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Lecture 3 (17.04.2020) 

4.1. Triple Integral in Cylindrical and  

Spherical Coordinate Systems 

 

There are plenty of problems when calculation of triple integrals is more 

convenient in cylindrical, spherical and other coordinate systems. 

The question of change of variables in a triple integral is solved similarly to 

the case of a double integral, i.e. if the function  zyxf ,,  is continuous in some 

domain V and the formulas 

     wvuzwvuywvux ,,,,,;,,     (4.2) 

establish one-to-one correspondence between the points  zyxM ,,  of the domain 

V and the points  wvuM ,,'  of some domain 'V , then 

         
'

,,,,,,,,,,
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dudvdwJwvuwvuwvufdxdydzzyxf , 

where J  is absolute value of Jacobian. For imagination (4.2) of functional 

determinant by Jacobian is 
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In cylindrical coordinate system location of a point is defined by the polar 

coordinates ,  and z-coordinate (Fig. 4.7а) (formulas connecting rectangular and 
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cylindrical coordinates look as follows  cosx ;  siny ; zz  ), absolute 

value of Jacobian make J  (Prove it by yourself). 

     
V V

dzddzfdxdydzzyxf
'

ρ,sin,cos,, . 

The coordinate surfaces constzconstconst  ,,  of the of cylindrical 

system coordinates are present relatively: circle cylinders with the axis Oz, half-

planes coming from the axis Oz and planes parallel to the plane xOy. 

Therefore if an integrating domain is a circle cylinder with the axis Oz, then 

the corresponding triple integral over this domain in the cylindrical coordinates will 

have constant limits of an integration for all variables, i.e. 

    
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Spherical coordinates of a point M of the area V are defined through  ,,

, where   is distance between the origin and the point M 
2222 zyx  ,   is 

angle between the axis Ox and projection of the radius-vector OM on the plane xOy, 

and   is angle between positive directions of the axis Oz and the radius-vector OM 

(Fig. 4.7b). It is obviously that )20,0,0(  . Here are the 

following coordinate surfaces: const  is spheres with center at the origin, 

const  is semi-planes coming out the axis Oz, const  is a circle cones with 

the axis Oz. The spherical coordinates  ,,  are connected with rectangular one by 

the following relations: 

 cos,sinsin,cossin zyx . 

Applying the formula (4.3) it is possible to show that 

 sin2J . 

Passing to the spherical coordinates in a triple integral is carried out according 

to next formula: 

  
V

dxdydzzyxf ,,  

  
V

dddf sincos,sinsin,cossin 2
. 

 It is obviously that if the domain of integration is a sphere with center at the 

origin and radius R, then the triple integral over the domain will have constant 

integrating limits on all variables in the spherical system coordinates, i.e. 
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4.2. Some Rules of Finding Integration Limits in the Cylindrical and Spherical 

Coordinates. 

Geometrical and Physical Applications 

of the Triple Integrals 

 

 Below we will consider some examples in order to illustrate the applications 

of the triple integrals. 

Example 1. Calculate 
V

xyzdxdydz , where V is part of the domain, bounded by 

the sphere 4222  zyx  and paraboloid 

zyx 322  , located in the 1st octant 

(Fig. 4.9). 

Solution. The 1st way. Calculation of an integral 

in the Cartesian coordinates. 

Before projecting the domain V on the 

plane xOy we should define the line of 

intersection of the sphere and paraboloid. For this 

let us solve these two equations jointly:  
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31 22  yxz . 

i.e. the surfaces are crossed on a circle with radius 3R , belonging to the plane 

1z . The domain V is projected on the plane xOy in a quarter of a circle with the 

same diameter lying at the first quarter. 

Thus we obtain: 
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The 2nd way. Calculation of an integral in the cylindrical coordinates: 

  
V V

dzdzdxyzdxdydzI
!

cossin3
, 

where V   is image of the solid V in cylindrical system coordinates of the points 

belonging to the area V. 

After finding integrating limits we obtain the following: 
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Example 2. Calculate volume of part of the sphere 
2222 Rzyx  , located 

inside the cylinder 

     0222222  zyxRyx  



(Fig. 4.10). 

Solution. Let us form the generatrix of the cylinder, bounded by a lemniscates. 

Pass to the polar coordinates  sin,cos yx . Polar equation of this 

curve is  2cosR . The curve is symmetrical about the axes Ox and Oy and 

while changing   from 0 to 

4  the current point  ,  will cover one quarter of the domain. 

 

The required volume in the cylindrical coordinates is presented as follows: 
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Example 3. Calculate volume of the solid limited by the following surfaces: 

paraboloid   zyx  22
1  and the plane 22  zx  (Fig. 4.11). 

Solution. Let us find equation of projection of intersection line of the surface 

  zyx  22
1  with the plane 22  zx  on the plane xOy, z-coordinates 

coincide on the line of intersection and then we obtain 

  xyx 221 22
 ,   122  yx . 

As the domain V is projected in the circle 1: 22  yxDxy , it is expediently to 

pass to the cylindrical coordinates. Equation of the border xyD  in the cylindrical 

coordinates 
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11sincos 2222  . 

Equation of the plane is   cos12z ; equation of the paraboloid is 

1cos212 222  zyxxz . 

At each current value of  ,    20,10  the variable z is changing 

from 1cos22
1 z  (at the point M1 – point of entrance into the domain V) 

to   cos122z  (at the point M2 – point of exit from the domain V). Volume 

of the solid in the cylindrical coordinates makes: 
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Example 4. Calculate volume of the solid 

bounded by the sphere 

2222 34 RRzzyx   and the cone 

 222 4 yxz   (solid is considered to be a part 

of the sphere lying inside the cone) Fig. 4.12. 

Solution. Let us transform equation of the 

sphere: 

  2222 2 RRzyx  . 

The center of the sphere is the point (0,0,2R); radius makes R. Let us find 

projections of intersection lines of the cone and the sphere on the plane xOy. For this 

let us present equations of the surfaces in the cylindrical coordinates and then equate 

their z-coordinates. 
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At the first let us calculate volume of a part of the sphere lying outside the 

cone: 
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Then volume of the sphere lying inside the cone is the following: 
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Example 5. Find inertia moment of a homogeneous 

solid (   1,,  zyx ), limited by the sphere 

zzyx 2222   and the cone 
222 zyx   about 

the axis Oz (Fig. 4.13).  

Solution. Let us form the mentioned solid. For this let 

us find the interception line of the surfaces: 
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zzyx
 i.e. this 

line is a circle with radius 1R  lying on the plane 1z . Projection of the solid on 

the plane xOy is the circle 122  yx . 

Inertia moment is calculated according to the formula: 

  
V

z dxdydzyxI .22
 

Let us pass to the spherical coordinates, then all integrating limits will be 

constant. Besides this, we can define limits for   by means of the equation 
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222 zyx   considering 0x  (or 0y ) we obtain that 
4


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Example 6. Find gravity center of common part of the spheres 
2222 Rzyx   

and Rzzyx 2222  , if density at each point of the given solid is equal to the 

distance between this point and the plane xOy. 

Solution. Coordinates of gravity centre of a solid is calculated as follows: 
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where М – weight of the solid, 

xyxzyz MMM ,,  – static moments. In this example   zzyx  ,, . Due to the 

symmetry of the solid (Fig. 4.14) about the axis Oz we obtain that 0 cc yx . Let 

us define the angle 0  solving jointly equations of the spheres (in the spherical 

coordinates): 
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