The Evaluation of the Integrals $\int R(\sin x, \cos x) d x$.

$R(\sin x, \cos x)$ is called a rational function with respect to trigonometric functions $\sin x$ and $\cos x$.
Theorem: Integrals $\int R(\sin x, \cos x) d x$ by the substitution $\tan \frac{x}{2}=t$ are converted into the integrals of a rational function of the variable t. Indeed, since

$$
\begin{aligned}
& \sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{2 t}{1+t^{2}}, \\
& \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{1-t^{2}}{1+t^{2}},
\end{aligned}
$$

and

$$
x=2 \tan ^{-1} t, \quad d x=\frac{2 d t}{1+t^{2}},
$$

it is clear that these substitutions will convert the integrand into a rational function of t :

$$
\int R(\sin x, \cos x) d x=\int R\left(\frac{2 t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right) \frac{2 d t}{1+t^{2}}
$$

Note: the substitution $\tan \frac{x}{2}=t$ is called a universal trigonometric substitution.
Example Find $\int \frac{d x}{\cos x}$.
Taking into account that $\cos x=\frac{1-t^{2}}{1+t^{2}}$ and $d x=\frac{2 d t}{1+t^{2}}$, we can derive

$$
\int \frac{d x}{\cos x}=\int \frac{\frac{2 d t}{1+t^{2}}}{\frac{1-t^{2}}{1+t^{2}}} d t=2 \int \frac{d t}{1-t^{2}}=\ln \left|\frac{1+t}{1-t}\right|+C=\ln \left|\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right|+C
$$

There are various special cases of rational functions where simpler substitutions also work.
(a) For the integral $\int R(\sin x) \cos x d x$, we substitute $\sin x=t$ and $\cos x d x=d t$.
(b) For the integral $\int R(\cos x) \sin x d x$, we substitute $\cos x=t$ and $\sin x d x=-d t$.
(c) For the integral $\int R(\tan x) d x$, we substitute $\tan x=t, d x=\frac{d t}{1+t^{2}}$, and then

$$
\int R(\tan x) d x=\int R(t) \frac{d t}{1+t^{2}}
$$

(d) If the integrand $R(\sin x, \cos x)$ involves only even powers of $\sin x$ and $\cos x$, then we substitute $\tan x=t$, and

$$
\begin{gathered}
\cos ^{2} x=\frac{1}{1+\tan ^{2} x}=\frac{1}{1+t^{2}} \\
\sin ^{2} x=\frac{\tan ^{2} x}{1+\tan ^{2} x}=\frac{t^{2}}{1+t^{2}}, \quad d x=\frac{d t}{1+t^{2}}
\end{gathered}
$$

and the original integrand is transformed into a rational function.

Example: \quad Find $I=\int \frac{d x}{2-\sin ^{2} x}$.
By substituting $\tan x=t$, we obtain

$$
I=\int \frac{d t}{\left(2-\frac{t^{2}}{1+t^{2}}\right)\left(1+t^{2}\right)}=\int \frac{d t}{2+t^{2}}=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{t}{\sqrt{2}}+C=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)+C
$$

(e) $R(\sin x, \cos x)=\sin ^{m} x \cos ^{n} x$.

We treat two cases separately.
Case 1. At least one of the two numbers m and n is an odd positive integer (say $n=$ $2 p+1, p$ a non-negative integer). If so, the other may be any real number.

Case 2. Both m and n are nonnegative even integers, say $m=2 p, n=2 q$.
In the first case we split off one $\cos x$ factor and use the identity $\cos ^{2} x=1-\sin ^{2} x$ to express the remaining factor $\cos ^{n-1} x$ in terms of $\sin x$, as follows:

$$
\begin{aligned}
\int \sin ^{m} x \cos ^{2 p+1} x d x & =\int \sin ^{m} x \cos ^{2 p} x \cos x d x \\
& =\int \sin ^{m} x\left(1-\sin ^{2} x\right)^{p} \cos x d x
\end{aligned}
$$

Then the substitution $\sin x=t, \cos x d x=d t$ yields

$$
\int \sin ^{m} x \cos ^{n} x d x=\int t^{m}\left(1-t^{2}\right)^{p} d t
$$

Observe that the factor $\left(1-t^{2}\right)^{p}$ of the integrand is a polynomial in t, and so its product with t^{m} is easy to integrate.

Before treating the second case, we give a concrete example of the first case.

Example. Find $\square \frac{\cos ^{3 \square}}{\sin ^{4} x} d x$.
The substitution $\sin x=t, \cos x d x=d t$ yields

$$
\begin{aligned}
\int \frac{\cos ^{3} x}{\sin ^{4} x} d x & =\int \frac{\cos ^{2} x \cos x d x}{\sin ^{4} x}=\int \frac{\left(1-\sin ^{2} x\right) \cos x d x}{\sin ^{4} x} \\
& =\int \frac{\left(1-\mathrm{t}^{2}\right) d t}{t^{4}}=-\frac{1}{3 t^{3}}+\frac{1}{t}+c=-\frac{1}{3 \sin ^{3} x}+\frac{1}{\sin x}+C
\end{aligned}
$$

In Case 2, we use the half-angle formulas of elementary trigonometry,

$$
\begin{equation*}
\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x \text { and } \cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x \tag{*}
\end{equation*}
$$

to rewrite the even powers of $\sin x$ and $\cos x$ as follows:

$$
\int \sin ^{2 p} x \cos ^{2 q} x d x=\int\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right)^{p}\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right)^{q} d x
$$

By applying (*) repeatedly to the resulting powers of $\cos 2 x$-if necessary—we eventually are reduced to integrals involving only odd powers, and we have seen how to handle these in Case 1.

Example. Evaluate $\int \sin ^{4} x d x$.
With the use of (8.30), we find that

$$
\begin{aligned}
& \int \sin ^{4} x d x=\frac{1}{2^{2}} \int(1-\cos 2 x)^{2} d x= \\
= & \frac{1}{4} \int\left(1-2 \cos 2 x+\cos ^{2} 2 x\right) d x \\
= & \frac{1}{4}\left[x-\sin 2 x+\frac{1}{2} \int(1+\cos 4 x) d x\right]=\frac{1}{4}\left[\frac{3}{2} x-\sin 2 x+\frac{\sin 4 x}{8}\right]+C
\end{aligned}
$$

Example . Find $\int \frac{\sin ^{2} x}{\cos ^{4} x} d x$.
We use the substitution $\tan x=t$, and obtain

$$
\begin{aligned}
\int \frac{\sin ^{2} x}{\cos ^{4} x d x} & =\int \frac{\sin ^{2} x\left(\sin ^{2} x+\cos ^{2} x\right)}{\cos ^{4} x d x}=\int \tan ^{2} x\left(1+\tan ^{2} x\right) d x \\
& =\int t^{2}\left(1+t^{2}\right) \frac{d t}{1+t^{2}}=\int t^{2} d t=\frac{t^{3}}{3}+c=\frac{t g^{3} x}{3}+C
\end{aligned}
$$

(f) For the integral $\int \tan ^{m} x \sec ^{n} x d x$, the procedure breaks up into two cases.

Case 1. m is an odd positive integer.
Case 2. n is an even positive integer.
In Case 1, we use the substitution $t=\sec x$ and so split off the factor $\sec x \tan x$ to obtain $\sec x \tan x d x$, the differential of $\sec x$. Then we use the identity $\tan ^{2} x=\sec ^{2} x-1$ to convert the remaining even power of $\tan x$ into powers of $\sec x$.

In Case 2, we use the substitution $t=\tan x$ and then split off $\sec ^{2} x$ to obtain the differential of $\tan x$. Use of the identity $\sec ^{2} x=1+\tan ^{2} x$ to convert the remaining even power of $\sec x$ to powers of $\tan x$ completes the process.

Example Find $\int \tan ^{3} x \sec ^{3} x d x$.
We are in case 1 , and so

$$
\begin{aligned}
\int \tan ^{3} x \sec ^{3} x d x & =\int\left(\sec ^{2} x-1\right) \sec ^{2} x \cdot \sec x \cdot \tan x d x=\int\left(t^{4}-t^{2}\right) d t \\
& =\frac{1}{5} t^{5}-\frac{1}{3} t^{3}+C=\frac{1}{5} \sec ^{5} x-\frac{1}{3} \sec ^{3} x+C
\end{aligned}
$$

(g) $R(\sin x, \cos x)$ has one of the forms $\cos m x \cos n x, \sin m x \cos n x$, or $\sin m x \sin n x(m \neq n)$. In this case, we use the representations for products of trigonometric functions obtained from the addition formulas:

$$
\begin{aligned}
\cos m x \cos n x & =\frac{1}{2}[\cos (m+n) x+\cos (m-n) x] \\
\sin m x \cos n x & =\frac{1}{2}[\sin (m+n) x+\sin (m-n) x]
\end{aligned}
$$

and

$$
\sin m x \sin n x=\frac{1}{2}[\cos (m-n) x-\cos (m+n) x] .
$$

Example. Find $\int \sin 5 x \sin 3 x d x$.

$$
\int \sin 5 x \sin 3 x d x=\frac{1}{2} \int[\cos 2 x-\cos 8 x] d x=-\frac{\sin 8 x}{16}+\frac{\sin 2 x}{4}+C
$$

The Integration of Irrational Algebraic Functions

1. The evaluation of $\int R\left[x,\left(\frac{a x+b}{c x+d}\right)^{\frac{p}{q}}\right] d x$.

The substitution $\left(\frac{a x+b}{c x+d}\right)=t^{q}$ yields $\left(\frac{a x+b}{c x+d}\right)^{\frac{p}{q}}=t^{p}$ and $x=\frac{t^{q} d-b}{a-c t^{q}}$ and the integral $\int R\left[x,\left(\frac{a x+b}{c x+d}\right)^{\frac{p}{q}}\right] d x$ is then converted into an integral of rational functions.

Example. Find $I=\int \sqrt{\frac{1-x}{1-x}} d x$.
The substitution $\sqrt{\frac{1+x}{1-x}}=t$ yields

$$
x=\frac{t^{2}-1}{t^{2}+1}, \quad d x=\frac{4 t d t}{\left(t^{2}+1\right)^{2}} .
$$

Thus,

$$
\begin{aligned}
I & =\int t \frac{4 t d t}{\left(t^{2}+1\right)^{2}}=2 \int t \frac{2 t}{\left(t^{2}+1\right)^{2}} d t=-\frac{2 t}{t^{2}+1}+2 \int \frac{d t}{t^{2}+1} \\
& =-\frac{2 t}{t^{2}+1}+2 \tan ^{-1} t+C
\end{aligned}
$$

Thus, in term of x, we obtain

$$
I=-\sqrt{1-x^{2}}+2 \arctan \sqrt{\frac{1+x}{1-x}}+C
$$

More generally, for evaluating the integral

$$
\int R\left[x,\left(\frac{a x+b}{c x+d}\right)^{\frac{m}{n}}, \ldots,\left(\frac{a x+b}{c x+d}\right)^{\frac{p}{q}}\right] d x
$$

we use the substitution $\frac{a x+b}{c x+d}=t^{k}$ to arrive at an integral of rational functions, where k is the least common multiple of the denominators of the fractions $\frac{m}{n}, \ldots, \frac{p}{q}$.
2. The Evaluation of the Integral $\int R\left(x, \sqrt{a x^{2}+b x+c}\right) d x$.

We use the trigonometric substitutions. Suppose $a \neq 0$ and $b^{2}-4 a c \neq 0$ for a quadratic polynomial $a x^{2}+b x+c$. Note that if $a=0$, then we have a known integral of algebraic functions. On the other hand, if $b^{2}-4 a c=0$, then $a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}$, and for $a>0$ we are dealing with an integral of rational functions (if the discriminant is zero and $a<0$, then the square root $\sqrt{a x^{2}+b x+c}$ is not defined for any x). Thus if the discriminant is nonzero and $a \neq 0$, then we have

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right) .
$$

Denoting

$$
x+\frac{b}{2 a}=t,|a|=m^{2} \text { and }\left|c-\frac{b^{2}}{4 a}\right|=n^{2},
$$

the square root $\sqrt{a x^{2}+b x+c}$ is converted into $\sqrt{m^{2} t^{2} \pm n^{2}}$ or $\sqrt{n^{2}-m^{2} t^{2}}$.
Finally, we have the integrals

$$
\begin{align*}
& \int R\left(t, \sqrt{m^{2} t^{2}+n^{2}}\right) d t \tag{1}\\
& \int R\left(t, \sqrt{m^{2} t^{2}-n^{2}}\right) d t \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\int R\left(t, \sqrt{n^{2}-m^{2} t^{2}}\right) d t \tag{3}
\end{equation*}
$$

Thus by substituting $t=\frac{-}{m} \tan z, t=\frac{m}{m} \sec z, t=\frac{m}{m} \sin z$ in (1)-(3), respectively, we obtain a trigonometric integral of the form $\int R_{1}(\sin z, \cos z)$.

Example. Find $I=\int \frac{d x}{\sqrt{\left(4-x^{2}\right)^{3}}}$.
This integral has the form (3) and so we make the substitution $x=2 \sin z$. Then, since $d x=2 \cos z d z$, we can write

$$
\begin{aligned}
I & =\int \frac{2 \cos z d z}{\sqrt{\left(4-4 \sin ^{2} z\right)^{3}}}=\int \frac{2 \cos z d z}{8 \cos ^{3} z}=\frac{1}{4} \int \frac{d z}{\cos ^{2} z} \\
& =\frac{1}{4} \tan z+C=\frac{1}{4} \frac{\sin z}{\sqrt{1-\sin ^{2} z}}+C=\frac{x}{4 \sqrt{4-x^{2}}}+C .
\end{aligned}
$$

Example. Evaluate $\int \frac{\sqrt{x^{2}-25}}{x} d x$.
The integral has the form (2). We make the substitution $x=5 \sec z$ so that $d x=5 \sec z \tan z d z$. Therefore,

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-25}}{x} d x & =\int \frac{\sqrt{25 \sec ^{2} z-25}}{5 \sec z}(5 \sec z \tan z) d z \\
& =5 \int \tan ^{2} z d z=5 \int\left(\sec ^{2} z-1\right) d z=5 \tan z-5 z+C
\end{aligned}
$$

But

$$
z=\sec ^{-1} \frac{x}{5} \text { and } \tan z=\frac{\sqrt{x^{2}-25}}{5}
$$

so that

$$
\int \frac{\sqrt{x^{2}-25}}{x} d x=\sqrt{x^{2}-25}-5 \sec ^{-1} \frac{x}{5}+C
$$

The Evaluation of the Integral $\int x^{m}\left(a+b x^{n}\right)^{p} d x$.

We assume that m, n, and p are rational numbers, and that a and b are real. We consider the following three cases.
(a) If p is an integer, then the integral has the form $\int R\left(x^{m}, x^{n}\right) d x$, where R is rational function. We then use the substitution $x=t^{k}$, where k is the least common multiple of m and n.
(b) If $\frac{m+1}{n}$ is an integer, then the substitution $t=x^{n}$ yields

$$
\int x^{m}\left(a+b x^{n}\right)^{p} d x=\frac{1}{n} \int t^{q}(a+b t)^{p} d t
$$

where $q=\frac{m+1}{n}-1$ is an integer. Let r be the denominator of p. Then using the
substitution $u=\sqrt[r]{a+b} t$, the integral is converted into the integral of rational functions of u.
(c) If $\frac{m+1}{n}+p$ is an integer, then by substituting $t=\sqrt[r]{a x^{-n}+b}$, where r is the denominator of p, the original integral is converted into the integral of a rational function of t.

Example. Find $I=\int x^{3}\left(1+x^{2}\right)^{-1 / 2} d x$.
Here, $\frac{m+1}{n}=\frac{3+1}{2}=2$ and $p=-\frac{1}{2}$. Then we use the substitution $1+x^{2}=u^{2}$.
Thus,

$$
\begin{aligned}
I & =\int \frac{\left(u^{2}-1\right) u d u}{u^{2}}=\int\left(u^{2}-1\right) d u=\frac{u^{3}}{3}-u+C \\
& =\frac{u\left(u^{2}-3\right)}{3}+C=\frac{1}{3} \sqrt{1+x^{2}}\left(x^{2}-2\right)+C .
\end{aligned}
$$

Example. Find $I=\int x^{-3}\left(x^{4}+2\right)^{1 / 2} d x$.
Here, $\frac{m+1}{n}=\frac{-3+1}{4}=-\frac{1}{2}$ is not an integer. But $\frac{m+1}{n}+p=-\frac{1}{2}+\frac{1}{2}=0$ is an integer. Then the substitution $x^{4}+2=u^{2} x^{4}$ implies

$$
x^{4}=\frac{2}{u^{2}-1}, \quad d x=\frac{-u d u}{x^{3}\left(u^{2}-1\right)^{2}} .
$$

Thus,

$$
\begin{aligned}
I & =\int \frac{u x^{2}}{x^{3}} \frac{-u d u}{x^{3}\left(u^{2}-1\right)}=\int \frac{-u^{2} d u}{x^{4}\left(u^{2}-1\right)^{2}}=\int \frac{-u^{2}\left(u^{2}-1\right)}{2\left(u^{2}-1\right)^{2}} d u \\
& =-\frac{1}{2} \int\left(1+\frac{1}{u^{2}-1}\right) d u=-\frac{1}{2} u-\frac{1}{4} \ln \frac{u-1}{u+1}+C . \\
& =-\frac{\sqrt{x^{4}+2}}{2 x^{2}}-\frac{1}{4} \ln \frac{\sqrt{x^{2}+2}-x^{2}}{\sqrt{x^{4}+4}+x^{2}}+C .
\end{aligned}
$$

