
The Evaluation of the Integrals ∫ 𝑅(𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠𝑥)𝑑𝑥. 

𝑅(𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠𝑥) is called a rational function with respect to trigonometric functions 𝑠𝑖𝑛 𝑥 

and 𝑐𝑜𝑠𝑥. 

Theorem: Integrals ∫ 𝑅(𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠𝑥)𝑑𝑥 by the substitution tan
𝑥

2
=  𝑡 are converted into 

the integrals of a rational function of the variable 𝑡. Indeed, since 

Note: the substitution tan
𝑥

2
=  𝑡 is called a universal trigonometric substitution. 

There are various special cases of rational functions where simpler substitutions also work.

(a) For the integral
∫

R(sinx)cosxdx, we substitute sinx = t and cosxdx = dt.

(b) For the integral
∫

R(cosx)sin xdx, we substitute cosx = t and sinxdx =−dt.

(c) For the integral
∫

R(tanx)dx, we substitute tanx = t, dx =
dt

1+ t2 , and then

∫
R(tanx)dx =

∫
R(t)

dt
1+ t2 .



(d) If the integrand R(sinx,cosx) involves only even powers of sinx and cosx, then we

substitute tanx = t, and

cos2 x =
1

1+ tan2 x
=

1
1+ t2 ,

sin2 x =
1+

tan2

tan
x
2 x

=
t2

1+ t2 , dx =
dt

1+ t2 ,

and the original integrand is transformed into a rational function.

Find I = 
∫ dx

2− sin2 x
.

By substituting tanx = t, we obtain

I =
∫ dt(

2− t2

1+ t2

)
(1+ t2)

=

∫ dt 1
2+ t2 = √

2
tan−1 t√

2
+

1
C = √

2
tan−1

(
tan√ x

2

)
+C.

Example:

(e) R(sinx,cosx) = sinm xcosn x.

We treat two cases separately.

Case 1. At least one of the two numbers m and n is an odd positive integer (say n =

2p+1, p a non-negative integer). If so, the other may be any real number.

Case 2. Both m and n are nonnegative even integers, say m = 2p, n = 2q.

In the first case we split off one cosx factor and use the identity cos2 x = 1− sin2 xto

express the remaining factor cosn−1 x in terms of sinx, as follows:
∫

sinm xcos2p+1 xdx =
∫

sinm xcos2p xcosxdx

=

∫
sinm x(1− sin2 x)p cosxdx.

Then the substitution sinx = t, cosxdx = dt yields
∫

sinm xcosn xdx =
∫

tm(1− t2)pdt.

Observe that the factor (1− t2)p of the integrand is a polynomial in t, and so its product

with tm is easy to integrate.

Before treating the second case, we give a concrete example of the first case.

Example.            Find
∫ cos3

x
sin4 x

dx.

The substitution sinx = t, cosxdx = dt yields
∫ cos3 x

sin4 x
dx =

∫ cos2 xcosxdx
sin4 x

=

∫
(1− sin2 x

4
)cosxdx

sin x

=

∫
(1−t

4

2)dt
t

=− 1
3t3 +

1
t
+ c =− 1

3sin3x
+

1
sin x

+C.

In Case 2, we use the half-angle formulas of elementary trigonometry,

sin2 x =
1
2
− 1

2
cos2x and cos2 x =

1
2
+

1
2

cos2x, (*)

to rewrite the even powers of sinx and cosx as follows:
∫

sin2p xcos2q xdx =
∫ (

1
2
− 1

2
cos2x

)p(1
2
+

1
2

cos2x
)q

dx.



By applying (*) repeatedly to the resulting powers of cos2x—if necessary—we eventually 
are reduced to integrals involving only odd powers, and we have seen how to handle 
these in Case 1.

Example.                    Evaluate 
∫ 

sin4 xdx.

With the use of (8.30), we find that∫
sin4 xdx =

1
22

∫
(1− cos2x)2dx =

1
4

∫
(1−2cos2x+ cos2 2x)dx

=
1
4

[
x− sin2x+

1
2

∫
(1+ cos4x)dx

]
=

1
4

[
3
2

x− sin2x+
sin4x

8

]
+C.

Example . Find 
∫ sin2 x 
 
cos4 x

dx.

We use the substitution tanx = t, and obtain
∫ sin2 x

cos4 xdx
=

∫ sin2 x(sin2 x+ cos2 x)
cos4 xdx

=

∫
tan2 x(1+ tan2 x)dx

=

∫
t2(1+ t2)

dt
1+ t2 =

∫
t2dt =

t3

3
+ c =

tg3x
3

+C.

(f) For the integral
∫

tanm xsecn xdx, the procedure breaks up into two cases.

Case 1. m is an odd positive integer.

Case 2. n is an even positive integer.

In Case 1, we use the substitution t = secx and so split off the factor secx tanx to obtain

secx tanxdx, the differential of secx. Then we use the identity tan2 x = sec2 x−1 to convert

the remaining even power of tanx into powers of secx.

In Case 2, we use the substitution t = tanx and then split off sec2 x to obtain the differ-

ential of tanx. Use of the identity sec2 x = 1+ tan2 x to convert the remaining even power

of secx to powers of tanx completes the process.

Example                      Find 
∫ 

tan3 xsec3 xdx.

We are in case 1, and so
∫

tan3 xsec3 xdx =
∫
(sec2 x−1)sec2 x · secx · tanxdx =

∫
(t4 − t2)dt

=
1
5

t5 − 1
3

t3 +C =
1
5

sec5 x− 1
3

sec3 x+C.

(g) R(sinx,cosx) has one of the forms cosmxcosnx, sinmxcosnx, or sinmxsin nx (m �= n).

In this case, we use the representations for products of trigonometric functions obtained

from the addition formulas:
1
2
[cosmxcosnx =

sinmxcosnx =
1
2
[

and

sinmxsin nx =
1
2
[

cos(m+n)x+ cos(m−n)x],

sin(m+n)x+ sin(m−n)x],

cos(m−n)x− cos(m+n)x].

Example.           Find 
∫ 

sin 5xsin 3xdx.
∫

sin5xsin3xdx =
1
2

∫
[cos2x− cos8x]dx =− sin8x

16
+

sin2x
4

+C.



The Integration of Irrational Algebraic Functions
[

x,
( 

ax + b
cx + d

p

1. The evaluation of 
∫ 

R
)

q 
]

dx.

cx+d
The substitution

(
ax+b

)
= tq yields

(
ax+b
cx+d

) p
q

= t p and x =
tqd−b
a− ctq and the inte-

gral
∫

R

[
x,
(

ax+b
cx+d

) p
q
]

dx is then converted into an integral of rational functions.

Example. Find I = 
∫ √1 + x 

1 − x dx.

The substitution
√

1+ x
1− x

= t yields

x =
t2 1
t2
−
+1

, dx =
4t dt

(t2 +1)2 .

Thus,

I =
∫

t
4t dt

(t2 +1)2 = 2
∫

t
2t

(t2 +1)2 dt =− 2t
t2 +1

+2
∫

2
dt

t +1

=− 2
2t

t +1
+2tan−1 t +C

 Thus, in term of x, we obtain

I =−
√

1− x2 +2arctan

√
1
1
+ x

x− +C.

More generally, for evaluating the integral
∫

R

[
x,
(

ax+b
cx+d

m
n

)
, . . . ,

(
ax+b
cx+d

) p
q
]

dx,

ax+b
we use the substitution

cx+d
= tk to arrive at an integral of rational functions, where k is

the least common multiple of the denominators of the fractions
m
n
, . . . ,

p
q

.

2. The Evaluation of the Integral 
∫ 

R
(
x,
√

ax2 +bx+ c
)
dx.

We use the trigonometric substitutions. Suppose a �= 0 and b2 −4ac �= 0 for a quadratic

polynomial ax2 + bx+ c. Note that if a = 0, then we have a known integral of algebraic

2a

)2

functions. On the other hand, if b2 − 4ac = 0, then ax2 + bx+ c = a
(

x+
b

, and for

a > 0 we are dealing with an integral of rational functions (if the discriminant is zero and

a < 0, then the square root
√

ax2 +bx+ cis not defined for any x). Thus if the discriminant

is nonzero and a �= 0, then we have

ax2 +bx+ c= a
(

x+
b

2a

)2

+

(
c− b2

4a

)
.

Denoting

x+
b

2a
= ∣∣t, |a|= m2 and

∣∣
c− b2 ∣

∣4a

∣∣= n2,

√
m2t2 ±n2 or

√
n2 −m2t2.the square root

√
ax2 +bx+ c is converted into

Finally, we have the integrals



(1)

(2)

and

∫
R
(

t,
√

m2t2 +n2
)

dt,
∫

R
(

t,
√

m2t2 −n2
)

dt,

∫
R
(

t,
√

n2 −m2t2
)

dt. (3)

Thus by substituting t =
m

tanz, t =
m

secz, t =
m

sin z in (1)–(3), respectively, we

obtain a trigonometric integral of the form
∫

R1(sinz,cosz).

Example.        Find I = 
∫ dx√

(4− x2)3
.

This integral has the form (3) and so we make the substitution x = 2sin  z. Then, since dx = 2coszdz, we can write

I =
∫ 2coszdz√

(4−4sin2 z)3
=

∫ 2cos
3
zdz

8cos z
=

1
4

∫ dz
cos2 z

=
1
4

tanz+C =
1
4

x

4
√

4− x2
+C.

Example.        Evaluate 
∫ √

x2 −25

sinz√
1− sin2 z

+C =

dx.

The integral has the form (2). We make the substitution x = 5secz so that dx = 5secz tan zdz. Therefore,

∫ √
x2 −25

x
dx =

∫ √
25sec2 z−25

5secz
(5secz tanz)dz

= 5
∫

tan2 zdz = 5
∫
(sec2 z−1)dz = 5tanz−5z+C.

But

z = sec−1 x
5

and tanz =

√
x2 −25

5
,

so that
∫ √

x2 −25
x

dx =
√

x2 −25−5sec−1 x
5
+C.

x



The Evaluation of the Integral 
∫ 

xm(a + bxn)pdx.

We assume that m, n, and  p are rational numbers, and that a and b are real. We consider the following 

three cases.

(a) If p is an integer, then the integral has the form 
∫ 

R(xm,xn)dx, where R is rational

function. We then use the substitution x = tk, where k is the least common multiple of m and n.

(b) If m+ 1
n is an integer, then the substitution t = xn yields

∫
xm(a+bxn)pdx =

1
n

∫
tq(a+bt)pdt,

where q = m+ 1
n

− 1 is  an integer.  Let  r be the denominator of p. Then using the

rsubstitution u = 
√

a + bt, the integral is converted into the integral of rational functions of u.

(c)
m+ 1 rIf + p is an integer, then by substituting t =

√
ax−n +b, where r is the denom-

inator of p, the original integral is converted into the integral of a rational function of t.

Example.    Find I = 
∫ 

x3(1 + x2)−1/2 dx.

Here,
m+1

n
=

3+1
2

= 2 and p =−1
2

. Then we use the substitution 1+ x2 = u2.

Thus,

I =
∫

(u2 −1
2
)udu

u
=

∫
(u2 −1)du =

u3

3
−u+C

=
u(u2 −3)

3
+C =

1
3

√
1+ x2(x2 −2)+C.

Example.       Find I = 
∫ 

x−3(x4 + 2)1/2dx.

Here,
m+1

n
=

−3+1
4

= −1
2

is not an integer. But
m+1

n
+ p = −1

2
+

1
2
= 0 is an

integer. Then the substitution x4 +2 = u2x4 implies

x4 =
2

u2 −1
, dx =

udu
x3(

−
u2 −1)2 .

Thus,

I =
∫ ux

3

2

x
udu

x3(

−
u2 −1)

=
∫ u2 du

x4(

−
u2 −1)2 =

∫ −u2(u2 −1)
2(u2 −1)2 du

=−1
2

∫ (
1+ 2

1
u −1

)
du =−1

2
u− 1

4
ln

u 1
u
−
+1

+C.

=−
√

x4 +2
2x2 − 1

4
ln

√
x2 +2 x2

√
x4 +4

−
+ x2

+C.

n
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