
2. Applications of the Definite Integral 
 

Here, we define the concepts of area, length, and volume: these geometric 

concepts are given by analytic definitions using the concept of the definite integral 

which we have developed earlier. 

 

2.1 Calculation of the Area by the Definite Integral 

 

In Introduction to Definite Integral, we developed the concept of the definite 

integral to calculate the area below a curve on a given interval. For this we used the 

area formula for a rectangle and find the area of an arbitrary polygonal figure. The 

reason is that any polygon can be divided into non-overlapping rectangles. This 

approach to area goes back several thousand years, to the ancient civilizations of Egypt 

and Sumeria. 

Figure shows what an approximation looks like graphically when we 

approximate the area under the curve 𝑦 =  𝑥2 from 𝑥 =  0 to 𝑥 =  3 with six 

subintervals. We evaluated the function at the midpoint of each subinterval. 

 
With 1000 subintervals, a summing procedure gives the area equal to 

8.99999775. The exact area can be computed as a defined integral, 
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In this lecture, we expand that idea to calculate the area of more complex 

regions. We start by finding the area between two curves that are functions of 𝑥, 

beginning with the simple case in which one function value is always greater than the 

other. We then look at cases when the graphs of the functions cross. Last, we consider 

how to calculate the area between two curves that are functions of 𝑦. 

 

2.1.1 Areas between Two Curves 

Just as definite integrals stated during the previous lecture can be used to find 

the area under a curve, they can also be used to find the area between two curves.  

Let 𝑓(𝑥) and 𝑔(𝑥) be continuous functions over an interval [𝑎, 𝑏] such that 



𝑓(𝑥) ≥ 𝑔(𝑥) on [𝑎, 𝑏]. We want to find the area between the graphs of the functions, 

as shown in Figure 1a, 

(a) (b) (c) 

Figure 1. The area between the graphs of two functions, 𝑓(𝑥) and 𝑔(𝑥), on the 

interval [𝑎, 𝑏] 

As we did before, we are going to partition the interval on the x-axis and 

approximate the area between the graphs of the functions with rectangles. So, for 𝑖 =
0,1,2, … , 𝑛, let 𝑃 = 𝑥𝑖 be a regular partition of [𝑎, 𝑏]. Then, for  𝑖 = 1,2, … , 𝑛,  choose

a point 𝑥𝑖
∗ ∈ [𝑥𝑖−1, 𝑥𝑖] , and on each interval [𝑥𝑖−1, 𝑥𝑖] construct a rectangle that

extends vertically from 𝑔(𝑥𝑖
∗) to 𝑓(𝑥𝑖

∗). Figure 1b shows the rectangles when 𝑥𝑖
∗ is

selected to be the left endpoint of the interval and 𝑛 = 10. Figure 1c shows a 

representative rectangle in detail. 

The height of each individual rectangle is 𝑓(𝑥𝑖
∗) − 𝑔(𝑥𝑖

∗) and the width of each

rectangle is 𝛥𝑥. Adding the areas of all the rectangles, we see that the area between the 

curves is approximated by 
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This is a Riemann sum, so we take the limit as  𝑛 → ∞ and we get that 
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These findings are summarized in the following rule: Let  𝑓(𝑥)  and  𝑔(𝑥)  be 

continuous functions such that  𝑓(𝑥) ≥ 𝑔(𝑥)  over an interval [ 𝑎, 𝑏] . Let 𝑅 denote 

the region bounded above by the graph of  𝑓(𝑥) , below by the graph of  𝑔(𝑥) , and on 

the left and right by the lines  𝑥 = 𝑎  and  𝑥 = 𝑏 , respectively. Then, the area of  𝑅  is 

given by 
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a
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Example 1. If  the region is bounded above by the graph of the function  𝑓(𝑥) =

𝑥 + 4  and below by the graph of the function  𝑔(𝑥) = 3 −
𝑥

2
  over the interval  [1,4] , 

find the area of the region. 

Solution: The region is depicted in the following figure. 



 
We have 

𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]
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Example 2. If the region is bounded above by the graph of the function  𝑓(𝑥) =

9 −
𝑥2

4
  and below by the graph of the function  𝑔(𝑥) = 6 − 𝑥 , find the area of the 

region. 

Solution: The region is depicted in the following figure. 

 

We first need to compute where the graphs of the functions intersect. Setting 𝑓(𝑥) =
𝑔(𝑥),  we get 

𝑓(𝑥) = 𝑔(𝑥), 𝑖. 𝑒.            9 − (
𝑥

2
)2  = 6 − 𝑥 → 



9 −
𝑥2

4
= 6 − 𝑥 → 36 − 𝑥2 = 24 − 4𝑥 → 𝑥2 − 4𝑥 − 12 = 0 

(𝑥 − 6)(𝑥 + 2) = 0. 
The graphs of the functions intersect when  𝑥 = 6  or  𝑥 = −2,  so we want to integrate 

from  −2  to  6 . Since  𝑓(𝑥) ≥ 𝑔(𝑥)  for  −2 ≤ 𝑥 ≤ 6,  we obtain 

𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]
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 2.1.2 Areas of Compound Regions 

 So far, we have required  𝑓(𝑥) ≥ 𝑔(𝑥)  over the entire interval of interest, but 

what if we want to look at regions bounded by the graphs of functions that cross one 

another? In that case, we modify the process we just developed by using the absolute 

value function. 

𝐴 = ∫ |
𝑏

𝑎

𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥. 

 In practice, applying this theorem requires us to break up the interval  [𝑎, 𝑏]  and 

evaluate several integrals, depending on which of the function values is greater over a 

given part of the interval. We study this process in the following example: 

 

Example 3. If the region between the graphs of the functions  𝑓(𝑥) = 𝑠𝑖𝑛𝑥  and 

𝑔(𝑥) = 𝑐𝑜𝑠𝑥 over the interval [0, 𝜋] exists, find the area of the region. 

Solution: The region is depicted in the following figure. 

 

The graphs of the functions intersect at 𝑥 = 𝜋/4. For 𝑥 ∈ [0, 𝜋/4], cos 𝑥 ≥ sin 𝑥, 
 

|𝑓(𝑥) − 𝑔(𝑥)| = |sin 𝑥 − cos 𝑥| = cos 𝑥 − sin 𝑥. 
On the other hand, for 



𝑥 ∈ [𝜋/4, 𝜋], sin 𝑥 ≥ cos 𝑥, so 

 

|𝑓(𝑥) − 𝑔(𝑥)| = |sin 𝑥 − cos 𝑥| = sin 𝑥 − cos 𝑥. 
Then, 

𝐴 = ∫ |
𝑏

𝑎

𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥

= ∫ |
𝜋

0

sin 𝑥 − cos 𝑥|𝑑𝑥 = ∫ (cos 𝑥 − sin 𝑥)
𝜋/4

0

𝑑𝑥 + ∫ (sin 𝑥 − cos 𝑥)
𝜋
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𝑑𝑥

= [sin 𝑥 + cos 𝑥]|0
𝜋/4

+ [−cos 𝑥 − sin 𝑥]|𝜋/4
𝜋

= (√2 − 1) + (1 + √2) = 2√2.

 

So, 𝐴 = 2√2, units2 

 

 Example 4. Consider the region depicted in Figure. Find the area of the region 

 

Solution: As with Example 3 , we need to divide the interval into two pieces. The 

graphs of the functions intersect at  𝑥 = 1  (set  𝑓(𝑥) = 𝑔(𝑥)  and solve for 𝑥), so we 

evaluate two separate integrals: one over the interval  [0,1]  and one over the interval  

[1,2]. 
Over the interval  [0,1] , the region is bounded above by  𝑓(𝑥) = 𝑥2  and below 

by the x-axis, so we have 

𝐴1 = ∫ 𝑥2
1
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3
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Over the interval  [1,2],  the region is bounded above by  𝑔(𝑥) = 2 − 𝑥  and below by 

the x-axis, so we have 

𝐴2 = ∫ (2 − 𝑥)
2

1

𝑑𝑥 = [2𝑥 −
𝑥2

2
] ∣1

2=
1

2
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Adding these areas together, we obtain 

𝐴 = 𝐴1 + 𝐴2 =
1

3
+

1

2
=

5

6
. 

The area of the region is  5/6 units2 



 2.1.3 Areas of Regions Defined with Respect to 𝒚 

In Example 4, we had to evaluate two separate integrals to calculate the area of the 

region. However, there is another approach that requires only one integral. What if we 

treat the curves as functions of  𝑦 , instead of as functions of  𝑥 ? 

Review Figure. Note that the left graph, shown in red, is represented by the 

function  𝑦 = 𝑓(𝑥) = 𝑥2 . We could just as easily solve this for 𝑥 and represent the 

curve by the function  𝑥 = 𝑣(𝑦) = √𝑦. (Note that  𝑥 = −√𝑦 is also a valid 

representation of the function = 𝑓(𝑥) = 𝑥2 as a function of  𝑦 . However, based on 

the graph, it is clear we are interested in the positive square root). Similarly, the right 

graph is represented by the function 𝑦 = 𝑔(𝑥) = 2 − 𝑥 , but could just as easily be 

represented by the function  𝑥 = 𝑢(𝑦) = 2 − 𝑦. When the graphs are represented as 

functions of  𝑦 , we see the region is bounded on the left by the graph of one function 

and on the right by the graph of the other function. Therefore, if we integrate with 

respect to 𝑦 , we need to evaluate one integral only. Let’s develop a formula for this 

type of integration:  

Let  𝑢(𝑦)  and  𝑣(𝑦)  be continuous functions over an interval  [𝑐, 𝑑]  such that 

𝑢(𝑦) ≥ 𝑣(𝑦)  for all  𝑦 ∈ [𝑐, 𝑑] . We want to find the area between the graphs of the 

functions, as shown in Figure  

 
This time, we are going to partition the interval on the y-axis and use horizontal 

rectangles to approximate the area between the functions. Therefore, the area between 

the curves can be found as a Riemann sum, so we take the limit as  𝑛 → ∞,  obtaining 

𝐴 = 𝑙𝑖𝑚
𝑛→∞

∑[𝑢(𝑦𝑖
∗) − 𝑣(𝑦𝑖

∗)]

𝑛

𝑖=1

𝛥𝑦 = ∫ [𝑢(𝑦) − 𝑣(𝑦)]
𝑑

𝑐

𝑑𝑦 

 These findings are summarized in the following rule: Let  𝑢(𝑦)  and  𝑣(𝑦)  be 

continuous functions such that  𝑢(𝑦) ≥ 𝑣(𝑦) for all  𝑦 ∈ [𝑐, 𝑑] . Let  R  denote the 

region bounded on the right by the graph of  𝑢(𝑦) , on the left by the graph of  𝑣(𝑦) , 

and above and below by the lines  𝑦 = 𝑑  and  𝑦 = 𝑐 , respectively. Then, the area of 

R  is given by 

𝐴 = ∫ [𝑢(𝑦) − 𝑣(𝑦)]
𝑑

𝑐

𝑑𝑦. 

 Example 5. Let’s revisit Example 4 , only this time let’s integrate with respect 

to  𝑦.  



Solution: We must first express the graphs as functions of y. As we saw at the 

beginning of this section, the curve on the left can be represented by the function  𝑥 =

𝑣(𝑦) = √𝑦 , and the curve on the right can be represented by the function 𝑥 = 𝑢(𝑦) =

2 − 𝑦. 

Now we have to determine the limits of integration. The region is bounded 

below by the x-axis, so the lower limit of integration is 𝑦 = 0. The upper limit of 

integration is determined by the point where the two graphs intersect, which is the 

point  (1,1) , so the upper limit of integration is  𝑦 = 1 . Thus, we have  [𝑐, 𝑑] = [0,1]. 
Calculating the area of the region, we get 

𝐴 = ∫ [𝑢(𝑦) − 𝑣(𝑦)]
𝑑

𝑐

𝑑𝑦 = 

∫ [(2 − 𝑦) − √𝑦]
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 2.1.4 Areas of Regions Bounded by Curves Defined with Respect to Parameter  

 

Suppose we have parametric equations for a curve, 

 

 







tyy

txx
, 𝑡 ∈  [𝑡1, 𝑡2 ],  (𝑥(𝑡1) =  𝑎, 𝑥(𝑡2 ) =  𝑏). 

Assume that those equations define a function 𝑦 =  𝑓 (𝑥) on [𝑎, 𝑏]. Then, by 

substituting 𝑥 = 𝑥(𝑡) in formula for defining an area of a function above the x-axis so 

that 𝑑𝑥 = 𝑥′(𝑡)𝑑𝑡, and 𝑦 =  𝑓 [𝑥(𝑡)]  = 𝑦(𝑡), we obtain  
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Example 6. Find area of the figure, restricted by the curves, given in parametric 

form: 
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6
 and  3232  yy . 

 Solution: Let’s find the point of intersection of the ellipse and the curve 

tsin432  ;  .cosxttsin 3
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6
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The figure represents a segment of the ellipse, given in parametric form. Due to the 

symmetry of the given figure we calculate half of the area 
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For the curvilinear trapezoid ODBC the 

parameter t is changing from 
3


 to 
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. As 

x decreases while t is changing in the 

mentioned interval we are to change the 

sign of the integral on the inverse. 
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Conclusion:   364363322 S . 

 

Example 7. Calculate area of the figure, restricted by the abscissa axis and arc 

of the cycloid 
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Example 8. Calculate area of the figure, restricted by a closed loop of the curve: 
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Solution: As  txx   is even, and  tyy   is odd, 

then  yxx   is even, and therefore the plot is symmetric 

concerning the axis ОX. 

  03 2  ytty , . 

At 001  xt . 9332  xt , . 

By virtue of the symmetry let’s calculate the areas and then 

double the result 
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 2.1.5 Areas of Regions Bounded by Curves Defined in Polar Coordinate 

System  

 

Notation: the polar coordinate system is a two-dimensional coordinate system 

in which each point on a plane is determined by a distance from a reference point and 

an angle from a reference direction. The reference point (analogous to the origin of a 

Cartesian coordinate system) is called the pole, and the ray from the pole in the 

reference direction is the polar axis. The distance from the pole is called the radial 

coordinate, radial distance or simply radius, and the angle is called the angular 

coordinate, polar angle, or azimuth. The radial coordinate is often denoted by r or ρ, 

and the angular coordinate by φ, θ, or t. Angles in polar notation are generally 

expressed in either degrees or radians (2π rad being equal to 360°). 

 

 

 
 

Converting between polar and Cartesian coordinates: The polar coordinates r 

and φ can be converted to the Cartesian coordinates 𝑥 and 𝑦 by using the trigonometric 

functions sine and cosine: 

cos 𝜃 =
𝑥

𝑟
→ 𝑥 = rcos 𝜃 

sin 𝜃 =
𝑦

𝑟
→ 𝑦 = rsin 𝜃 

𝑟2 = 𝑥2 + 𝑦2 

tan 𝜃 =
𝑦

𝑥
 

Suppose that the region R shown in Figure is bounded by the two radial lines 

𝜃 = 𝛼 and 𝜃 = 𝛽 and by the curve 𝜌 =  𝑓 (𝜃 ), 𝜃 ∈  [𝛼, 𝛽 ]. To approximate the area 



A of R, we begin with a partition 𝑇 =  {𝜃0, 𝜃1, . . . , 𝜃𝑛} of the interval [𝛼, 𝛽 ], 𝛼 =
𝜃0  < 𝜃1  < · · · < 𝜃𝑛  = 𝛽 . 

 
 Let 𝜉𝑖  ∈  [𝜃𝑖 , 𝜃𝑖+1] (𝑖 =  0, 1, . . . , 𝑛 − 1) be some selection of points for 𝑇, and 

𝛥𝜃𝑖  = 𝜃𝑖+1  − 𝜃𝑖. It is not hard to see that the area of the sector bounded by the lines 

𝜃 =  𝜃𝑖, 𝜃 = 𝜃𝑖+1 and the curve 𝜌 =  𝑓 (𝜃 ), is approximately equal to the area of the 

circular sector 1/2 [ 𝑓 (𝜉𝑖)]2𝛥𝜃𝑖 with radius 𝑓 (𝜉𝑖) and bounded by the same angle 

(Figure). 

We add the areas of these sectors for 𝑖 =  0, 1, . . . , 𝑛 − 1, and thereby find that 

𝐴 ≈
1

2
∑[ 𝑓 (𝜉𝑖)]2

𝑛−1

𝑖=0

𝛥𝜃𝑖 

This sum is a Riemann sum for the integral 
1

2
∫ 𝑓2(𝜃)

𝛽

 𝛼
𝑑𝜃.  

We conclude that the area A of the region R bounded by lines 𝜃 = 𝛼 and 𝜃 = 𝛽 

and by the curve 𝜌 =  𝑓 (𝜃), 𝜃 ∈  [𝛼, 𝛽 ], is the limit of the sum as the step μ(T)→0, 

that is 

lim
𝜇(𝑇)→0

1

2
∑[ 𝑓 (𝜉𝑖)]2𝛥𝜃𝑖

𝑛−1

𝑖=0

  =
1

2
∫ 𝑓2(𝜃)

𝛽

𝛼

𝑑𝜃 

Thus, the area of the figure, given in the polar coordinates   ,  and the 

curve    , is calculated as follows: 

 




 dA 2
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1
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 In the case of two curves 𝜌1  = 𝑓1(𝜃) and 𝜌2 = 𝑓2(𝜃) ( 𝑓1(𝜃) ≥  𝑓2(𝜃)) for 

𝜃 ∈  [𝛼, 𝛽 ]. Then the area of the region bounded by these two curves and the rays 

𝜃 =  𝛼 and 𝜃 =  𝛽 may be subtracting the area bounded by the inner curve from that 

bounded by the outer curve. That is, the area between the curves is given by 
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Example 9. Calculate area of the figure, restricted by the cardioid 

)cos(  1a . 

Solution: Area in polar coordinates is calculated according to the formula: 
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By virtue of the symmetry we obtain: 
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Example 10. Find area of the figure, restricted by the curve  32 cosar  lying 

outside the circle ar  . 

Solution:  32 cosar  is a three-lamellar rose, i.e. 

 030 cosr  
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There are 3 lobes with axes 
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By virtue of the symmetry calculate 
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 part of the 

necessary area. Let’s find the points of 

intersections of the curves 
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according to the formula 
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 Two additional examples. 

 Example 11. Calculate area of the figure, restricted by the circle 1622  yx  

and parabola  1122  yx . 

Solution: Let’s find the points of intersections of the given curves:  
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141 y  is unsuitable as 0y . 

32122
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The given curves form two figures. 

Let’s find area 
1

A , then 
2

A  can be 

calculated as a difference between areas of 

the circle and 
1

A . 
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Then, 

𝐴2 = 16𝜋 − 
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3
− 2√3. 

Example 12.  Calculate area A  of the figure, restricted by the curves 
22 xy   and 32 xy  . 
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Solution. Let’s solve the set of equations 
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, and find the limits of integrating 

11 x  and 12 x . Due to the formula 
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