x^{2} y-y^{3}+7\right)^{3}$	$\begin{aligned} & \frac{\partial z}{\partial x}=3\left(5 x^{2} y-y^{3}-7\right)^{2} 10 x y \\ & \frac{\partial z}{\partial y}=3\left(5 x^{2} y-y^{3}+7\right)^{2}\left(5 x^{2}-3 y^{2}\right) \end{aligned}$
1.20. $z=\ln \left(x+\sqrt{x^{2}+y^{2}}\right) .$	$\begin{aligned} & \frac{\partial z}{\partial x}=\frac{1}{\sqrt{x^{2}+y^{2}}} \\ & \frac{\partial z}{\partial y}=\frac{y}{x^{2}+y^{2}+x \sqrt{x^{2}+y^{2}}} . \end{aligned}$

