Homogeneous Linear Equations of the Second Order with Constant Coefficients

Let us consider an equation

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=0, \tag{1}
\end{equation*}
$$

where $p=$ const and $q=$ const .
In order to solve this equation we should construct characteristic equations. Characteristic equation may be obtained by change derivatives into (1) by corresponding power of the parameter λ. Note that function y we can consider as derivative of the zero power. So we get characteristic equation:

$$
\begin{equation*}
\lambda^{2}+p \lambda+q=0 \tag{2}
\end{equation*}
$$

While solving a characteristic equation the following cases are possible:

1. Roots of a characteristic equation λ_{1}, λ_{2} are real and different, then the differential equation (1) has two linearly independent, particular solutions $y_{1}=e^{\lambda_{1} x}, y_{2}=e^{\lambda_{2} x}$.

The general solution of the differential equation (1) is as follows

$$
\begin{gather*}
y(x)=c_{1} y_{1}+c_{2} y_{2} \\
y(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} . \tag{3}
\end{gather*}
$$

2. Roots of a characteristic equation are real and equal each to other . Let $\lambda_{1}=\lambda_{2}=\lambda$, i.e. λ is a real root of the multiplicity 2 .

Then 2 particular linearly independent solutions of the differential equation (1) correspond to the real root λ of the multiplicity 2 :

$$
y_{1}=e^{\lambda x}, y_{2}=x e^{\lambda x} .
$$

In this case the general solution of the differential equation (1) is as follows:

$$
y(x)=c_{1} y_{1}+c_{2} y_{2}
$$

or

$$
\begin{equation*}
y(x)=c_{1} e^{\lambda x}+c_{2} x e^{\lambda x} . \tag{4}
\end{equation*}
$$

3. Roots of a characteristic equation are complex conjugate ones

Let $\lambda_{1}=\alpha+i \beta, \lambda_{2}=\alpha-i \beta$.
Two particular, linearly independent solutions of the differential equation correspond to these complex conjugate roots:

$$
y_{1}=e^{\alpha x} \cos \beta x, y_{2}=e^{\alpha x} \sin \beta x .
$$

In this case the general solution of the differential equation (1) looks like:

$$
\begin{equation*}
y(x)=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x . \tag{5}
\end{equation*}
$$

Or

$$
\begin{equation*}
y(x)=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right) \tag{6}
\end{equation*}
$$

Examples. Find the general solution of the following equations:

1. $y^{\prime \prime}+y^{\prime}-2 y=0$

Solution. Let's form the characteristic equations and find its roots

$$
\begin{aligned}
& \lambda^{2}+\lambda-2=0 \\
& \lambda_{1}=-2, \quad \lambda_{1}=1 .
\end{aligned}
$$

Now we can construct fundamental system solution (two linear independent partial solution):

$$
\begin{equation*}
y_{1}=e^{-2 x} ; \quad y_{2}=e^{x} . \tag{7}
\end{equation*}
$$

If we know fundamental system of the solutions, then general solution is their linear combination. That's

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{8}
\end{equation*}
$$

Substitute (7) into (8) and get the general solution

$$
y=C_{1} e^{-2 x}+C_{2} e^{x}
$$

2. $3 y^{\prime \prime}-2 y^{\prime}-8 y=0$

Solution. Let's form the characteristic equations and find its roots

$$
3 \lambda^{2}-2 \lambda-8=0
$$

$$
\lambda_{1,2}=\frac{1 \pm \sqrt{1+24}}{3}, \Rightarrow \lambda_{1}=\frac{1+5}{3}=2, \lambda_{2}=\frac{1-5}{3}=-\frac{4}{3}
$$

$$
\lambda_{1}=2, \quad \lambda_{2}=-\frac{4}{3}
$$

Now we can construct fundamental system solution (two linear independent partial solution) taking into account that roots are real and different :

$$
\begin{equation*}
y_{1}=e^{2 x} ; \quad y_{2}=e^{-\frac{4}{3} x} \tag{9}
\end{equation*}
$$

General solution is linear combination of the obtained solutions. That's

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{10}
\end{equation*}
$$

Substitute (9) into (10) and get the general solution

$$
y=C_{1} e^{2 x}+C_{2} e^{-\frac{4}{3} x}
$$

3. $y^{\prime \prime}+6 y^{\prime}+9 y=0$

Solution. Let's form the characteristic equations and find its roots $\lambda^{2}+6 \lambda+9=0$
$(\lambda+3)^{2}=0, \quad \Rightarrow \quad \lambda_{1}=-3, \quad \lambda_{2}=-3$

The roots of the characteristic equation are the same. The

 fundamental system in the case is defined as:$$
\begin{equation*}
y_{1}=e^{-3 x} ; \quad y_{2}=x e^{-3 x} . \tag{11}
\end{equation*}
$$

General solution is linear combination of the obtained solutions. That's

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{12}
\end{equation*}
$$

Substitute (11) into (12) and get the general solution

$$
y=C_{1} e^{-3 x}+C_{2} x e^{-3 x}
$$

or

$$
y=e^{-3 x}\left(C_{1}+C_{2} x\right)
$$

4. $y^{\prime \prime}+6 y^{\prime}+13 y=0$

Solution. Let's form the characteristic equations and find its roots
$\lambda^{2}+6 \lambda+13=0$
$\lambda_{1,2}=-3 \pm \sqrt{9-13}, \quad \Rightarrow \quad \lambda_{1}=-3+\sqrt{-4}=-3+2 \sqrt{-1}=-3+2 i=-3+2 i$,
$\lambda_{2}=-3-2 i$

You see that given characteristic equation has a complex conjugate root. Real part of the root is $\alpha=-3$, and Image part is $\beta=2$,

In this case fundamental system may be written as :

$$
\begin{equation*}
y_{1}=e^{\alpha x} \cos \beta x ; \quad y_{2}=e^{\alpha x} \sin \beta x . \tag{13}
\end{equation*}
$$

Or $y_{1}=e^{-3 x} \cos 2 x ; \quad y_{2}=e^{-3 x} \sin 2 x$
General solution is linear combination of the obtained solutions. That's

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{14}
\end{equation*}
$$

Substitute (13) into (14) and get the general solution

$$
y=C_{1} e^{-3 x} \cos 2 x+C_{2} e^{-3 x} \sin 2 x
$$

Or
or

$$
y=e^{-3 x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)
$$

5. Find the particular solution of the equations

$$
y^{\prime \prime}+4 y^{\prime}+29 y=0
$$

satisfying given initial conditions.

$$
y(0)=0, y^{\prime}(0)=15
$$

Solution. Let's form the characteristic equations and find its roots

$$
\begin{aligned}
& \lambda^{2}+4 \lambda+29=0 \\
& \lambda_{1}, 2=-2 \pm \sqrt{4-29}, \Rightarrow \lambda_{1}=-2+\sqrt{-25}=-2+5 \sqrt{-1}=-2+5 i \\
& \lambda_{2}=-2-5 i
\end{aligned}
$$

You see that given characteristic equation has a complex conjugate root. Real part of the root is $\alpha=-2$, and Image part is $\beta=5$,

In this case fundamental system may be written as :

$$
y_{1}=e^{-2 x} \cos 5 x ; \quad y_{2}=e^{-2 x} \sin 5 x
$$

General solution is linear combination of the obtained solutions. That's

$$
\begin{equation*}
y=C_{1} y_{1}+C_{2} y_{2} \tag{15}
\end{equation*}
$$

Substitute (13) into (14) and get the general solution

$$
\begin{equation*}
y=e^{-2 x}\left(C_{1} \cos 5 x+C_{2} \sin 5 x\right) \tag{16}
\end{equation*}
$$

In order to find partial solution, satisfying initial condition, we should substitute values $y(0)=0, y^{\prime}(0)=15$ into (16)

We have
$e^{-2 \times 0}\left(C_{1} \cos 5 \times 0+C_{2} \sin 5 \times 0\right)=0, \quad \Rightarrow C_{1}=0 ;$
So

$$
y=C_{2} e^{-2 x} \sin 5 x
$$

Calculate derivative

$$
y^{\prime}=\left(C_{2} e^{-2 x} \sin 5 x\right)^{\prime}=C_{2}\left(-2 e^{-2 x} \sin 5 x+5 e^{-2 x} \cos 5 x\right)=
$$

$$
C_{2} e^{-2 x}(5 \cos 5 x-2 \sin 5 x)
$$

$$
y^{\prime}=C_{2} e^{-2 x}(5 \cos 5 x-2 \sin 5 x)
$$

$$
y^{\prime}(0)=15, \quad \Rightarrow C_{2} e^{-2 \times 0}(5 \cos 5 \times 0-2 \sin 5 \times 0)=15, \quad 5 C_{2}=15 ; \quad C_{2}=3
$$

The partial solution is

$$
y=3 e^{-2 x} \sin 5 x
$$

Below we present tasks for train

Self-Service Examples

Task	Answers		
Find the general solution of the equations:			
9.2. $y^{\prime \prime}-4 y^{\prime}=0$.	$y=C_{1} e^{4 x}+C_{2}$.		
9.5. $y^{\prime \prime}-2 y^{\prime}+y=0$.	$y=e^{x}\left(C_{1}+C_{2} x\right)$.		
9.6. $2 y^{\prime \prime}+y^{\prime}+$ $+2 \sin ^{2} 15^{\circ} \cos ^{2} 15^{\circ} y=0$.	$y=e^{-\frac{1}{4} x}\left(C_{1}+C_{2} x\right)$.		
9.8. $y^{\prime \prime}-9 y=0$.	$y=C_{1} e^{3 x}+C_{2} e^{-3 x}$.		
9.9. $y^{\prime \prime}-2 y^{\prime}-y=0$.	$y=C_{1} e^{(1+\sqrt{2}) x}+C_{2} e^{(1-\sqrt{2}) x}$.		
9.11 $4 y^{\prime \prime}-8 y^{\prime}+5 y=0$	$\left.x=e_{1} \cos \frac{x}{2}+C_{2} \sin \frac{x}{2}\right)$		
9.12. $4 \frac{d^{2} x}{d t^{2}}-20 \frac{d x}{d t}+25 x=0$.			
Find the particular solution of the equations satisfying given initial			
conditions:		\quad	9.7. $y^{\prime \prime}-4 y^{\prime}+3 y=0, y(0)=6$,
:---			
$y^{\prime}(0)=10$.			

