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2.1. Vector Algebra 
2.1.1. Vectors. Basic Definitions and Concepts 

Definition. The vector is a directed segment (Fig.2). 

Notations: a  or a  or AB  or AB .
Point A is called an origin of the vector. 
Point B is called a terminus.
Definition. The distance between the origin and terminus

is called a module or a length of this vector. 
Notations: a .

If the origin of the vector coincides with the terminus then 0=a . Such a 

vector is called a zero-vector and denoted as 0


 or just 0. 

Definition. Two vectors a  and b


 are called equal if they have the same
module and the same direction. 

From the last definition It follows that the vectors obtained one from 
another by parallel shift are equal. 

Definition. Two vectors a  and b


 are called collinear if they are parallel to the
same straight line. 

Definition. Three vectors a , b


 and c  are called coplanar (or complanar) if
they are parallel to the same plane. 
Definition. Vector of the unit length having the same direction with vector a

is called the ort or the unit vector of the vector a .
Notation: oa .

2.1.2. Linear Operations on Vectors 

Linear operations on vectors are the multiplication of vector by scalar and 
the addition of the vectors. 

A 

B a

Figure 2 



54 

Definition. The vector ab 



λ=  is called the multiplication of the vector a  by
scalar λ  if: 

1. ab 



λ= ; 

2. a  and b


 are collinear vectors; 
3. a  and b



 have the same direction for positive values of λ  and the 
opposite directions for negative values of λ . 

See examples on Fig.3. 

From definition It follows that two collinear vectors could be obtained 
one from another by multiplication by a scalar. So, we have the following 
criterion of collinearity for two nonzero vectors: 

Rabbaba ∈µλµ=⇔λ=⇔ ,,|| 









\{0} 

Definition. The sum of vectors a  and b


 is called a vector bac




+=

which origin coincides with the origin of a  and terminus coincides with the
terminus of b



 if the terminus of a  and the origin of b


 are connected (Fig.4).

bac




+=

b


a

Figure 4. The rule of triangle 

a

─ a

2 a

─3/2 a

Figure 3 



55 

This rule to get sum is called the rule of triangle (Fig.4). 
There is another rule to get sum called the rule of parallelogram (Fig.5). 

In this case you should construct a parallelogram on the vectors a  and b


. The 
sum of the vectors coincides with the diagonal of this parallelogram directed 

from the origin of a  to the terminus of b


. 

To get difference of vectors you should fulfill the following operations: 

)()1( abababd 











−+=−+=−= . 

The difference of vectors coincides with the other diagonal of the 

parallelogram constructed on a  and b


(Fig.5). It is directed from minuend 
origin to subtrahend origin if their terminuses are connected. 

Basic properties of linear operations: 

1. abba 





+=+

2. )()( cbacba 









++=++  (Fig.6) 

3. baba








λ+λ=+λ )( , R∈λ

4. aaa 

µ+λ=µ+λ )( , R∈µλ,

bac




+=

b


a

Figure 5. The rule of parallelogram 

─ a
abd 
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Figure 6 
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+ c
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Example. Let us find a vector c  with direction coinciding with a bisector of an

angle between the vectors a  and b


(Fig.7). 
A diagonal bisects the angle of a 

parallelogram only if this 
parallelogram is a rhomb. That is why 
the vector c  bisects an angle between
two vectors only if their lengths are 
equal to each other.  

Let us consider the orts 0a  and 0b


. Their lengths are equal to one and 

their directions coincide with directions of a  and b


, relatively. Then the vector 

directed along the bisector of the angle between a  and b


 has the same direction 

as 0a + 0b


. Therefore, 

c =λ( 0a + 0b


), λ>0. 
Note, that there are several other ways to construct the vectors of the 

equal length. For example, we can find the bisector as 

( )abbac 





⋅+⋅λ= , λ>0.

2.1.3. Concept of Linear Space 

Definition. The set L of the elements x, y, z,… is called linear space (LS) if 

I. There is an operation of multiplication of elements by scalar such
that 

RLxLx ∈α∀∈α⇒∈∀ ; 

II. There is an operation of addition such that
LyxLyx ∈+⇒∈∀ , ; 

III. These operations satisfy 8 conditions:
1. Lyxxyyx ∈∀+=+ , ;

2. Lzyxzyxzyx ∈∀++=++ ,,)()( ;

 Figure 7 

c

a

b


 
+0a 0b
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0b
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3. LxxxxL ∈∀=+=+∈∃ 00:0 ;

4. 0: =+∈−=∃∈∀ yxLxyLx ;

5. Lxxx ∈∀=⋅1 ;

6. yxyx λ+λ=+λ )(  RLyx ∈λ∀∈∀ , ;

7. RLxxxx ∈µλ∀∈∀µ+λ=µ+λ ,)( ;

8. RLxxxx ∈µλ∀∈∀λµ=µλ=λµ ,)()()( .

Example 1. The set of continuous functions on segment ],[ ba  is a linear space.  

Indeed, usual operations of addition and multiplication by number satisfy all 
conditions: the sum of continuous functions is continuous function, continuous 
function multiplied by a number is still continuous function, zero-element is 
zero function which is obviously continuous and so on. 

Example 2. The set of real numbers is a linear space. But the set of integers is 

not LS, since, for example, multiplication of any integer by real number π  
makes this number not integer. 

Example 3. The set of all matrices of the identical size is a linear space. 

Example 4. The set of vectors is a linear space. 

Below we are going to consider some properties of linear spaces only on 
the example of vector space since vectors are objects of our consideration. But 
these properties are the same for any linear space. 

2.1.4. Concept of Basis. Decomposition of the Vector 

Definition. The expression Raaaa nnn ∈αααα++α+α+α 





 ,,, 21332211  is 

called linear combination (LC) of the vectors naaaa 



 ,,,, 321 . 

Definition. The vectors naaaa 



 ,,,, 321  are called linearly independent (LI) if 

any their trivial (zero) linear combination has trivial coefficients, i.e. 
( )00LIare,,, 21221121 =α==α=α⇒=α++α+α⇔ nnnn aaaaaa 









 .

In other case they are called linearly dependent (LD), i.e. 
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0and0:LDare,,, 33221121 =α++α+α+α≠α∃⇔ nnkn aaaakaaa 









. 

Theorem (Linear dependence of vectors) The vectors naaaa 



 ,,,, 321  are 

linearly dependent if and only if one of these vectors is linear combination of 
other vectors. 

Proof. Necess i ty.  We know that vectors are linearly dependent. We should 

proof that one of them is linear combination of others. Suppose we have some 
zero linear combination of vectors. Then at least one coefficient of it is not equal 
to zero. Suppose it has number k, i.e. 0≠αk . We divide zero expression by 

kα−  and express from obtained equation the vector ka :

⇔=α++α++α+α 02211 nnkk aaaa 
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∑
≠
= α
α

−=⇔
n

ki
i

i
k

i
k aa

1

 .

Necessity is proven. 

Suff ic iency.  Suppose ∑
≠
=
γ=

n

ki
i

iik aa
1

 . We should prove that vectors are linearly

dependent. Let us put ka  to the right of the last equation. So we get 

k

n

ki
i

ii aa 

−γ= ∑
≠
=1

0 , 

i.e. we have obtained zero linear combination of all vectors with the coefficient
01 ≠−=γk . From definition of linear dependence it means that these vectors

are LD. Theorem is proven.
By means of this Theorem we will prove the following 3 statements: 
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Statement 1. Two vectors are linearly dependent if and only if they are 

collinear. 

Proof.   collinearare,1] Theorem[by LDare, bababa












⇔α=⇔⇔ .

Statement is proven. 
Corollary. Two vectors are linearly independent if and only if they are not 

collinear. 

Statement 2. Three vectors are linearly dependent if and only if they are 

coplanar. 

Proof. Necess i ty.  LDare,, cba 



 . By the Theorem 1 we get, for example, that

bac




β+α= . Thus, c  is a diagonal of the parallelogram constructed on aα  and

b


β  and it belongs to the plane of this parallelogram as a  and b


 do. So these
vectors are coplanar. 
To prove Suff ic iency we need just to prove that for any three coplanar 
vectors one is linear combination of others.  

Suppose ba


,  are collinear. Then 

ba




λ=  or cba 





⋅+λ= 0 ,

so vectors  are LD by Theorem 1. Suppose now that ba


,  are not collinear. Then, 
accordingly to the Fig.8, 

baACABADc




µ+λ=+== ,

since ABDC is a parallelogram and aAB || , bAC


|| . Statement is proven. 

A b


a

Figure 8 

c
B 

C 

D 
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Statement 3. Any four vectors in space are linearly dependent. 

Proof. Let us consider any four vectors in space. There are two cases. 

Case 1. cba 



 ,, are coplanar. Then they are LD, i.e. 

00 =⋅+γ+β+α=γ+β+α dcbacba










  with not all zero coefficients. Thus 

dcba






 ,,,  are LD as well. 

Case 2. cba 



 ,,  are not coplanar. Then let us draw a straight line through the 

terminus of the vector d


 (point F) parallel to the vector c  to find point D which

is an intersection of constructed straight line and plane of the vectors ba


,

(Fig.9). Obtained vector AD  is coplanar with not collinear vectors ba


, , i.e. it 

could be presented as their linear combination. In other case, vector AEDF =  is 
collinear to c , i.e.

0, ≠λλ= cDF 

.

So, 

bacACABAEADAEAFd






β+α+λ=++=+== ,

where 0≠λ . It means that these vectors are linearly dependent. Statement is 
proven. 

Figure 9 

d
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Definition. Linear space L is called n-dimensional if there are n linearly 

independent elements and any (n+1) are linearly dependent. 
Definition. In n-dimensional linear space any n linearly independent elements 

are called basis of this space. 
Note 1. There could be a lot of different bases in the same LS. 

Note 2. From statements 1-3 follows that: 

1. Plane is 2-dimensional LS and any two not collinear vectors form basis.
2. Space is 3-dimensional LS and any three not coplanar vectors form

basis.
Definition. The basis is called orthogonal if every two vectors from basis are 

perpendicular to each other. 
Definition. The basis is called orthonormal if it is orthogonal and the module 

of every vector is equal to 1. 
Theorem (Decomposition of the vector in the basis) Any vector of n-

dimensional linear space can be presented as linear combination of basic vectors 
and this presentation is unique. 
Proof. Let us consider any basis of the n-dimensional linear space neeee 



 ,,, 321

and an arbitrary vector x . From definition of the n-dimensional linear space it
follows that vectors neeeex 



 ,,,, 321  are linearly dependent, i.e. we have some

zero linear combination of these vectors  
03322110 =γ++γ+γ+γ+γ nneeeex 



  

with not all zero coefficients. There are two possible cases.  
Case 1. 00 =γ . Then we found zero linear combination of the basis vectors with 

not all zero coefficients: 0332211 =γ++γ+γ+γ nneeee 



 . It means that basis

vectors are LD. We got a contradiction with definition of basis. 
Case 2. 00 ≠γ . So we got the presentation of the vector through basis ones: 

n
n eeeex 





0
3

0

3
2

0

2
1

0

1
γ
γ

−−
γ
γ

−
γ
γ

−
γ
γ

−= . 
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Let us prove that this presentation is unique. We suppose the opposite statement, 
namely, that there are two different presentations: 

nneeeex 





α++α+α+α= 332211  and nneeeex 





α++α+α+α= 332211 .

After subtraction of two last equations one from another we have 

nnn eee 



 )()()(0 222111 α−β++α−β+α−β= .

Since the vectors neeee 



 ,,, 321  are linearly independent, we have

 











α=β=α−β

α=β=α−β
α=β=α−β

.i.e.,0

;i.e.,0
;i.e.,0

1222

1111

nnnn



So, any two presentations have the same coefficients, i.e. presentation is 

unique.Theorem is proven. 

Definition. The presentation of the vector as linear combination of basic 

vectors is called the decomposition of the vector x  in the basis neeee 



 ,,, 321 . At 

the same time the coefficients of this decomposition are called the coordinates of 
the vector x  in this basis.
Note 1. If the basis is chosen, one can write only coordinates of vector instead 

of the whole decomposition, i.e. one can write that ),,,,( 321 nx αααα= 



instead of nneeeex 





α++α+α+α= 332211 . 

Note 2. Suppose we have 2 or 3-dimentional space. From Statements 2 and 3 

and the last Theorem It follows the way to find decomposition of the vector in 
any chosen basis. 
Note 3. Since each vector can be associated with row/column of its coordinates, 

linear dependence/independence of vectors coincides with linear 
dependence/independence of rows/columns. Thus, to check linear dependence of 
the vectors given by their coordinates It is enough and sufficient to check it for 
the rows/columns of their coordinates. 
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2.1.5. Linear Operations on Vectors Given by Their 
Coordinates in Some Basis 

Suppose we consider some n-dimensional linear space with basis 

neeee 



 ,,, 321  and vectors

),,,,( 321332211 nnneeeex αααα=α++α+α+α= 





 , 

),,,,( 321332211 nnneeeey ββββ=β++β+β+β= 





 . 

Then 
),,,,()( 32122112211 nnnnn eeeeeex λαλαλαλα=λα++λα+λα=α++α+αλ=λ 











. 

=β++β+β+β+α++α+α+α=+ nnnn eeeeeeeeyx 









332211332211  

),,,,()()()( 332211222111 nnnnn eee β+αβ+αβ+αβ+α=β+α++β+α+β+α= 







.

Conclusions: 
1. To multiply vector by scalar means to multiply all its coordinates by this

scalar;
2. To add two vectors means to add their corresponding coordinates.

Example. Show that the vectors 1 2 3, ,a a a    form a basis and find decomposition 
b


 in this given basis if 
( ) ( ) ( ) ( )1 2 31; 1;2 , 2;2; 1 , 2;1;0 , 3;7; 7a a a b= − = − = = −



   . 
To decompose the vector b



in this basis 1 2 3, ,a a a    means to find the 
following its presentation 

332211 aaab 



α+α+α= . 
The last equality is equivalent to the following: 

)0;1;2()1;2;2()2;1;1()7;7;3( 321 α+−α+−α=− =
)2;2;22( 21321321 α−αα+α+α−α+α+α=  

or 









−=α−α
=α+α+α−
=α+α+α

72
72
322

21

321

321

. 

Extended matrix of the obtained system is 
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−−
−

7
7
3

012
121
221

. 

Note, that the matrix of this system consists of the columns 1 2 3, ,a a a   . If
the vectors 1 2 3, ,a a a    form the basis then they are linearly independent and a rank 
of the system matrix is equal to 3. Thus we can answer both questions of this 
example by solving this system. If the rank of system matrix is equal to 3 then 
the vectors 1 2 3, ,a a a    form basis and solutions of the system are the coordinates 
of b


 in this basis. 
Let us solve this inhomogeneous system of equations relatively to 

321 ,, ααα  by Jordan-Gauss method: 

















−−
−

7
7
3

012
121
221

~[We add multiplied by 1 to the second row and the first 

row multiplied by (−2) to the third one] 
















−−− 13
10
3

450
340
221

~ ~[We add the 

last row to the second one to get 1 in the second row]~ 
















−−−
10

3
3

340
110

221
~ ~[ We add the multiplied by 2 to the first row and the 

second row multiplied by 4 to the third one]~
















−

−

− 2
3
3

100
110
001

~[We add the 

third row to the second and multiply the third row by (−1)] ~














 −

2
1
3

100
010
001

. 

The rank of the system matrix is equal to 3 and to the rank of the extended 
matrix. Thus, the vectors 1 2 3, ,a a a    form the basis and the system is compatible. 
Here .2;1;3 321 =α=α−=α  

Therefore 1 2 33 2b a a a= − + +


    is a decomposition of the vector b


 in the 
basis 1 2 3, , .a a a  
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2.1.7. Projection of the Vector on Axis 

Let us consider an arbitrary vector AB


 and an axis with direction given by 
the vector u  (Fig.10). To get points *A , *B  we drop perpendiculars from the
origin and terminus of the vector on the axis. 

Definition. The length of the segment **BA  taken with sigh “+” if **BA  has 

the same direction with u  or with the sigh “−” if **BA  has the opposite

direction with u  is called projection of the vector AB  on u (or on the axis with

direction u ).    Notation: ABpru .

Note. From the definition and Fig.10 it follows that 

α===
∧

cos),cos(** ABuABABBAABpru


 . 

α 

B 

B*A*

A

u
Figure 10 
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Properties of the projections: 
1. aprapr uu



 λ=λ ; 

2. bpraprbapr uuu








 +=+ )( . 

3. aprapr uu


 =λ  for positive λ; 

aprapr uu


 −=λ  for negative λ. 

Proof. 1. Let ),(
∧

=α ua   (Fig.11). Then

=λλ=λλ=λ
∧∧

),cos(||||),cos(|| uaauaaapru




  

( ) apra
ifa

ifa
ifa

ifa
u










λ=αλ=




<λαλ−
≥λαλ

=




<λα−πλ
≥λαλ

= cos||
0cos||||

0cos||||
0cos||||

0cos||||
. 

2. Let us prove this property geometrically. There are six different cases
(Fig.12).

Figure 12 

 

Β ─ 

Figure 11 

u

a||λ

− a||λ

a
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It follows from case I that 

bpraprbapr uuu








 +=+ )( . 

It follows from case II that 

bpraprbapr uuu








 −+−=+− )( , i.e. bpraprbapr uuu








 +=+ )( . 

It follows from case III that 

bprbaprapr uuu




 −+= )( , i.e. bpraprbapr uuu








 +=+ )( . 

It follows from case IV that 

aprbaprbpr uuu








 ++−=− )( , i.e. bpraprbapr uuu








 +=+ )( .

It follows from case V that 

aprbaprbpr uuu








 −+= )( , i.e. bpraprbapr uuu








 +=+ )( . 

It follows from case VI that 

bprbaprapr uuu




 ++−=− )( , i.e. bpraprbapr uuu








 +=+ )( .

3. Since for the positive λ the direction of the axis stays the same, the projection
of the vector saves its value. For the negative λ we obtain the opposite direction
of the axis and therefore the opposite sign of the projection.
Properties are proven. 
Note.  One additional property of vector projection follows directly from the 

definition: 

Example.  It is known that 10=aprc


 , 5=bprc


 . Find )23( bapr c




 −− . 

By the projection properties we have 

2010305210323)23()23( −=+−=⋅+⋅−=+−=−−=−− bpraprbaprbapr cccc












 . 

Thus, the vector c−  and the vector-projection of the vector ba


 23 −  have 
the opposite directions. 

2.1.8. Cartesian Coordinate System 

Cartesian coordinate system consists on a point O called an origin and 
perpendicular directed coordinate axes passing through the origin.  



70 

Cartesian coordinate system with two (three) axes is called coordinate 
system in plane (space).  

Traditionally, the axes in plane are called axis of abscissas (axis Ox) and 
axis of ordinates (axis Oy) and directed in the way that the shortest turn from 
positive semi-axis Ox to positive semi-axis Oy is made anticlockwise.  

The axes in space are called axis of abscissas (axis Ox), axis of ordinates 
(axis Oy) and applicate axis (axis Oz) and directed in the way that the shortest 
turn from positive semi-axis Ox to positive semi-axis Oy is made anticlockwise 
if you look from the positive semi-axis Oz. 

Natural bases in plane and in space are bases formed from the unit vectors 
directed along the positive semi-axes.  

Namely, natural basis in plane is set of vectors 
(1,0), (0,1)i j
 

; 

natural basis in space is set of vectors 

(1,0,0), (0,1,0), (0,0,1)i j k


 

. 

From Note 2 to the Theorem about vector decomposition (Section 2.1.4) it 
follows that to find coordinates of the vector 
in the mentioned above bases we should 
connect the origin of the vector with point O
and drop perpendiculars on the exes to find 
the vector-projections of this vector on basis 
vectors. In this case the vector is equal to 
sum of obtained vector-projections (Fig.13). 
Thus, we have:  
in plane Oxy 

),( yxyx aajaiaa =+=




; 

in space Oxyz 

),,( zyxzyx aaakajaiaa =++=






, 

where 
α== cos|| aapra ix



 ,    β== cos|| aapra jy


 ,    γ== cos|| aapra kz


 , 

a  

ax
ay

az

x

y

z

O

Figure13
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),(
∧

=α ia


 , ),(
∧

=β ja


 , ),(
∧

=γ ka


  are angles between the vector and positive semi-

axes Ox,Oy,Oz. 
γβα cos,cos,cos  are called the direction cosines of the vector. 

From Fig.13 it follows that  
1) By Pythagorean Theorem

222|| zyx aaaa ++=


2) γ+β+α=
γ+β+α

== 222
2

222222

2

2
coscoscos

||
cos||cos||cos||

||
||1

a
aaa

a
a









, i.e. 

1coscoscos 222 =γ+β+α

3) Vector )cos,cos,(cos γβα  is a vector of unit length with the same with vector

a  direction. Thus, this vector is ort of the vector a , i.e.

||
)cos,cos,(cos0

a
aa






=γβα=

Example. It is known that 2|| =a , 2/1cos =α , 2/1cos −=γ  and an angle

between the axis Oy and a  is acute. Find the coordinates of the vector a .
Since the angle β  is acute then 0cos >β  and 

2
1

2
1

4
1

4
11coscos1cos 22 ==−−=γ−α−=β . 

Therefore 

1cos|| =α= aax
 ,    2cos|| =β= aay

 ,    1cos| −=γ= aaz
 ; 

( )1;2;1 −=a .

2.1.9. Radius-vector of the Point 

Definition. Suppose we have Cartesian coordinate system. Vector OM  with 

origin in the point O and a terminus M is called a radius-vector of the point M.  
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Coordinates of the point in the Cartesian coordinate system by definition 
are coordinates of its radius-vector, i.e. 

If    ),,( zyxkzjyixOM =++=




   then    ),,( zyxM . 

Let us find coordinates of the vector AB  through the coordinates of A and B 
(Fig.14). 

),,(),,(),,( BB ABABAAAABB zzyyxxzyxzyxOAOBAB −−−=−=−=

It means that to find coordinates of the vector we should subtract from the 
coordinates of the terminus the coordinates of the origin. 

At the same time, since module of the vector AB  is equal to the distance between 
two points, we state the following: 

The distance between two points A and B is equal to 
222

B )()()(|| ABABA zzyyxxABd −+−+−== .

Example. It is known that ( )1;2;1 −== ABa , ( )0;1;1A . Find the coordinates of
the point B and distance between the points A and B. 

211B =+=+=⇒−= AxBAx xaxxxa ; 

312B =+=+=⇒−= AyBAy yayyya ; 

101B −=+−=+=⇒−= AzBAz zazzza . 
Therefore, B(2;3;-1). 

The distance between the points A and B is equal to the length of the vector AB : 

6)1(21 222 =−++=d . 

A(xA,yA,zA) 

x
 y

z

O

Figure 14

B(xB,yB,zB) 
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2.1.10. Division of the Segment in the Given Ratio 

Let us find coordinates of the point C which divides the segment AB in the 

ratio λ:μ, i.e. µλ= :||:|| CBAC . 

From Fig.15 it follows that 

=
µ+λ

λ
+=+= ABOAACOAOC  

( ) =
µ+λ

λ
+

µ+λ
µ

=
µ+λ

λ
−+= OBOAOAOBOA









µ+λ

λ
+

µ+λ
µ

µ+λ
λ

+
µ+λ

µ
µ+λ

λ
+

µ+λ
µ

= BABABA zzyyxx ,,

Thus 

:C
µ+λ
λ+µ

= BA
C

xxx ,
µ+λ
λ+µ

= BA
C

yyy ,
µ+λ
λ+µ

= BA
C

zzz .

Example 1. Let point M be a middle of the segment. In this case 1== µλ . 

Therefore 

2
BA

M
xxx +

= , 
2

BA
M

yyy +
= , 

2
BA

M
zzz +

= . 

Example 2. Find the point M of median intersection in the triangle with 

vertices ),,( AAA zyxA , ),,( BBB zyxB , ),,( CCC zyxC  (Fig.16). 

A(xA,yA,zA) 

x
 y

z

O

Figure 15

B(xB,yB,zB) 

C(xC,yC,zC) 
 μ 

 λ 
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Since M is a point of median intersection, it divides each median in the ration 
2:1. Therefore, the coordinates of this point could be found through the 
coordinates of the points C and D in the following way: 

:M  
12

2
+
+

= DC
M

xxx ,
12

2
+
+

= DC
M

yyy ,
12

2
+
+

= DC
M

zzz ,

where D is a middle of the side AB and therefore 

2
BA

D
xxx +

= , 
2

BA
D

yyy +
= , 

2
BA

D
zzz +

= . 

Thus, 

:M
312

2
2

CBA
BA

C
M

xxx
xxx

x ++
=

+

+
+

= , 

312
2

2
CBA

BA
C

M
yyy

yyy
y ++

=
+

+
+

= , 

312
2

2
CBA

BA
C

M
zzz

zzz
z ++

=
+

+
+

= . 

Example 3. Find the center of the gravity of the triangle with vertices )3;2;1(A , 

)4;3;1(−B , )2,0,3( −C . Since the center of the gravity in triangle coincides with 

the point of median intersection, the coordinates of the center are: 

1
3

311
3

=
+−

=
++

= CBA
o

xxxx , 
3
5

3
032

3
=

++
=

++
= CBA

o
yyyy , 

3
5

3
243

3
=

−+
=

++
= CBA

o
zzzz . 

Figure 16 

),,( BBB zyxB  

),,( DDD zyxD  

),,( CCC zyxC),,( AAA zyxA  

M 
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Note. All obtained above formulas are valid for the points in plane, as well. 

Except linear operations on vectors, such as addition and multiplication by 
scalar, there is an operation of vector multiplication. Moreover, It is possible to 
multiply vectors in three ways, namely in scalar, vector and mixed ways. 

2.1.11. Scalar Product 

Definition. Scalar product (or dot product) of two vectors a  and b


 is a

number (scalar) equal to αcosba


 , where α  is an angle between vectors a  and

b


. 

We denote the scalar product in two ways: ( )ba


,  or just ba


 . So, 

( ) α= cos, baba






 . 

Since 

bprb a


=αcos ,       apra b


=αcos , 

we have 

( ) aprbbpraba ba











 ==, , 

( )
b
baaprb









,
= .

Statement (Criterion of the perpendicularity) Two non-zero vectors are 

perpendicular if and only if their scalar product is equal to zero, i.e. 
( ) 0, =⇔⊥ baba .

Indeed, 

( ) 0cos||||,0cos
2

=α=⇔=α⇔
π

=α⇔⊥ bababa


 . 

Algebraic properties of the scalar product: 

1) ( ) ( )abba 



 ,, = ; 
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2) ( ) ( ) ( )bababa










 ,,, λ=λ=λ ; 

3) ( ) ( ) ( )cbcacba 







 ,,, +=+ .

Proof. 1) ( ) ( )ababbaba 











 ,coscos, =α=α= ;

2) ( ) ( )baaprbaprbba bb













 ,, λ=λ=λ=λ ; 

3) ( ) ( ) ( ) ),(,)(, cbcabpraprcbaпрccba ccc


















 +=+=+=+ .

Properties are proven. 
From the definition It follows that 

( ) 2, aaa 

=      or     ( )aaa  ,= .

Thus, we obtain an additional fourth property of scalar product: 

4) ( ) 0, ≥aa   and ( ) 00,




=⇔= aaa . 

Example 1. It is known that qpa  25 += , qpb 



3−= , 2,1 == qp  , 

3
, π

=







=ϕ

∧
qp  . Find ba + . 

By the last formula 

=−−=−++−++=++=+ )6,6()325,325(),(
2

qpqpqpqpqpqpbababa 













=+−−= ),(),(6),(6),(36 qqpqqppp  [By properties of scalar product]=

28412362
3

cos2112136||),(12||36 222 =+−=+
π

⋅⋅⋅−⋅=+−= qqpp  . 

Thus, 

7228 ==+ ba . 

Example 2. Find the ort of the vector. 

From the definition of ort it follows that aa 

 λ= , where 0>λ . Therefore

( ) ( ) ⇒=λ⇒λ=λλ==
a

aaaaa 1,,1 22



a
aa




 =



Note, that we have obtained the same formula as obtained above through 
the direction cosines. 

Let us find the formula to calculate the scalar product of vectors given by 

their coordinates in the orthonormal basis kji




,, . 

Since 

1|||||| === kji




 

and 

kjkiji








⊥⊥⊥ ,, , i.e. 0),(),(),( === kjkiji








, 

we have 

zzyyxxzyxzyx bababakbjbibkajaiaba ++=++++= ),(),(












. 

It means that to find the scalar product we should multiply the 
corresponding coordinates of vectors and then summarize these products.  
Note. This formula is valid for the vectors in plane (case, when 0== zz ba ). 

Example. It is known that )3,2,1(a , )2,1,1(−b


, )4,1,0(c . Find a value k such that

( )ckba 





−⊥ . By the criterion of the perpendicularity we have

( ) ( ) ( ) =−=−= cakbackba 







 ,,,0
=⋅+⋅+⋅−⋅+⋅+−= )431201(2312)1(1 k  

0147 =−= k . 

Thus 

2
1

14
7
==k .

Note. The two and three-dimensional vector spaces with scalar product, 

satisfying four properties written above, are called Euclidean vector spaces.  
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2.1.13. Vector Product 

Definition. The ordered triple of uncomplanar vectors cba 



 ,,  form a right–

hand triple if the shortest turn from the vector a  to the vector b


is made 

http://en.wikipedia.org/wiki/Homogeneous_function
http://en.wikipedia.org/wiki/Triangle_inequality
http://en.wikipedia.org/wiki/Orthogonality
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anticlockwise when their origins are connected and you observe this turn from 
the terminus of c . In other case they form a left – hand triple.

Definition. Vector product (or cross product) of vectors a  and b


 is a vector c

satisfying the following three conditions: 

1) ac  ⊥ , bc


 ⊥ ;

2) α= sinbac


 , where α  is an angle between a  and b


; 

3) cba 



 ,,  form the right–hand triple. 

We denote vector product in two ways, namely bac




×=  or [ ]bac


 ,= . 

Algebraic properties of the vector product: 

1) [ ] [ ]abba 



 ,, −=  (Property of anti-symmetry); 

2) [ ] [ ] [ ]bababa












λ=λ=λ ,,, ; 

3) [ ] [ ] [ ]cabacba 







 ,,, +=+ . 

Proof. Properties 1)-2) follow directly from conditions 2 and 3 of definition.  

To prove the property 3) let us show first that there is another way to plot the 
result of vector product (Fig. 17). We connect the origins of two vectors, project 

the vector b


on the plane perpendicular to the vector a . Then we turn the

obtained vector 1b


 anticlockwise on 90 degrees and multiply by a . The result is

ba




×  since it satisfies all conditions from the definition. 
We are going to use this procedure to prove the third property. Consider the 
parallelogram I from the Fig.18 and project it on the plane perpendicular to a .

Figure 17 

a
b


1b


ba




×090  
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Obtained figure II is also parallelogram and, moreover, the diagonal cbd 



+=  of 

the figure I is projected into the diagonal 111 cbd 



+=  of the figure II. To obtain 

the figure III we turn the figure II anticlockwise on 90 degrees and stretch it in 
a  times. At that we again obtain the parallelogram where the diagonal of III is

obtained by turn and stretching of the diagonal of II. It means that the obtained 

diagonal is the vector ( )cbada 









+×=×  equal to the sum of the parallelogram 
sides, i.e. 

( ) cabacbada 













×+×=+×=× .

Properties are proven. 

Geometrical properties of the vector product: 

1) 0|| =×⇔ baba






  (Criterion of collinearity of two non-zero vectors) 

Indeed, 000sin
0

),(||












=×⇔=×⇒=α⇔



π

==α⇔
∧

babababa . 

Note. Another criterion of collinearity follows from definition, namely, 

z

z

y

y

x

x
zzyyxx b

a
b
a

b
abababababa ==⇔λ=λ=λ=⇔λ=⇔ ,,||









, 

I 

Figure 18 

ab


1b


ba




×
090  

II III 1d


 

c
cbd 



+=

1c

ca 

× da




×
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i.e. the coordinates of collinear vectors are proportional.
2) baS par ×= , i.e. the area of the

parallelogram constructed on the

vectors a  and b


is equal to the 
module of their vector product. 
Indeed, from Fig. 19 we have 

bababaADABS par












×=









=α⋅⋅=

∧

,sinsin . 

3) The altitude of the parallelogram is equal to

b

ba
h 





×
= . 

Indeed, from Fig.19 It follows that: 

b

ba

AD
S

hADhS par
par 





×
==⇒⋅= . 

4) The area of the triangle, constructed on the vectors a  and b


, is equal to a half 
of the module of their vector product. At the same time, the formula for the 

altitude dropped on the vector b


 is the same as for the parallelogram. So 

baStr ×=
2
1 ,      

b

ba
h 





×
= . 

5) Finding the vector perpendicular to the plane of any two uncollinear

vectors. Suppose, a  and b


 are not collinear. Then some parallelogram which is 

planar figure can be constructed on them. Vector ba




×  is a vector perpendicular 

to both a  and b


and thus to the plane of the parallelogram. Therefore, any 

vector, perpendicular to the plane of two uncollinear vectors a  and b


is 

collinear to ba




× . So, we state for uncollinear non-zero vectors a  and b


}0{\,|| Rbacbac
bc
ac

∈λ×λ=⇔




×⇒
⊥
⊥ 













. 

Figure 19

C 

b
  D  A 

h 

B 

a
α
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Let us find the formula to calculate the vector product of vectors given by 

their coordinates in the orthonormal basis kji




,, . Since 

0=× ii


 kji




=× jki






−=×

kij




−=× 0=× jj


ikj






=×

jik




=× ijk




−=× 0=× kk


 

the vector product of vectors  kajaiaa zyx






++= and kbjbibb zyx






++= is 

equal to 

[ ] [ ] +×+×+×+×=++++= ijbakibajibaiibakbjbibkajaiaba xyzxyxxxzyxzyx
















 ,,

=×+×+×++×+×+ kkbajkbaikbakjbajjba zzyzxzzyyy












( ) ( ) ( ) =×−+×+−+×−= kjbabaikbabajibaba yzzyxzzxxyyx








( ) ( ) ( ) ( )
zyx

zyxxyyxxzzxyzzy

bbb
aaa
kji

babakbabajbabai









=−+−−+−= 1 . 

So, 

zyx

zyx

bbb
aaa
kji

ba





=× . 

Example. Find area of the triangle with vertices in the points 

)3,0(),1,2(),1,1( CBA −  and vector h


 collinear to the altitude dropped on side AB. 

Since the problem is formulated in plane we can not calculate vector product to 
find area. That is why before solving this problem we reformulate the task by 
expanding the coordinates of points to spatial case, i.e. we suppose that vertices 
have the following coordinates: 

)0,2,0(),0,1,2(),0,1,1( CBA − . 

Then )0,1,1(),0,2,1( −=−= ACAB , 
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)1,0,0()1(00
011
021 −=−+−=

−
−=× kji

kji
ACAB









, 

2
11

2
1)1(00

2
1

2
1 222 =⋅=−++=×= ACABStr . 

Vector h


 is perpendicular to the vector AB  and to the vector ACAB×
(since this vector is perpendicular to any vector in the plane of triangle). It 
means that 

[ ] )0,1,2(02
100

021, =++=
−

−=×= kji
kji

ACABABh










. 

These coordinates are coordinates in space. To get final answer we should 

save only the first two coordinates, i.e. )1,2(h


. 

2.1.14. Mixed product 

Definition. Mixed product of vectors cba 



 ,,  is equal to the value obtained after

scalar multiplication of the vector c  by the vector product of vectors a  and b


, 
i.e.

( ) ( )cbacba 







 ,,, ×= .

Theorem (Criterion of complanarity of three non-zero vectors) 

( ) cbacba 







 ,,0,, ⇔=  are complanar.

Proof. ( ) ( ) 




=×
⊥×

⇔=×=
0

0,,,
ba

cbacbacba 

















 . It means that either c  is parallel to

the plane of a  and b


or a  and b


 are collinear. In all these cases the vectors 

cba 



 ,,  are complanar. Theorem is proven. 
Proof. If at least two factors coincide in the mixed product, this product is equal 

to zero. That is 0),,( =baa


 . 
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Theorem (Mixed product of the right-hand triple) cba 



 ,,  form the right-

hand triple if and only if ( ) 0,, >cba .

Proof. From Fig.20 it follows that if 

cba 



 ,,  form the right-hand triple then an
angle α  is acute. Thus 

( ) ( ) 0,,, >=× cbacba  .
From the other hand, if 
( ) ⇒>⇒>× 0cos0, αcba 

α⇒  is acute ⇒ cba ,,  form the right-hand triple. Theorem is proven.
Corollary.
( ) cbacba  ,,0,, ⇔<  form the left-hand triple.

Theorem (Geometrical meaning of the mixed product) 
( )cbaV ipedparallelep

,,= , i.e. the volume of the parallelepiped, constructed on the

vectors cba 



 ,, , is equal to the module of their mixed product. 

Proof. Suppose cba 



 ,,  is a right-hand triple (Fig.21). Then

=α×=α⋅= sinsin cbaADSV 



  

=β×=





 β−
π

×= cos
2

sin cbacba 







 ( ) ( )cbacba 







 ,,, =× = ( )cba ,, .

Figure 20

α  

a
b


ba




×  c

Figure 21

α

a

b


B 
c

α′

β  

 C 

D 

A 

c ′

ba




×
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If cba 



 ,,  form the left-hand triple (for this case c  and α  are shown as c′ ,α′  on
Fig.21) then 

β−=





 β−
π

−=





 π

−β=α cos
2

sin
2

sinsin . 

Therefore ( )cbaV 



 ,,−= = ( )cba ,, . Theorem is proven. 

Note. It is simple to check that if cba 



 ,,  is a right-hand triple then bac


 ,,  and 

acb 



,,  form the right-hand triples, as well. Hence, 

),,(),,(),,( acbbaccbaV 









=== . 
In the same way it can be shown that 

),,(),,(),,( bcaabccabV










−=−=−= . 

Moreover, from the obtained above it follows that 

),(),(),,(),(),,( cbaacbacbcbacba 





















×=×==×= , 

i.e. to find mixed product we can multiply any two neighbour vectors in the
vector way and then multiply the result vector by the third one in the scalar way.

Algebraic properties of the mixed product: 

1) a) ( ) ( ) ( )acbbaccba ,,,,,, 



 == , 

b) ( ) ( ) ( ) ( )abcbcacabcba 











 ,,,,,,,, −=−=−= ; 
i.e. cyclic transposition of vectors does not change the value of the mixed
product, but the transposition of any two neighbour vectors changes the sign of
the mixed product. It follows from the last Note or from the properties of scalar
and vector products.

2) ( ) ( ) ( ) ( )cbacbacbacba 

















λ=λ=λ=λ ,,,,,,,, ; 

3) ( ) ( ) ( )dcbdcadcba














 ,,,,,, +=+ .
Last two properties follow directly from the properties of scalar and vector 
products. 

Geometrical properties of the mixed product: 

1) ( )cbaV ipedparallelep




 ,,=  (Fig.22) 
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2) The altitude of the parallelepiped

dropped on the base of vectors a  and b


 is 

( )
ba

c,b,a

S
Vh 









×
== . 

3) The volume of the tetrahedron

constructed on vectors cba 



 ,,  (Fig.22)  is 
equal to 

( )cbaVV parntetrahedro




 ,,
6
1

6
1

. == . 

The altitude of the tetrahedron coincides with the altitude of the 
parallelepiped, so it could be found by the same formula. 

Let us find the formula to calculate the mixed product of vectors given by 

their coordinates in the orthonormal basis kji




,, . 

Suppose, 

( )zyxzyx aaakajaiaa ,,=++=






( )zyxzyx bbbkbjbibb ,,=++=






( )zyxzyx ccckcjcicc ,,=++=






Let us evaluate ( ) ( )cbacba ×= ,,,  :

=+−==×
yx

yx

zx

zx

zy

zy

zyx

zyx cc
bb

k
cc
bb

j
cc
bb

i
ccc
bbb
kji

cb




















−

yx

yx

zx

zx

zy

zy

cc
bb

cc
bb

cc
bb

,, . 

( )
zyx

zyx

zyx

yx

yx
z

zx

zx
y

zy

zy
x

ccc
bbb
aaa

cc
bb

a
cc
bb

a
cc
bb

acba =+−=×




, . 

Therefore, 

Figure 22
a
b


c
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( )
zyx

zyx

zyx

ccc
bbb
aaa

cba =




 ,, . 

Example 1. Find the coordinates of the vertex D of the tetrahedron ABCD if the 

volume of this tetrahedron is equal to 10, D is situated on the positive semi-axis 
Oz and )1,4,0(),2;0;1(),3;2;1( CBA − .  

From condition it follows that D has coordinates );0;0( DzD  and 

( )ADACABV ,,
6
110 == , i.e. ( ) 60,, =ADACAB .

But 

( ) =−−+++−−−=
−−−

−−
−−

= )3(28224)3(4
321

221
122

,, DD

D

zz
z

ADACAB

266 +−= Dz .

Therefore  





=

−=−=
⇔




−=−

=−
⇔±=+−

343
317634

866
346

60266
D

D

D

D
D z

z
z
z

z

Since D is situated on the positive semi-axis Oz the answer is )343;0;0(D . 

Example 2. Prove that four points are situated on the same plane if their 

coordinates are )4;2;0(),4;3;2(),3;2;1(),1;1;1( DCBA .  

These points are from the same plane if and only if the vectors ADACAB ,,  are 
complanar. Let us check this statement. 

( ) 0034230
311
321
210

,, =−−++−=
−

=ADACAB . 

Therefore the vectors are complanar and points are situated on the same plane. 

Example 3. Find ( )ccbba 



 ,, ++  if ( ) 1,, =cba 



 . By mixed product properties:

10001),,(),,(),,(),,(),,( =+++=+++=++ ccbcbbccacbaccbba 















 . 




