Practice Lesson_10_04_20

Differential Equation- Chapter-I

GROUP I-219ia, 219iбe,219iве

Classwork	Answers	
Find the general solution of the equations:		
2.6. $y' = \frac{3x - 4y - 2}{3x - 4y - 3}$.	$x - y + C = \ln 3x - 4y + 1 $.	
$\frac{2.6.}{3x-4y-3}$		
2.7. $y' = \frac{2x - y + 1}{x - 2y + 1}$.	$x^2 - xy + y^2 + x - y = C.$	
x-2y+1		
2.14. $(x + y + 1)dx = (2x + 2y - 1)dy$	$ x - 2y + \ln x + y = C$	
2.15. $y' = \frac{2y - x - 5}{2x - y + 4}$	$(x+y-1)^2 = C(x-y+3)$	
2x - y + 4		
Solve the initial-value problem:		
2.16. $(y^2 - 3x^2)dy + 2xydx = 0, y(0) = 1$		
2.17. $y \left(\frac{dy}{dx}\right)^2 + 2x \frac{dy}{dx} - y = 0$, $y(0) = \sqrt{5}$ $y^2 = 5 \pm 2\sqrt{5}x$		
Additional Tasks		
2.18. Find the line if square of the length of the $x = Ce^{\pm 2\sqrt{\frac{y}{x}}}$		
segment cut off by any tangent on the ordinate $x = Ce^{-\sqrt{x}}$		
axis is the product of the coordinates of the		
tangency point.		
2.19. What surface of revolution is the r	mirror of Form of the	
projector, if after reflection the light rays	from a paraboloid of	
point source are directed by a parallel bea	revolution.	

Homework

Answers

Find the general solution of the equations:

6.1. $y' = \frac{x^2 + xy + y^2}{x^2}$.	$x = ce^{\arctan \frac{y}{x}}.$
6.4. $x^3y' = y(y^2 + x^2)$.	$x = Ce^{-\frac{x^2}{2y^2}}.$
6.5. $ \left(x - y\cos\frac{y}{x}\right)dx + x\cos\frac{y}{x}dy = 0. $	$\sin\frac{y}{x} + \ln x = C$
6.6. $\frac{dx}{x^2 - xy + y^2} = \frac{dy}{2y^2 - xy}.$	$y(y-2x)^3 = C(y-x)^2$.
6.7. $(x-2xy-y^2)dy+y^2dx=0$.	$x = y^2 \left(1 + Ce^{\frac{1}{y}} \right).$