
Definite integral and its applications 
 

The most important result about integration is the fundamental theorem of 

calculus, which states that integration and differentiation are inverse operations in an 

appropriately understood sense. Among other things, this connection enables us to 

compute many integrals explicitly. 

Integrability is a less restrictive condition on a function than differentiability. 

Roughly speaking, integration makes functions smoother, while differentiation makes 

functions rougher. For example, the indefinite integral of every continuous function 

exists and is differentiable, whereas the derivative of a continuous function need not 

exist (and generally doesn’t). 

The Riemann integral is the simplest integral to define, and it allows one to 

integrate every continuous function) as well as some not-too-badly discontinuous 

functions on a given definite interval [𝑎, 𝑏]. 
 

1.1 Definition and properties of definite integrals 
 

The definition of the Riemann integral is motivated by the problem of defining 

and calculating the area of the region lying between the graph of a non-negative 

function 𝑓(𝑥) and the x-axis over a closed interval.  
 

 

 

Let the continuous function  xfy   be determined in the interval [𝑎, 𝑏]. Let’s 

divide the interval [a,b] into n subintervals by n points 

bxxxxxa nii    110 . Here, 

 

Definition 1. A partition of [a, b] is a set of points 𝑃 =  {𝑥0 , 𝑥1 , . . . , 𝑥𝑛 } 
satisfying 𝑎 = 𝑥0 <  𝑥1 < ··· <  𝑥𝑛 =  𝑏. 

 
Definition 2. A partition P2 of [a, b] is said to be a refinement of P1 if P1 ⊂ P2. 
 
Definition 3. If P is any partition of [𝑎, 𝑏] and 𝛥𝑥𝑖 =  𝑥𝑖+1 − 𝑥𝑖  (𝑖 =  0, 1, . . . , 𝑛 −
1), then 

𝜇(𝑃)  =  max
0≤i≤_𝑛−1

𝛥𝑥𝑖  

is said to be the step of the partition P. It is clear that 𝑛 ≥  
𝑏−𝑎 

𝜇(𝑃)
 



Definition 4. Let f(x) be a function defined on the interval [𝑎, 𝑏]. If P is a partition of 

[𝑎, 𝑏] and {𝜉0, 𝜉1, . . . , 𝜉𝑛−1}, 𝜉𝑖  ∈  [𝑥𝑖 , 𝑥𝑖+1] (𝑖 =  0, 1, . . . , 𝑛 − 1) is a selection of 

points for P, then the Riemann sum for f(x)  determined by P and the selection 

{𝜉0, 𝜉1, . . . , 𝜉𝑛−1},  is 𝜎(𝑥𝑖 , 𝜉𝑖)  = ∑  𝑓 (𝜉𝑖)𝛥𝑥𝑖𝑛−1
𝑖=0   . 

We also say that the Riemann sum is associated with the partition P. 

 

Other words: on each subinterval  ii xx ,1  we choose some point i  and compose a 

sum  
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i
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  which is called an integral sum of the function  xfy   in the 

interval [a,b]. 

 

Definition 5. Let P be a partition of [𝑎, 𝑏] and {𝜉0, 𝜉1, . . . , 𝜉𝑛−1} be a selection for P. 

We say that I is the limit of the Riemann sums 𝜎(𝑥𝑖 , 𝜉𝑖)  as the step of the partition 

tends to zero, if for every 𝜀 >  0, there is a 𝛿 = 𝛿 (𝜀 ) such that 𝜇(𝑃)  < 𝛿 implies 

|𝐼 − 𝜎 |  < 𝜀.  

That is, there exists some final limit of the integral sum 
n

  while 

  0max
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


i
ni

x , not depending on the way of splitting the interval [𝑎, 𝑏] into 

elementary segments and choice of the points i .  

 

Definition 6. The limit I is called the Riemann integral of the function f over the 

interval from a to b or a definite integral of the function  xf  in the interval [𝑎, 𝑏] 

and is designated as 

   

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The numbers a and b are called the lower limit and the upper limit, respectively. 

In this case we say that the function  xf  is integrable on the interval [a,b].  

 

The geometrical meaning of a definite integral: if   0xf  for any ],[ bax , 

then  
b

a

dxxf  is numerically equal to area of the region (a curvilinear trapezoid) with 

the base [𝑎, 𝑏], restricted by the straight lines ax  , bx   and the plot of the non-

negative function  xfy   as seen in Figure. 
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 Integrability of continuous and monotonic functions. 
 

Theorem 1. A continuous function  xf  on an interval 𝑥 ∈ [𝑎, 𝑏] is Riemann 

integrable. 

 

Theorem 2. A monotonic function  xf  on an interval 𝑥 ∈ [𝑎, 𝑏] is Riemann 

integrable. 

Remark. Monotonic functions needn’t be continuous, and they may be 

discontinuous at a countably infinite number of points. 

 

Theorem 3. If the function f is Riemann integrable on [𝑎, 𝑏], then f is bounded on this 

interval. 

Proof:  On the contrary, suppose that f is integrable on [a,b] but unbounded on 

this interval. By Definition, for every 𝜀 >  0 there is a positive number 𝛿 = 𝛿 (𝜀 ) 
such that 𝜇(𝑃)  < 𝛿 (𝜀 ) implies |𝐼 − 𝜎 |  <  𝜀. It follows that if 𝜇(𝑃)  <  𝛿 (𝜀 ), then 

the Riemann sum σ is bounded.  

Let P be a partition such that 𝜇(𝑃)  < 𝛿 (𝜀 ). Since, by assumption, f is 

unbounded on [a,b], there exists a subinterval [xk,xk+1] such that the function f is 

unbounded on [xk,xk+1]. Then it is possible, by selecting an appropriate 𝜉𝑘  ∈
 [𝑥𝑘 , 𝑥𝑘+1], to arrange that 𝑓 (𝜉𝑘)𝛥𝑥𝑘 is larger than any pre-assigned number. This 

implies that the Riemann sums are unbounded, which contradiction proves the 

theorem.  

Remark. For the existence of the Riemann integral of function  xf , the 

boundedness of f is necessary, but not sufficient. 

 

Suppose a function f is bounded on the closed interval [a,b], and that 𝑃 =
{𝑥0 , 𝑥1 , . . . , 𝑥𝑛 } is any partition of [a,b]. We adopt the following notation: 

𝑀 =  sup
𝑥∈[𝑎,𝑏] 

𝑓 (𝑥) , 𝑀𝑖 =  sup
𝑥∈[𝑥𝑖 ,𝑥𝑖+1]

𝑓 (𝑥)  , 

𝑚 =  inf
𝑥∈[𝑎,𝑏] 

𝑓 (𝑥) , 𝑚𝑖 =  inf
𝑥∈[𝑥𝑖 ,𝑥𝑖+1]

𝑓 (𝑥)  , 

𝑆(𝑃) =   ∑ 𝑀𝑖𝛥𝑥𝑖
𝑛−1
𝑖=0   , 𝑠(𝑃) =  ∑ 𝑚𝑖𝛥𝑥𝑖

𝑛−1
𝑖=0  

Definition 7. The S(P) and s(P) are called the upper Riemann sum and the lower 

Riemann sum, respectively, for a function f, associated with the partition P of [a,b]. 

 Geometrically the upper and the lower Riemann sums of 𝑦 =  𝑓 (𝑥) are 

presented as follows: 

 for each 𝑖 =  1, . . . , 𝑛 consider the rectangle with base [𝑥𝑖−1, 𝑥𝑖], height Mi, and 

area 𝑀𝑖𝛥𝑥𝑖. The union of these n rectangles contains the region 𝐴 =  {(𝑥, 𝑦) ∶  𝑎 ≤
𝑥 ≤  𝑏, 0 ≤  𝑦 ≤  𝑓 (𝑥)} under the graph; it is a circumscribed rectangular polygon 

associated with the partition of [a,b]. Its area is S(P) in Figure. 



Similarly, s(P) is the area of an inscribed rectangular polygon, that is, the sum 

of the areas of the n rectangles each with base length Δxi and height mi as seen in 

Figure. 

 

 

 

Lemma 1. Let 𝜎(𝑥𝑖 , 𝜉𝑖)  be the Riemann sum for function  xf  determined by an 

arbitrary partition P of [a,b] and any selection {𝜉0, 𝜉1, . . . , 𝜉𝑛−1} for the partition P. 

Then 

𝑠(𝑃)  ≤ 𝜎(𝑥𝑖 , 𝜉𝑖) ≤ 𝑆(𝑃). 
 

Indeed, by the definition of Mi and mi, the inequality 𝑚𝑖  ≤  𝑓 (𝜉𝑖) ≤  𝑀𝑖 holds for any 

𝜉𝑖  ∈  [𝑥𝑖 , 𝑥𝑖+1]. Hence, by multiplying by Δxi, 𝑖 =  0, . . . , 𝑛 − 1, and then summing 

these inequalities, we have the desired inequality.  
 

Lemma 2. For any partition P of [a,b], 
𝑆(𝑃)  =  sup

𝜉𝑖 ∈ [𝑥𝑖,𝑥𝑖+1] 
𝜎(𝑥𝑖 , 𝜉𝑖); 𝑠(𝑃)  =  inf

𝜉𝑖 ∈ [𝑥𝑖,𝑥𝑖+1] 
𝜎(𝑥𝑖 , 𝜉𝑖). 

 

Lemma 3. If P1 and P2 are any partitions of [a,b], then 

𝑠(𝑃1)  ≤  𝑆(𝑃2), 
i.e., a lower Riemann sum is never greater than any upper Riemann sum, regardless of 

the partition used. 

 

Theorem 4. For the existence of the Riemann integral of a bounded function f defined 

on a closed interval [a,b], it is necessary and sufficient that for every 𝜀 >  0, there 

exists a partition P of [a,b] such that 

𝑆(𝑃) − 𝑠(𝑃)  < 𝜀. 
Remark. Theorem can be reformulated as follows: For the existence of the 

Riemann integral of a bounded function f defined on [a,b], it is necessary and sufficient 

that the upper and lower integrals are equal. 

 

  



The properties of a definite integral. 

1.     .dxxfdxxf

a

b

b

a

   

2.  

a

a

dx)x(f 0  

3. If the functions  xf  и  xg  are integrable on  ba, , then 

а)      ., constCdxxfCdxxCf

b

a

b

a

    

b)          . 

b

a

b

a

b

a

dxxgdxxfdxxgxf  

4. Additivity of an integral. If the function  xf  is integrable on  ca,  and  bc,

, where  bac , , then it is integrable on [a,b] and 

  

b

a

c

a

b

c

dxxfdxxfdxxf .)()()(  

5. If ba   and integrable on  ba,  function   0xf , then 

  0
b

a

dxxf , 

and the equality to zero is possible if and only if   0xf  for any  bax , . 

6. If ba   and integrable on  ba,  functions    xgxf  , then 

    
b

a

b

a

dxxgdxxf . 

7. If the function  xf  is integrable on [a,b], then  xf  is also integrable on 

[a,b] and the following inequality is valid: 

    

b

a

b

a

dxxfdxxf . 

8. The theorem on an estimate of a definite integral. If integrable on [a,b] 

  Mxfm  , where    xfMxfm
baba ],[],[

sup,inf   then  

     abMdxxfabm

b

a

  . 

9. The Mean Value Theorem. Suppose f is continuous on [a,b]. Then, for 

some point ξ of [a,b]  



    abfdxxf

b

a

 . 

Geometrical meaning of the theorem: let   0xf  ],[ bax , then there exists at least 

one point  ba, , that area of the curvilinear trapezoid, restricted above by the 

continuous curve  xfy   is equal to area of the rectangle with similar base and 

altitude, equal to  f  as presented in Figure. 

         y 
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10. General Mean Value Theorem. If the functions  xf  and  x  are 

continuous in [a,b], and  x  doesn’t change its sign in this interval, then 

        badxxfdxxxf

b

a

b

a

   

11. If the continuous function  xf ,  llx ,  is even, then 

    



ll

l

dxxfdxxf

0

2 . 

If the function  xf  - odd, then   0


l

l

dxxf . 

 1.2 The Newton–Leibniz formula. Calculation of definite integrals. 
 

Consider a Riemann integrable function f on [a,b]. Then, for any 𝑥 ∈  [𝑎, 𝑏], f 

is Riemann integrable on [a,x] also, so ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is a well-defined function of x. 

Theorem 5. If a function f is Riemann integrable on [a,b], then the function 

𝐹(𝑥)  = ∫ 𝑓 (𝑡)𝑑𝑡
𝑥

𝑎
  is differentiable at every point of continuity of f . Furthermore, 

𝐹′(𝑥0) = (∫ 𝑓 (𝑡)𝑑𝑡
𝑥

𝑎
)′ =  𝑓 (𝑥0) or dF(𝑥0) = 𝑑(∫ 𝑓 (𝑡)𝑑𝑡

𝑥

𝑎
) = 𝑓 (𝑥0)𝑑𝑥. (If 𝑥0 is 

either a or b, then 𝐹′(𝑥0) is to be understood as the appropriate one-sided derivative.) 



Corollary. Every function f which is continuous on [a,b] has an antiderivative 

on this interval. The function 𝐹(𝑥)  = ∫ 𝑓 (𝑡)𝑑𝑡
𝑥

𝑎
 is one of the antiderivatives. 

Theorem 6. (The Fundamental Theorem of Calculus). Let f be a continuous 

function defined on [a,b]. If F is any antiderivative of f on [a,b], then the following 

formula holds: 

       aFbF
a

b
xFdxxf

b

a

  

The formula is called the Newton-Leibnitz formula, it establishes relation 

between definite and indefinite integrals and allows calculus of definite integrals as 

the difference of values at high and low limits of integrating. 

 

Examples. 

1. Find the integral 
3

4

sin





dxx . 

Solution: ∫ sin 𝑥 𝑑𝑥 =  − cos 𝑥 + 𝐶, i.e. 
3

4

sin





dxx = −cos 𝑥|𝜋

4

𝜋

3 = − {cos
𝜋

3
−

cos
𝜋

4
}  = −

1

2
+

√3

2
.  

Remark. The definite integrals with variable upper (lower) bound can be used 

to define new functions that cannot be expressed in terms of finite combinations of the 

familiar elementary functions. 

Method of substitution in a definite integral. 

Let the function  xf  be continuous in the interval  ba, , and the function 

 tx   is monotone and has the continuous derivative in the interval [α,β], where 

  a  and   b , then the following formula concerning the change 

(substitution) of variable in a definite integral is valid: 

      




 dtttfdxxf

b

a

. 

While changing the integrating variable the values of the function  t  shouldn’t 

fall outside the limits of the interval [a,b] while t being changing in [α,β]. If the 

function  t  is monotone in the interval  [α,β], the mentioned condition is executed. 

Examples. 

1.  

a

dxxaI

0

22
 



Solution. Let tsinax  . Let’s define the new integrating limits for variable t. 

Let 0x , i.e. x is equal to low limit of integrating in the initial integral. Then in state 

of t can be accepted any solution of the equation 0ta sin , for example 0t . While 

calculating high limit for variable t in state of x we put high limit of integrating equal 

to a and solve the equation tsinaa  , from here we obtain 1tsin , 

znnt 


 ,2
2

, i.e. the equation has an infinite set of the solutions. Thus, taking 

the solution 
2


t  (at 0n ) while changing t from 0 to 

2


 we obtain the variable x 

will change monotone from 0 to a. Thus 

.
asinatsin

t
a

dt
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a

tdtcosatdtcosatsinaa

t,ax

t,x

tdtcosadx

,tsinax

I
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2. 




2

0

21

ln
x dxeI . 

Solution. The function xe21  is continuous and monotone in the interval [-

ln2,0]. Considering xet 21 , we find the integrating limits for variable t. At 0x  

we have 0t ; at 2lnx   we find 
2

3
11 422   lnln eet . It’s obvious 

the function inverse for t equal to 
 

2

1 2tln
x


  will be continuous and differentiable 

in the interval 
2

3
0  t . Then 
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3. While calculating the integral 





2

0
2 xcos

dx
I , using the substitution 

2
tan

x
t 

, we find low limit of integrating equal to 00tan t , high limit equal to 0tan  t

. Then  

 
  










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




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
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21

2
t

dt

t

t
t

dt
I , 

that is impossible, i.e. the integrand 0
2

1


 xcos
. The reason of this is that the 

function 
2

tan
x

 in the point x  20,  has a break and therefore doesn’t have the 

continuous derivative. The substitution 
2

tan
x

t   is inapplicable in the interval  20,

. The following integral can be calculated as follows. 
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 The formula of integrating in parts 

 

b

a

b

a

vdu
a

b
uvudv . 

Examples. 

1.  


3

0
1

dx
x

x
arcsinI . 
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