Distance learning materials for students E-118ia.e, E-318iб.e, E-118iл.e, E-618iб.e, MIT-203.8i Practical Lesson № 5, 6. Calculation of Triple Integral in Cylindrical and Spherical Systems of Coordinates. Geometrical Applications

of the Triple Integrals (10.04.2020, 17.04.2020)

Classwork	Answers	
1. Find integration limits in triple integrals $\iiint f(x, y, z) dx dy dz$ passing to		
cylindrical coordinates ρ , ϕ , z		
$(x = \rho \cos \varphi, y = \rho \sin \varphi, z = z)$ or spherical ones ρ, θ, φ		
$(x = \rho \cos \varphi \sin \theta, y = \rho \sin \varphi \sin \theta, z = \rho \cos \theta)$		
5.1. Ω is domain bounded by cylinder $x^2 + y^2 = 2x$, plane z = 0 and paraboloid $z = x^2 + y^2$.	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} \rho d\varphi \int_{0}^{\rho^{2}} f(\rho\cos\varphi, \rho\sin\varphi, z) dz.$	
5.2. Ω is part of the sphere $x^2 + y^2 + z^2 \le R^2$, lying inside cylinder	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\varphi \int_{0}^{R\sqrt{\cos 2\varphi}} \int_{-\sqrt{R^2-\rho^2}}^{\sqrt{R^2-\rho^2}} \int_{-\sqrt{R^2-\rho^2}}^{\sqrt{R^2-\rho^2}} f(\rho\cos\varphi,\rho\sin\varphi,z) dz.$	
$ \begin{pmatrix} x^2 + y^2 \end{pmatrix}^2 = R^2 (x^2 - y^2) (x \ge 0). $		
5.3. Ω is common part of two spheres $x^2 + y^2 + z^2 \le R^2$ и $x^2 + y^2 + (z - R)^2 \le R^2$.	$\int_{0}^{2\pi} d\phi \int_{0}^{R\frac{\sqrt{3}}{2}} \rho d\rho \int_{R-\sqrt{R^{2}-\rho^{2}}}^{\sqrt{R^{2}-\rho^{2}}} f\left(\rho\cos\phi,\rho\sin\phi,z\right) dz.$	
2. Using the triple integrals to calculate solid volume bounded by given		
surfaces (It is assumed that all parameters included in condition of the problems are positive values)		

6.1. Paraboloid $(x-1)^2 + y^2 = z$ and plane 2x + z = 2.	$\frac{\pi}{2}$. Projection of the solid on plane <i>Oxy</i> is a circle.
6.2. Sphere $x^2 + y^2 + z^2 = 4$ and paraboloid $x^2 + y^2 = 3z$.	$\frac{19}{6}\pi$ and $\frac{15}{2}\pi$. To pass to cylinder coordinates.
6.3. Paraboloid $z = 16 - x^2 - y^2$ and cone $z = 6\sqrt{x^2 + y^2}$.	24π.
6.4. $x^{2} + y^{2} + z^{2} = 1$, $x^{2} + y^{2} + z^{2} = 16$, $z^{2} = x^{2} + y^{2}$, $x = 0$, $y = 0$, $z = 0$ ($x \ge 0$, $y \ge 0$, $z \ge 0$).	$\frac{21(2-\sqrt{2})}{4}\pi$. To pass to spherical coordinates
Homework	Answers
1. Find integration limits in trip	ble integrals $\iiint f(x, y, z) dx dy dz$ passing to
	The integrals $\iint_{\Omega} f(x, y, z) dx dy dz$ passing to all coordinates ρ , φ , z
cylindrica	Ω
$cylindrica$ $(x = \rho \cos \phi, \ y = \rho \sin \phi)$	Ω al coordinates ρ , ϕ , z
$cylindrica$ $(x = \rho \cos \phi, \ y = \rho \sin \phi)$	Ω al coordinates ρ , φ , z φ , $z = z$) or spherical ones ρ , θ , φ $y = \rho \sin \varphi \sin \theta, \ z = \rho \cos \theta$) st $\int_{1}^{1} \frac{\pi}{3} R f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\rho.$
cylindrica $(x = \rho \cos \phi, y = \rho \sin \theta, x = \rho \cos \phi \sin \theta, y = \rho \sin \theta, y =$	Ω al coordinates ρ , φ , z φ , $z = z$) or spherical ones ρ , θ , φ $y = \rho \sin \varphi \sin \theta, \ z = \rho \cos \theta$) st $\int_{1}^{1} \frac{\pi}{3} R f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\rho.$
cylindrica $(x = \rho \cos \phi, y = \rho \sin \theta, x = \rho \cos \phi \sin \theta, z = \rho \cos \phi \sin \theta, z = 0$ 5.4. Ω is domain lying in the firmortant and bounded by cylinder $x^2 + y^2 = R^2$ and planes $z = 0$	Ω al coordinates ρ , φ , z φ , $z = z$) or spherical ones ρ , θ , φ $y = \rho \sin \varphi \sin \theta, \ z = \rho \cos \theta$) st $\int_{1}^{1} \frac{\pi}{3} R f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\rho.$
cylindrica $(x = \rho \cos \phi, y = \rho \sin \phi, x) = \rho \sin \phi, y = \rho \sin \phi, y = \rho \cos \phi \sin \phi, y = \rho \sin \phi, y = \rho \cos \phi \sin \phi, y = \rho \cos \phi, y = \rho \sin \phi, y = \rho \cos \phi, y = \rho \sin \phi$	Ω al coordinates ρ , φ , z φ , $z = z$) or spherical ones ρ , θ , φ $y = \rho \sin \varphi \sin \theta, \ z = \rho \cos \theta$) st $\int_{1}^{1} \frac{\pi}{3} R f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\rho.$

Answers $\int_{0}^{\frac{\pi}{2}} \sin \theta d\theta \int_{0}^{\frac{\pi}{2}} d\phi \int_{0}^{R} f(\rho \cos \phi \sin \theta, \rho \sin \phi \sin \theta, \rho \cos \theta) \rho^{2} d\rho.$			
2. Using the triple integrals to calculate solid ve surfaces (It is assumed that all parameters incl problems are positive valu	uded in condition of the res)		
6.5. Sphere $x^2 + y^2 + z^2 = R^2$ and paraboloid $x^2 + y^2 = R(R - 2z)$ $(z \ge 0)$.	$\frac{5}{12}\pi R^3.$		
6.6. Sphere $x^2 + y^2 + z^2 = 64$ and paraboloid $12z = x^2 + y^2$ (take part of the sphere lying inside cone).	$\frac{608}{3}\pi.$		
6.7. Paraboloid $z = 28 - x^2 - y^2$ and cone $z = 12\sqrt{x^2 + y^2}$.	40π .		

Practical Lesson № 7. Geometrical and Physical Applications of the Triple Integrals (24.04.2020)

Classwork	Answers
7.1. Calculate mass of the solid bounded by	$\pi R^2 H (2\pi^2 - 2\pi^2)$
straight circle cylinder with radius R and with	$\frac{\pi R^2 H}{6} \left(3R^2 + 2H^2 \right)$
height <i>H</i> , if its density at any point is equal to	
distance square from the point to center of the	
cylinder base.	

7.2. Calculate the moment of inertia relative to the origin of the homogeneous solid ($\gamma = 1$), bounded by the paraboloid $z = x^2 + y^2$ and plane $z = 4$ 7.3. Calculate the center of gravity of the homogeneous solid ($\gamma = 1$), bounded by half of sphere $x^2 + y^2 + z^2 = R^2$, $z \ge 0$.	$Tip: I_0 = \iiint_V (x^2 + y^2 + z^2) dV$ $\frac{224\pi}{3}$ $C(0, 0, \frac{3}{8}R)$
Homework	Answers
7.4. Calculate the mass of the inhomogeneous solid bounded by the sphere $x^2 + y^2 + z^2 = 9$ and straight circle cylinder $x^2 + y^2 = 4$, if density distribution function $\gamma = z$. 7.5. Calculate the mass of the inhomogeneous solid bounded by the sphere $x^2 + y^2 + z^2 = 16$, the cone $x^2 + y^2 = 3z^2$ and surfaces $x \ge 0, y \ge 0, z \ge 0$ if density distribution function $\gamma = z$.	$\frac{\frac{88\pi}{5}}{12\pi}.$
7.6. Calculate the mass of the inhomogeneous solid bounded by the sphere $x^2 + y^2 + z^2 = R^2$, and surface $z \ge 0$, if density distribution function $\gamma = z$.	$\frac{R^4\pi}{4}.$