2.1. Vector Algebra
2.1.1. Vectors. Basic Definitions and Concepts

B (Dgﬁnition. The vector is a directed segment (Fig.2).

A Notations: & or @ or AB or AB.
Point A is called an origin of the vector.
A Point B is called a terminus.
Figure 2 Definition, The distance between the origin and terminus

is called a module or a length of this vector.
Notations: |a|.
If the origin of the vector coincides with the terminus then \é\ =0. Such a

vector is called a zero-vector and denoted as 0 or just 0.

Definition. Two vectors d and b are called equal if they have the same

module and the same direction.

From the last definition It follows that the vectors obtained one from
another by parallel shift are equal.
Definition. Two vectors & and b are called collinear if they are parallel to the
same straight line.
Definition. Three vectors &, b and ¢ are called coplanar (or complanar) if
they are parallel to the same plane.
(Dgﬁnition Vector of the unit length having the same direction with vector a
Is called the ort or the unit vector of the vector &.

Notation: d°.
2.1.2. Linear Operations on Vectors

Linear operations on vectors are the multiplication of vector by scalar and
the addition of the vectors.
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Definition. The vector b =Aa is called the multiplication of the vector d by

scalar A if:
1. b =[r[al;
2. d and b are collinear vectors;
3. @ and b have the same direction for positive values of A and the
opposite directions for negative values of A.
See examples on Fig.3.
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Figure 3

From definition It follows that two collinear vectors could be obtained
one from another by multiplication by a scalar. So, we have the following
criterion of collinearity for two nonzero vectors:

d|lb @d=Ab<b=yd, AueR\Y0}

Definition. The sum of vectors @ and b is called a vector C=d+b
which origin coincides with the origin of & and terminus coincides with the
terminus of b if the terminus of & and the origin of b are connected (Fig.4).

—

b

C=3a+b

Figure 4. The rule of triangle
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This rule to get sum is called the rule of triangle (Fig.4).
There is another rule to get sum called the rule of parallelogram (Fig.5).

In this case you should construct a parallelogram on the vectors & and b . The
sum of the vectors coincides with the diagonal of this parallelogram directed

from the origin of & to the terminus of b .

da+(b+c)=(a+b)+c

Figure 6

To get difference of vectors you should fulfill the following operations:
d=b-a=b+(-D)a=b+(-3a).
The difference of vectors coincides with the other diagonal of the

—

parallelogram constructed on & and b (Fig.5). It is directed from minuend
origin to subtrahend origin if their terminuses are connected.
Basic properties of linear operations:

1. d+b=b+a

2. (@+b)+c=a+(b+c) (Fig.6)
Ma+b)=Ard+Ab, LeR

. (A+p)a@=rda+pud, A,peR

~ow
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Ex,amp&e. Let us find a vector ¢ with direction coinciding with a bisector of an

—
—

angle between the vectors & and b
(Fig.7).

A diagonal bisects the angle of a
parallelogram only if this
parallelogram is a rhomb. That is why
the vector C bisects an angle between
two vectors only if their lengths are
equal to each other.

Figure 7

Let us consider the orts a° and b°. Their lengths are equal to one and
their directions coincide with directions of & and b, relatively. Then the vector
directed along the bisector of the angle between & and b has the same direction
as a’+b . Therefore,

c=Ma%+b?), 1>0.

Note, that there are several other ways to construct the vectors of the

equal length. For example, we can find the bisector as

c =la-[p|+6 - ja]). 2.

2.1.3. Concept of Linear Space

(Dgﬁnition. The set L of the elements x, y, z,... is called linear space (LS) if

l. There is an operation of multiplication of elements by scalar such

that
VXeL=aXxel VaeR;

Il.  There is an operation of addition such that
VX,yeL=x+yel;
1. These operations satisfy 8 conditions:
1. x+y=y+Xx VX, yel;
2. (X+y)+z=x+(y+2z) VXVy,zel;
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0el: x+0=0+x=x Vxel;
VxelL dJy=-xelL: x+y=0;

1.x=x Vxel;

AMX+Y)=AX+Ay VX,yelL VAeR;
(A+p)X=AX+pux Vxel VA,ueR;
Au)x=A(ux) =u(Ax) vVxelL VA,ueR.

© N o 0 &~ w

Example 1. The set of continuous functions on segment [a,b] is a linear space.

Indeed, usual operations of addition and multiplication by number satisfy all
conditions: the sum of continuous functions is continuous function, continuous
function multiplied by a number is still continuous function, zero-element is
zero function which is obviously continuous and so on.

Example 2. The set of real numbers is a linear space. But the set of integers is
not LS, since, for example, multiplication of any integer by real number =
makes this number not integer.

Example 3. The set of all matrices of the identical size is a linear space.

Example 4. The set of vectors is a linear space.

Below we are going to consider some properties of linear spaces only on
the example of vector space since vectors are objects of our consideration. But
these properties are the same for any linear space.

2.1.4. Concept of Basis. Decomposition of the Vector

Definition. The expression o, d, + o8, + 0gdy +...+ 08y, 04,0p,...0 €R S

called linear combination (LC) of the vectors &,,8,,4d,,...,d, .

—

Definition. The vectors &,,d,,d;,...,d, are called linearly independent (LI) if

any their trivial (zero) linear combination has trivial coefficients, i.e.

In other case they are called linearly dependent (LD), i.e.
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a,a,,...,a, are LD < 3k : o, =0 and a,d; + a8, +0gzds +...+a,d, =0.
Theorem (Linear dependence of vectors) The vectors &,8,,d;,...,8, are
linearly dependent if and only if one of these vectors is linear combination of
other vectors.

(Proqﬁ Necessity. We know that vectors are linearly dependent. We should

proof that one of them is linear combination of others. Suppose we have some
zero linear combination of vectors. Then at least one coefficient of it is not equal
to zero. Suppose it has number k, i.e. o, =0 . We divide zero expression by

—a, and express from obtained equation the vector &, :

048] +0,d, +...+ 0 dy +...+0a,d, =0

o .~ o _ _a
-1 --28,-..-8-..-—4 =0
Ol Ol Ol
s __ %15 O Ok Ok41 Om x _
S =—§——FCd—..———8 4 — dq—...—rad, =0
Oy Oy Oy Ly Oy
i=1 OLk
i=k

Necessity is proven.

n

Sufficiency. Suppose &, = Zyiéi . We should prove that vectors are linearly
i=1
i~k

dependent. Let us put &, to the right of the last equation. So we get

i.e. we have obtained zero linear combination of all vectors with the coefficient
v =—1#0. From definition of linear dependence it means that these vectors

are LD. Theorem is proven.
By means of this Theorem we will prove the following 3 statements:
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Statement 1. Two vectors are linearly dependent if and only if they are
collinear.

Proof. &b are LD < [by Theorem1] < d=ob < &b are collinear.

Statement is proven.

Corolllzry. Two vectors are linearly independent if and only if they are not
collinear.

Statement 2. Three vectors are linearly dependent if and only if they are
coplanar.

Proof. Necessity. &b,C are LD. By the Theorem 1 we get, for example, that

¢ =oad+pb. Thus, € is a diagonal of the parallelogram constructed on od and

Bb and it belongs to the plane of this parallelogram as & and b do. So these

vectors are coplanar.
To prove Sufficiency we need just to prove that for any three coplanar
vectors one is linear combination of others.

Suppose a,b are collinear. Then
d=\b ora=ab+0-c,
so vectors are LD by Theorem 1. Suppose now that &,b are not collinear. Then,
accordingly to the Fig.8,
C=AD=AB+AC=Ad+ub,
since ABDC is a parallelogram and AB |a, AC |b . Statement isproven.

Figure 8
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Statement 3. Any four vectors in space are linearly dependent.

(Proqﬁ Let us consider any four vectors in space. There are two cases.

Case 1. ab,c are  coplanar.  Then they are LD, .e.
ad+Bb+y€=ad+Bb+yc+0-d=0 with not all zero coefficients. Thus
d,b,c,d are LD as well.

Case 2. d,b,c are not coplanar. Then let us draw a straight line through the
terminus of the vector d (point F) parallel to the vector € to find point D which
is an intersection of constructed straight line and plane of the vectors &,b
(Fig.9). Obtained vector AD is coplanar with not collinear vectors d,b, i.e. it

could be presented as their linear combination. In other case, vector DF = AE is
collinear to C, i.e.

DF =AC, A #0.
So,

d = AF = AE + AD = AE + AB + AC = \C +ad +pb,
where A =0. It means that these vectors are linearly dependent. Statement is

proven.




(Dgﬁnition. Linear space L is called n-dimensional if there are n linearly
independent elements and any (n+1) are linearly dependent.

@qﬁnition. In n-dimensional linear space any n linearly independent elements
are called basis of this space.

Note 1. There could be a lot of different bases in the same LS.

Note 2. From statements 1-3 follows that:

1. Plane is 2-dimensional LS and any two not collinear vectors form basis.
2. Space is 3-dimensional LS and any three not coplanar vectors form
basis.

Definition. The basis is called orthogonal if every two vectors from basis are
perpendicular to each other.
(Dgﬁnition. The basis is called orthonormal if it is orthogonal and the module
of every vector is equal to 1.
Theorem (Decomposition of the vector in the basis) Any vector of n-
dimensional linear space can be presented as linear combination of basic vectors
and this presentation is unique.
(Proqff Let us consider any basis of the n-dimensional linear space €,€,,&;,...&,
and an arbitrary vector X. From definition of the n-dimensional linear space it
follows that vectors X,€,€,,6;,...6, are linearly dependent, i.e. we have some
zero linear combination of these vectors

YoX+ V1€ + V28 + V363 +...+7,€,=0
with not all zero coefficients. There are two possible cases.
Case 1. yo,=0. Then we found zero linear combination of the basis vectors with
not all zero coefficients: y,€ +v,€, +v3€;+...+v,€,=0. It means that basis

vectors are LD. We got a contradiction with definition of basis.
Case 2. y, # 0. So we got the presentation of the vector through basis ones:

x=—11g -T2g, Y3g . _Tng

Yo Yo Yo Yo
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Let us prove that this presentation is unique. We suppose the opposite statement,
namely, that there are two different presentations:

X =08 + 0,8, + 0383 +...+ 0,6, and X =, + a,8, + 0383 +...+ a6,
After subtraction of two last equations one from another we have

0=(B1—0y)8 + (B —02)€ +...+ (B — )€y

Since the vectors €,§,,8;,...€, are linearly independent, we have
B, —oy=0,1.e.p;=0y;
B,—a,=0ieB,=0ay;

B,—a,=0ieB,=0a,.
So, any two presentations have the same coefficients, i.e. presentation is
unique. Theorem is proven.

Definition. The presentation of the vector as linear combination of basic
vectors is called the decomposition of the vector X in the basis €,€,,8;,...€,. At

the same time the coefficients of this decomposition are called the coordinates of
the vector X in this basis.

Note 1. If the basis is chosen, one can write only coordinates of vector instead
of the whole decomposition, i.e. one can write that X = (a4, 0,,03,...,0,)
instead of X =04 + 0,6, + 0365 +...+ €.

Note 2. Suppose we have 2 or 3-dimentional space. From Statements 2 and 3

and the last Theorem It follows the way to find decomposition of the vector in
any chosen basis.

Note 3. Since each vector can be associated with row/column of its coordinates,
linear  dependence/independence of vectors coincides with linear
dependence/independence of rows/columns. Thus, to check linear dependence of
the vectors given by their coordinates It is enough and sufficient to check it for
the rows/columns of their coordinates.
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2.1.5. Linear Operations on Vectors Given by Their
Coordinates in Some Basis

Suppose we consider some n-dimensional linear space with basis
€,.,6,,8;,...€, and vectors
X =046 + 0,6, + o463 +...+ 0,8, =(0y,0,,03,...,0,),
Y =P8 + P& + P33 ...+ Bn€y = (B, B2, B3y Br)-
Then
AX = M04€) + 0y8) +...+ 08 ) = Aoy 8 +Aa,E, +...+ Ao €, = (Ao, Aoy, g, ..., Aa,).
X+ Y =048 4+ 06 + 038 +... + 0 €, + P16 +Pr€, +P3€s + ...+ B, =
= (o +B1)8 +(0y +B5)8 +...4+ (o, +B,)E, = (0o + B0y + By g+ B3, 0y +B,) -
Conclusions:

1. To multiply vector by scalar means to multiply all its coordinates by this

scalar;

2. To add two vectors means to add their corresponding coordinates.
ﬂ?(amplé. Show that the vectors &;,a,,d; form a basis and find decomposition
b in this given basis if

& =(1-12),8,=(22-1),8=(210),b=(37;-7).
To decompose the vector b in this basis &,4d,,d; means to find the
following its presentation
b= 04d; +0lyd,y + 0Lgd .
The last equality is equivalent to the following:
(37,-7) =0 (L-12) + 0,(2;2,-1) + 05(21,0) =
= (04 + 201, + 2013;—0L; + 201, + 0L3;201 — Oly)
or
oy +20, + 2045 =3
-0y +20,+03="7.
201 — 0Ly =—1
Extended matrix of the obtained system is
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1 2 2|3
-1 2 1|7
2 -1 0| -7
Note, that the matrix of this system consists of the columns &,,d,,3;. If

the vectors &;,d,,d; form the basis then they are linearly independent and a rank

of the system matrix is equal to 3. Thus we can answer both questions of this
example by solving this system. If the rank of system matrix is equal to 3 then
the vectors &;,d,,8; form basis and solutions of the system are the coordinates

of b in this basis.
Let us solve this inhomogeneous system of equations relatively to
04,05, a4 by Jordan-Gauss method:

1 2 2| 3
-1 2 1| 7 |[~[We add multiplied by 1 to the second row and the first
2 -1 0| -7
1 2 2 3
row multiplied by (—2) to the third one] ~|0 4 3 | 10 [~[We add the
0 -5 -4 -13
last row to the second one to get 1 in the second row]~
1 2 2|3
~10 -1 —-1| -3|~[ We add the multiplied by 2 to the first row and the
0 4 310

1 0 0]-3
second row multiplied by 4 to the third one]~|0 1 1 | 3 |~[We add the
0 0 -1|-2
1 0 0f-3
third row to the second and multiply the third row by (-1)]~{0 1 0| 1
0 0 1| 2

The rank of the system matrix is equal to 3 and to the rank of the extended
matrix. Thus, the vectors &,,d,,d; form the basis and the system is compatible.

Therefore b =34, + &, + 24, is a decomposition of the vector b in the
basis &;,4d,,8;.
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2.1.7. Projection of the Vector on Axis

Let us consider an arbitrary vector AB and an axis with direction given by

the vector G (Fig.10). To get points A", B" we drop perpendiculars from the
origin and terminus of the vector on the axis.

>
:
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|

Figure 10

Definition. The length of the segment A'B™ taken with sigh “+” if A'B™ has

I

the same direction with U or with the sigh “— if A'B" has the opposite
direction with G is called projection of the vector AB on u (or on the axis with
direction G). Notation: praﬁé.

Note. From the definition and Fig.10 it follows that

pr; AB = ‘ﬁ‘ = ‘ﬁ‘ cos(A—E: u)= ‘ﬁ‘ cosal.
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Properties of the projections:
1. pryha=Apra;
2. pry(@a+b)=pra+prb.
3. pnga = prya for positive A;
pr, 8 =—pr;a for negative A.

Proof. 1. Let o = (a,0) (Fig.11). Then

Figure 11

prAa = 4@ | cos(Ad, 0) =| 1 || @ | coS(AE, ) =

|A]la|cosa if A>0 |A]la|cosa if A>0
:{|kl|§|cos(n—a)if x<o:{—|x||a|cosmf %<0
2. Let us prove this property geometrically. There are six different cases
(Fig.12).

=A|d|coso =Apr;a.

Y

v

L 4

Lm;z (F;f +h) - };-;1&7
_H"'Y/__, —_—
I_);I-fﬁb — pI'I’I(I

ol

tpip(a+b)  prb
g

Figure 12
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It follows from case | that
pr,(a+b)=pr,a+ pr,b.
It follows from case |l that
—pry(@a+b)=-pr,a+-prb,ie pr,(a+b)=pra+prb.
It follows from case 111 that
pr,a=pr;(@a+b)—pr;b,ie pr,(a+b)=pra+ prb.
It follows from case IV that
—pr,b=—pr,(@a+b)+pr,a,ie pr,(a+b)=pr,a+prb.
It follows from case V that
pr,b = pr;(@a+b) - pr,a, i.e. pr;(@a+b)=pr,a+ pr,b .
It follows from case VI that
—pr,a=—pr;(@a+b)+pr,b,i.e. pry(@a+b)=pra+ prb.
3. Since for the positive A the direction of the axis stays the same, the projection

of the vector saves its value. For the negative A we obtain the opposite direction
of the axis and therefore the opposite sign of the projection.

Properties are proven.

Note. One additional property of vector projection follows directly from the

definition:

Example. 1t is known that pr.d=10, pr,b =5.Find pr_(3a-2b).

By the projection properties we have

pr.(3a—2b) =—pr.(3a-2b) =-3pr.a+2pr.b =-3-10+2-5=-30+10=—20.
Thus, the vector —¢ and the vector-projection of the vector 3a—2b have

the opposite directions.

2.1.8. Cartesian Coordinate System

Cartesian coordinate system consists on a point O called an origin and
perpendicular directed coordinate axes passing through the origin.
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Cartesian coordinate system with two (three) axes is called coordinate
system in plane (space).

Traditionally, the axes in plane are called axis of abscissas (axis Ox) and
axis of ordinates (axis Oy) and directed in the way that the shortest turn from
positive semi-axis Ox to positive semi-axis Oy is made anticlockwise.

The axes in space are called axis of abscissas (axis Ox), axis of ordinates
(axis Oy) and applicate axis (axis Oz) and directed in the way that the shortest
turn from positive semi-axis Ox to positive semi-axis Oy is made anticlockwise
if you look from the positive semi-axis Oz.

Natural bases in plane and in space are bases formed from the unit vectors
directed along the positive semi-axes.

Namely, natural basis in plane is set of vectors

i(10),j(01);
natural basis in space is set of vectors
i(1,0,0), j(0,1,0),k(0,0,2).

From Note 2 to the Theorem about vector decomposition (Section 2.1.4) it
follows that to find coordinates of the vector
in the mentioned above bases we should
connect the origin of the vector with point O
and drop perpendiculars on the exes to find
the vector-projections of this vector on basis
vectors. In this case the vector is equal to
sum of obtained vector-projections (Fig.13).
Thus, we have:

Y inplane Oxy

v

d=ad +a,j=(a,,a,);

in space Oxyz

Figurel3

d=a, +a,j+ak=(aya,a,),
where

a, =pra=lalcosa, a,= pr;a =[a|cosP, a,=pr.d=/alcosy,
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a=(a,i), p=(a,]), y=(a,k) are angles between the vector and positive semi-
axes Ox,0y,0z.
cosa.,cosp,cosy are called the direction cosines of the vector.

From Fig.13 it follows that
1) By Pythagorean Theorem

|d|=,ja; +a) +a;

|d° _|a|* cos®o+|a|* cos®B+|dl[* cos®y
|af a2

2) 1= = c0s” o + C0S% B + cos?y, i.e.

cos? o +cos? B+cos’y =1

3) Vector (cosa,cosp,cosy) is a vector of unit length with the same with vector

a direction. Thus, this vector is ort of the vector &, i.e.

o

a® = (cosa.,cosP,cosy) =

jab]

|a|
Example. It is known that |d]=2, cosa=1/2, cosy=-1/2 and an angle

between the axis Oy and & is acute. Find the coordinates of the vector a.
Since the angle 3 is acute then cosp >0 and

1 1 1
COSP =+/1—C0os2 0, —C0s%y = [1———= = |[= ==
B \/ Y 2 25

Therefore

a, =ld|cosa=1, a, =ld|cosp=+2, a,=a|cosy=-1;

a=(Lv2;-1)
2.1.9. Radius-vector of the Point

(Deﬁnition. Suppose we have Cartesian coordinate system. Vector OM with
origin in the point O and a terminus M is called a radius-vector of the point M.
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Coordinates of the point in the Cartesian coordinate system by definition
are coordinates of its radius-vector, i.e.

If OM=xi+yj+zk=(x,y,z) then M(x,y,z).
Let us find coordinates of the vector AB through the coordinates of A and B
(Fig.14).
E:@_&:(XBlyB’ZB)_(XA1yAlZA):(XB_XA1yB_yA1ZB —Zp)

z A AXaYaZp)

B(Xs,Ys,Z8)

>

O y

Figure 14

It means that to find coordinates of the vector we should subtract from the
coordinates of the terminus the coordinates of the origin.

At the same time, since module of the vector AB is equal to the distance between
two points, we state the following:
The distance between two points A and B is equal to

d = AB|= \/(XB —Xa)* + (Vg = Ya)* + (25 —2a)°.
Example. 1t is known that & = AB = (1,2;-1), A(LL0). Find the coordinates of

the point B and distance between the points A and B.
Ay =Xg— Xy =>Xg =a, + X, =1+1=2;

ay =Yg —Ya=Yp=ay +yp=2+1=3;
A, =2g—Ipy=>2lg=a,+2,=-1+0=-1.
Therefore, B(2;3;-1).
The distance between the points A and B is equal to the length of the vector AB:
d=+12+22+(-1)2 =+6.
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2.1.10. Division of the Segment in the Given Ratio

Let us find coordinates of the point C which divides the segment AB in the
ratio A:p, i.e. |E || CB =A:u.

z p A(XaYaiZa)
A C(Xc,Ye,Zc)

L
B(Xg,Ys,2Z8)

>

O y

Figure 15
From Fig.15 it follows that

OC = 0A+AC = OA+ AB

7»+u:
J & M GA+  OB-
A+l A+pu A+l

u A u A u A
= Xa T X Yat Ys: Ipt g
A+u A+u A+u A+u A+ A+u

—0A+(0B-0A

Thus

C: x _ HXp+AXp _Myat+Ayg 7 :MZA+}”ZB.
¢ NERTRE ¢ Ap ¢ A+

Example 1. Let point M be a middle of the segment. In this case 1= =1.

Therefore

. —XatXs _Yat¥s , _ZatZs
M 2 oM 2 M 2

Example 2. Find the point M of median intersection in the triangle with

vertices A(Xa,YaZa), B(Xg,Y¥g,25), C(Xc,Ye,Zc) (Fig.16).
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B(Xg, Yg:Zp)

AXarYarZa) /C(XC;’YC’ZC)
Figure 16
Since M is a point of median intersection, it divides each median in the ration
2:1. Therefore, the coordinates of this point could be found through the
coordinates of the points C and D in the following way:
Xe +2X +2 Zc +21
M:XM:CzuD’yM:kzuﬁ’zM:CzuD’
where D is a middle of the side AB and therefore

. —XatXs _Yat¥s , _ZatZs
D 5 'Y 5 D 5
Thus,
Xa + X
. %o +2 2 Xp +Xg + Xc
M. XM: = y
2+1 3
YatYs
27
g ST o YatYatye
M 2+1 3 !
Zp+ 25
Zc +2 2 Zp+12g+12c
2+1 3

Ex,amp[e 3. Find the center of the gravity of the triangle with vertices A(1;2;3),
B(-13;4), C(3,0,-2). Since the center of the gravity in triangle coincides with
the point of median intersection, the coordinates of the center are:
_ Xat+Xg+Xc :1—1+3:1 Yo = yat¥Ys+Ye _ 2+3+O:§
° 3 3 L e 3 3 3
7 = Zp+121g+12¢ :3+4—2 :5

3 3 3’
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Note. All obtained above formulas are valid for the points in plane, as well.

Except linear operations on vectors, such as addition and multiplication by
scalar, there is an operation of vector multiplication. Moreover, It is possible to
multiply vectors in three ways, namely in scalar, vector and mixed ways.

2.1.11. Scalar Product

Definition. Scalar product (or dot product) of two vectors & and b is a

number (scalar) equal to \a’”ﬁ‘ cosa, where o is an angle between vectors & and

—

b.
We denote the scalar product in two ways: (é, ﬁ) or just ab . So,
(a’, 5)= \a“ﬁ‘ cosa..
Since
b|cosa = pryb, dcosa = pr.a,
we have

(a.5)=lal pryb = b|pr;a,
_ lab
pr.a = ‘5‘ :
Statement (Criterion of the perpendicularity) Two non-zero vectors are
perpendicular if and only if their scalar product is equal to zero, i.e.

alb < (ab)=0.
Indeed,
alb e 0L=§<:>COSOL=0<:>(§,5)=|§||6|COSOL=0.
Algebraic properties of the scalar product:
1) (a,b)=(0,a);
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3) (a+b,c)=[c| npg(@a+b) =[c|(pra+ pr.b )= (a,¢)+ (b,C).
Properties are proven.
From the definition It follows that

@a)=a° or |a=@E3).

Thus, we obtain an additional fourth property of scalar product:

4) (3,a)>0and (4,d)=0<a=0.

Example 1. It is known that &=5p+2q, b=p-34, [p|=1 |g=2,
@:(ﬁqu:g. Find [a+b].

By the last formula

a+b| =(a+b.a+b)=(5p+2q+p-345p+24+ p-30)=(6p—.6p—7) =

=36(p, p)—6(p,q)—6(d, p) + (G,q) =[By properties of scalar product]=
=36’ —12(I5,q)+|q|2=36'l—12-1-2-cosg+22 =36-12+4=28.

Thus,
@+b|=+28=2.7.
Example 2. Find the ort of the vector.

From the definition of ort it follows that a° = Aa, where A > 0. Therefore

1=(a°,a°)=(rd,28)=27a]* =1 :%:

o
I
| oo

Q|




Note, that we have obtained the same formula as obtained above through
the direction cosines.

Let us find the formula to calculate the scalar product of vectors given by

their coordinates in the orthonormal basis T, j,k .

Since
[T THk =1
and
FLjiLKk jLk,ie (,))=@k)=(jk)=0,
we have

(8,b)=(a,i +a, ] +a,k,bi +b,j+bk)=ahb, +ab, +a,b,.
It means that to find the scalar product we should multiply the
corresponding coordinates of vectors and then summarize these products.

Note. This formula is valid for the vectors in plane (case, when a, =b, =0).
fx,amplé. It is known that @(1,2,3), b(~112), €(0,1,4). Find a value k such that
a.l (5 - ké). By the criterion of the perpendicularity we have
0=(a,b - ke)=(a,b)-k(a,c)=
=1(-1)+2-1+3-2-k(1-0+2-1+3-4) =

=7-14k =0.
Thus
71
=5

Note. The two and three-dimensional vector spaces with scalar product,

satisfying four properties written above, are called Euclidean vector spaces.



2.1.13. Vector Product

Definition. The ordered triple of uncomplanar vectors &,b,c form a right-

hand triple if the shortest turn from the vector & to the vector b is made
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anticlockwise when their origins are connected and you observe this turn from
the terminus of C. In other case they form a left — hand triple.

(Dgﬁnition. Vector product (or cross product) of vectors & and b is a vector ¢
satisfying the following three conditions:

1)cla, clb;

2) [¢] :\aﬂﬁ‘sina, where a is an angle between a and b ;

3) &, b, ¢ form the right—hand triple.

We denote vector product in two ways, namely ¢ =axb or ¢ = [3,5].

Algebraic properties of the vector product:
1) :é, 5]: —[5, é] (Property of anti-symmetry);
2) [ha,b|=2la,b]=|ab];
3) [a,b+c|=a,b|+[ac].
@roqﬁ Properties 1)-2) follow directly from conditions 2 and 3 of definition.

To prove the property 3) let us show first that there is another way to plot the
result of vector product (Fig. 17). We connect the origins of two vectors, project

Figure 17
the vector b on the plane perpendicular to the vector &. Then we turn the
obtained vector b, anticlockwise on 90 degrees and multiply by [a|. The result is
axb since it satisfies all conditions from the definition.

We are going to use this procedure to prove the third property. Consider the
parallelogram | from the Fig.18 and project it on the plane perpendicular to &.
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Figure 18

Obtained figure 11 is also parallelogram and, moreover, the diagonal d =b +¢ of
the figure | is projected into the diagonal Jl :61 +C, of the figure Il. To obtain
the figure 111 we turn the figure Il anticlockwise on 90 degrees and stretch it in
\a\ times. At that we again obtain the parallelogram where the diagonal of 11 is
obtained by turn and stretching of the diagonal of Il. It means that the obtained
diagonal is the vector axoT=a><(6+6) equal to the sum of the parallelogram
sides, i.e.

x(b+¢)=axb+axc.

jab’

axd =

Properties are proven.

Geometrical properties of the vector product:

1) d||b < axb =0 (Criterion of collinearity of two non-zero vectors)
N =10 _ - -
Indeed, d||b < a=(d,b) = <:>Slna=0:>‘a><b‘=0<:>axb =0.
T
Note. Another criterion of collinearity follows from definition, namely,
a, a, a

d|lb < d=rb < a, =Ab,,a,=Ab,,a, =Ab, & X =L ="1
b, b, b,
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I.e. the coordinates of collinear vectors are proportional.

B . ~C 2 Spa =[axb|, ie. the area of the
a ih ,// parallelogram constructed on the
A o D_» >/[; vectors & and b is equal to the
b module of their vector product.
Figure 19 Indeed, from Fig. 19 we have

Spar = AB-AD -sino = \a“ﬁ\sin(afﬁ] =|axb|.

3) The altitude of the parallelogram is equal to
‘é X 6‘

h=L0
d

Indeed, from Fig.19 It follows that:

S axb
Spar =h-AD=h=—"% =‘ ﬂ ‘ :
o

4) The area of the triangle, constructed on the vectors a and b , is equal to a half
of the module of their vector product. At the same time, the formula for the

altitude dropped on the vector b is the same as for the parallelogram. So
Str:%‘éxﬁ‘, h:M .
J
5) Finding the vector perpendicular to the plane of any two uncollinear
vectors. Suppose, a and b are not collinear. Then some parallelogram which is
planar figure can be constructed on them. Vector axb is a vector perpendicular
to both & and b and thus to the plane of the parallelogram. Therefore, any
vector, perpendicular to the plane of two uncollinear vectors & and b is
collinear to axb . So, we state for uncollinear non-zero vectors & and b

clLa ~ -
_ -=>C|laxb < C=Aaxb, e R\{0}.
CLlb
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Let us find the formula to calculate the vector product of vectors given by
their coordinates in the orthonormal basis 1, j,k . Since

e

—_—

xi =0 TXT=E i#><|Z:—J
ixT:—IZ jxj=0 ]lezf
IZXT:T IZXT:—T kxk =0
the vector product of vectors d@=a,i +a,j+a,k and b=b,i+b,j+bk is

equal to

[é,f)]z [aXT+ayT+aZE,bXT+byi+bZE]: ab, i xi +ab, i x j+ab,ixk+ahb, jxi+

+aybyi><T+aybzix|Z++aszl2xf+azbyIZxT+azb2|2><|Z:

= (axby —abe)Tx j+(=ab, + asz)IinUr(aybZ = azby)ix k =

i ] k
—~T(a,b, —a,b, )+ (-1)j(asb, -a,b,)+Kk(asb, —a,b,)=la, a, a,
b, b, b,
So,
i ]k
axb=la, a, a,
b, b, b,

fx,amplé. Find area of the triangle with vertices in the points

A(L1), B(2,-1),C(0,3) and vector h collinear to the altitude dropped on side AB.

Since the problem is formulated in plane we can not calculate vector product to
find area. That is why before solving this problem we reformulate the task by

expanding the coordinates of points to spatial case, i.e. we suppose that vertices
have the following coordinates:

A(11,0), B(2,~1,0),C(0,2,0).
Then AB = (1,-2,0), AC =(-110),
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i ] Kk
ABxAC=|1 -2 0/=0i -0j+(-1)k =(0,0,-1),
-1 1 o0

1= —= 132 = > 1 1
S, ==|ABx AC|==40"+0"+(-])  ==-1=—.
« =5 ABx AC|=" () =21=2

Vector h is perpendicular to the vector AB and to the vector ABx AC
(since this vector is perpendicular to any vector in the plane of triangle). It

means that

i J k
h=|AB,ABxAC|=[1 -2 0|=2i+]+0k=(210).
0 0 -

These coordinates are coordinates in space. To get final answer we should

save only the first two coordinates, i.e. h(2,1).
2.1.14. Mixed product

Definition. Mixed product of vectors &,b,¢ is equal to the value obtained after

scalar multiplication of the vector € by the vector product of vectors & and b,
.e.

(a,b,c)=(axb,c).
Theorem (Criterion of complanarity of three mnon-zero vectors)

(8,6,¢)=0< a,b,c are complanar.

(o]

~ ~ daxb L : :
Proof. (é,b,é):(axb,é):0c> * . It means that either C is parallel to

=N
o O

axbh=
the plane of & and b or @ and b are collinear. In all these cases the vectors
d,b,c are complanar. Theorem is proven.

@roqﬁ If at least two factors coincide in the mixed product, this product is equal
to zero. That is (d,a,b) =0.
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Theorem (Mixed product of the right-hand triple) a,b,c form the right-
hand triple if and only if (a,b,c)> 0.

Proof. From Fig.20 it follows that if C\a
a,b,c form the right-hand triple then an
angle a is acute. Thus
(axb,c)=(a,b,c)>0.
From the other hand, if Figure 20

(axb,c)>0=cosa >0=

— o is acute = a,b,c form the right-hand triple. Theorem i. 1s proven.
Corollary.

(a,b ,c)< 0 <> 4d,b,c form the left-hand triple.

Theorem  (Geometrical meaning of the mixed product)

V parallelepiped = ‘(a, 5,6), i.e. the volume of the parallelepiped, constructed on the

vectors &,b, ¢, is equal to the module of their mixed product.

—

Proof. Suppose &,b, ¢ is a right-hand triple (Fig.21). Then

Q,
X
O
>
W)
\
\
\
~
\
\
\
\\

Figure 21

V =S ADsina =|axb]g[sina =

s ‘éxﬁ”é\sin(g—ﬁj =|axb]c|cosp = (axb,c)=(@.b.c)=[ab.c).

85



If a,b,¢ form the left-hand triple (for this case ¢ and o are shown as ¢',a’ on
Fig.21) then

sina :sin([}—g) = —sin(g—B) =—COSP.

Therefore V =—(a,b, 6):‘(5, b.c). Theorem is proven.

Note. It is simple to check that if &,b,¢ is a right-hand triple then ¢,a,b and

b,¢,a form the right-hand triples, as well. Hence,
V =(4,b,c)=(c,4,b) = (b,c,a).
In the same way it can be shown that
V =—(b,a,c)=—(¢,b,a) =—(4,c,b).
Moreover, from the obtained above it follows that
(a,b,¢)=(axb,c)=(b,c,a)=(bxc,a)=(a,bxc),
I.e. to find mixed product we can multiply any two neighbour vectors in the
vector way and then multiply the result vector by the third one in the scalar way.
Algebraic properties of the mixed product:
1) a) (a,b,c)=(c,a,b)=(b,c.a),
b) (@,b,c)=—(b,a,c)=—(a,c,b)=-(c.b,a);
I.e. cyclic transposition of vectors does not change the value of the mixed
product, but the transposition of any two neighbour vectors changes the sign of
the mixed product. It follows from the last Note or from the properties of scalar
and vector products.
2) (ha,b,¢)=2(a,b,¢)=(a,1b,¢)=(a,b,1c);
3) [@+b,c,d)=(acd)+(b,cd).
Last two properties follow directly from the properties of scalar and vector

products.
Geometrical properties of the mixed product:

1) Vparallelepiped :‘(5’6’6} (Fig.22)
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2) The altitude of the parallelepiped
dropped on the base of vectors & and b is
h_!_kﬂﬂ

S ‘éxﬁ‘ .

3) The volume of the tetrahedron

constructed on vectors &,b,¢ (Fig.22) is Figure 22

equal to

Vtetrahedron = %Vpar. = %‘(3:, 6, 61 )

The altitude of the tetrahedron coincides with the altitude of the
parallelepiped, so it could be found by the same formula.

Let us find the formula to calculate the mixed product of vectors given by
their coordinates in the orthonormal basis T, j,k .

Suppose,

_ b, b _|b, b,| b, b
bxc=p, b, b=i" F|-j " Fl+k| =
Cy C; Iy C, [Cx €y
Ck Cy G
b, b,| b b,|[o b
C, C| & G, [Cx Cy
a a
B, b, b b, bl b bl [* Y
(@bxc)=a’ ‘|-a,* l+al* Y|=|p, b, b,
c, C, c, C, Cx Cy
Ck Cy G

Therefore,
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a, a, a
(@b.c)=jp, b, b,
c, C, C,

Example 1. Find the coordinates of the vertex D of the tetrahedron ABCD if the

volume of this tetrahedron is equal to 10, D is situated on the positive semi-axis
Oz and A(1;2;3), B(-10;2),C(0,41).

From condition it follows that D has coordinates D(0;0;zy) and

v =10~ (A8, AC, AD), ie. [(AB, AC, AD | - 60.

But
2 -2 1

(E,A—C,E):—1 2 =2 |=—4(zp-3)-4+2+2+8-2(zp —-3) =
-1 -2 z,-3

=62 +26.

Therefore

-6z, =34 I, =—-34/6=-17/3
—6zD+26:J_r60<:{ ° {D / /

-6z, =-86 Zp =43/3

Since D is situated on the positive semi-axis Oz the answer is D(0;0;43/3).
Example 2. Prove that four points are situated on the same plane if their
coordinates are A(L11), B(1;2;3), C(2;3;4), D(0;2;4).

These points are from the same plane if and only if the vectors AB, AC,AD are
complanar. Let us check this statement.

0 12
(AB,AC,AD)=|1 2 3/=0-3+2+4-3-0=0.
-1 1 3

Therefore the vectors are complanar and points are situated on the same plane.
Example 3. Find (a+b,b +¢,¢)if (a,b,¢)=1. By mixed product properties:

(@+b,b+¢,c)=(a,b,c)+(4,c,c)+(b,b,c)+(b,c,c)=1+0+0+0=1.

Ol
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