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4.1. Triple Integral in Cylindrical and
Spherical Coordinate Systems

There are plenty of problems when calculation of triple integrals is more
convenient in cylindrical, spherical and other coordinate systems.
The question of change of variables in a triple integral is solved similarly to

the case of a double integral, i.e. if the function f(X,y, Z) is continuous in some
domain V and the formulas

X =o(u,v,w); y=y(u,v,w), z=y(u,v,w) (4.2)
establish one-to-one correspondence between the points M (X, Y, Z) of the domain
V and the points M '(u, Vv, W) of some domain V', then

ij f(x,y,z)dxdydz = j\!j f (o(u, v, w),w(u,v,w),x(u,v,w))J|dudvdw,

where \J\ is absolute value of Jacobian. For imagination (4.2) of functional

determinant by Jacobian is
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In cylindrical coordinate system location of a point is defined by the polar
coordinates o, p and z-coordinate (Fig. 4.7a) (formulas connecting rectangular and



cylindrical coordinates look as follows X = pCOS@; Y = pSing; Z =), absolute

value of Jacobian make |J|=p (Prove it by yourself).
JII £ (x,y, z)dxdydz = [[[ f (pcos, psin, z)pdpdepdz
\Y V'

The coordinate surfaces p =const, ¢ =const, z=const of the of cylindrical

system coordinates are present relatively: circle cylinders with the axis Oz, half-
planes coming from the axis Oz and planes parallel to the plane xOy.

Therefore if an integrating domain is a circle cylinder with the axis Oz, then
the corresponding triple integral over this domain in the cylindrical coordinates will
have constant limits of an integration for all variables, i.e.

2n R H
([ f(x,y,z)dV = [de[pdp [ f(pcose,psine,z)dz.
\Y 0 0 0
Spherical coordinates of a point M of the area V are defined through p,,0

, Where p is distance between the origin and the point M p2 =x* + y2 +2%, ¢ is

angle between the axis Ox and projection of the radius-vector OM on the plane xQy,
and O is angle between positive directions of the axis Oz and the radius-vector OM
(Fig. 4.7b). It is obviously that (p>0,0<0<m 0<(p<2m). Here are the

following coordinate surfaces: p =const is spheres with center at the origin,
@ = const is semi-planes coming out the axis Oz, 6 = const is a circle cones with
the axis Oz. The spherical coordinates p,,0 are connected with rectangular one by
the following relations:
X =psinOcoso, y =psinOsing, z=pcoso.
Applying the formula (4.3) it is possible to show that
3| =p?sino.

Passing to the spherical coordinates in a triple integral is carried out according

to next formula:

I\{I f(x,y,z)dxdydz =

=[] f (psin @cos @, psin Osin @, pcosO)p? sin Odpdepdo.
V

It is obviously that if the domain of integration is a sphere with center at the
origin and radius R, then the triple integral over the domain will have constant
integrating limits on all variables in the spherical system coordinates, i.e.



T 2n R
[I] f(x,y,z)dV =[sin0de [do[p®f (psinOcose,psin Bsin,pcosd)dp.
\% 0 0

0
4.2. Some Rules of Finding Integration Limits in the Cylindrical and Spherical
Coordinates.

Geometrical and Physical Applications
of the Triple Integrals

Below we will consider some examples in order to illustrate the applications
of the triple integrals.

Example 1. Calculate [[[ xyzdxdydz, where V is part of the domain, bounded by
\%

the sphere X° + y2 +2% =4 and paraboloid

x* +y? =3z, located in the 1% octant
(Fig. 4.9).

Solution. The 1%t way. Calculation of an integral
in the Cartesian coordinates.

Before projecting the domain V on the

plane xOy we should define the line of V3 X24)2=3

intersection of the sphere and paraboloid. For this

X Fig. 4.9

let us solve these two equations jointly:

2 2 2
{X :y jz _4}:>zz+3z—4:0:>
X“+y =3z

2=1= %2 +y* =

i.e. the surfaces are crossed on a circle with radius R = \/§ belonging to the plane
Z =1. The domain V is projected on the plane xOy in a quarter of a circle with the
same diameter lying at the first quarter.

Thus we obtain:

V3 \/3—7 4-x° y2
m xyzdxdydz = jxdx [ ydy j zdz =

0 x+y
3
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The 2"¢ way. Calculation of an integral in the cylindrical coordinates:

| = [[[ xyzdxdydz = [[[ p° sin pcos pzdpdedz ,
\Y} V!

0

where V' is image of the solid V in cylindrical system coordinates of the points
belonging to the area V.

After finding integrating limits we obtain the following:

J3 V4-p?
sinpcosode [ p’dp [zdz=
0 P

2

O —N |3
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= jz ZdeE P -jp3(4—p2—p—] =
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Example 2. Calculate volume of part of the sphere X% + y2 +2°% =R?, located
inside the cylinder

(x2 + y2)2 = Rz(x2 - y2) (z>0)



(Fig. 4.10).

o=n/4
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Solution. Let us form the generatrix of the cylinder, bounded by a lemniscates.

Pass to the polar coordinates X = pC0OS¢, Y = pSin@. Polar equation of this
curve is p=R,/C0S2¢ . The curve is symmetrical about the axes Ox and Oy and
while changing ¢ from 0 to
/4 the current point (p,(p) will cover one quarter of the domain.

The required volume in the cylindrical coordinates is presented as follows:

nl4  Rycos2¢p +/R?
V = Mpdpd(pdz—4jd(p [pdp jdz—

0

nl4 RW nl4 / Rycos2e
=4 [do pyR*—p’dp= 4[“ _( - )32 de =
0 O
4 T 5 4\/_
=~ [ R¥{1-(1—c0s2¢)”* Hp==R?| =
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Example 3. Calculate volume of the solid limited by the following surfaces:
paraboloid (X—l)2 +y% =7 and the plane 2X + z = 2 (Fig. 4.11).
Solution. Let us find equation of projection of intersection line of the surface

(X—l)2 +y? =2 with the plane 2X+z =2 on the plane xOy, z-coordinates

coincide on the line of intersection and then we obtain

(x-1F +y?2=2-2x, = x®2+y* =1.
As the domain V is projected in the circle ny X%+ y2 <1, it is expediently to
pass to the cylindrical coordinates. Equation of the border ny in the cylindrical

coordinates



p?cos’ p+p’sin‘p=1=p=1.
Equation of the plane is Z = 2(1— pcos); equation of the paraboloid is
=X -2X+1+y* = 72=p°—2pcos@+1.
At each current value of (p,) (0<p <1,0< @< 2n) the variable z is changing
from z, = p2 —2pcos@+1 (at the point M; — point of entrance into the domain V)

to Z, = 2(1— pCOS (p) (at the point M, — point of exit from the domain V). Volume
of the solid in the cylindrical coordinates makes:

2n 1 2(1-pcoso) 1 (1-pcoso)
V = [[[pdpdodz = [dofpdp  joz =] dofp 2 e
v 0 0 p?—2pcosp+l 0
2n 1
= jd(pjp(Z— 2pCOS®—p® + 2pCOS(p—1)dp = jd(pj(p—p3)dp =
0 0 0 0
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Example 4. Calculate volume of the solid '

bounded by the sphere
x> +y®+2°=4Rz-3R? and the cone

22 = 4(X2 + yz) (solid is considered to be a part
of the sphere lying inside the cone) Fig. 4.12.

Solution. Let us transform equation of the ~ X
sphere: Fig. 4.12

x?+y?+(z-2R)* =R%.
The center of the sphere is the point (0,0,2R); radius makes R. Let us find

projections of intersection lines of the cone and the sphere on the plane xOy. For this

let us present equations of the surfaces in the cylindrical coordinates and then equate
their z-coordinates.

z* =4(x2 +y2):> 2 =4p%, 1=2p

x?+y?+(z-2R)’ =>z=2R+R?*-p? =
2R+/R*—p* =2p
3

= R? —p? =4p° —8Rp +4R* = 5p° —~8Rp+3R* =0;p, =gR; p, =R.



At the first let us calculate volume of a part of the sphere lying outside the

cone:
2n R 2p R
V,=[do[pdp [dz =27cjp(2p—2R+w/R2 —p? )1p:
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Then volume of the sphere lying inside the cone is the following:
V=R -V, = R L SR
3 3 75 75
Example 5. Find inertia moment of a homogeneous ;
solid  (8(x,y,z)=1), limited by the sphere
x> +y®+2* =2z and the cone X° +y* =z about / ____ \
the axis Oz (Fig. 4.13). | I
Solution. Let us form the mentioned solid. For this let N S
us find the interception line of the surfaces: o QO :"1 y
X +y*+2° =212 , o
= 22" =27 =7 =1, i.e.this Fig 4.13
2 2 2 g 4.
X“+y =12

line is a circle with radius R =1 lying on the plane zZ =1. Projection of the solid on
the plane xOy is the circle X% + y2 <1
Inertia moment is calculated according to the formula:

|, = j\{j (x2 + yz)dxdydz.

Let us pass to the spherical coordinates, then all integrating limits will be
constant. Besides this, we can define limits for © by means of the equation



x* +y? =22 considering x =0 (or y = 0) we obtain that y=z=0= % i.e.

0<06<

4>|:l

2n w4 2cos0 llTC

= ([ r?sin®0Or?sin0drdedd = {do [ sin®0do [ridr =
HI ¢ I <PI I

Example 6. Find gravity center of common part of the spheres X% + y +22 <R?

and x? + y2 + 2% < 2Rz, if density at each point of the given solid is equal to the

distance between this point and the plane xOy.
Solution. Coordinates of gravity centre of a solid is calculated as follows:

v HIx6(x,y, 7)dxdydz

£
W —_v _D ;
M mé(x, y, 2)dxdydz 2R
N jjj yo(X, Y, z)dxdydz
o= méS(x y, z)dxdydz S
0 R ¥
M, jg 28(X, Y, z)dxdydz
Zy=—2 = ,
© M [[[8(x,y,z)dxdydz X
D Fig. 4.14
where M — weight of the solid,
M,,,M,,,M,, — static moments. In this example 8(X,y,z)=1z. Due to the

yor Vg
symmetry of the solid (Fig. 4.14) about the axis Oz we obtain that X, =y, =0. Let
us define the angle 0, solving jointly equations of the spheres (in the spherical
coordinates):
{g;;&cose; = cost, :%;: % Zg'
Then
M, =[[[z*dV =[] p* cos® BsinOdp depdo =
\ \%
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