
2. Applications of the Definite Integral 
 

In the preceding lecture, we used definite integrals to find the area between two 

curves. In this section, we use definite integrals to find volumes of three-dimensional 

solids. We consider an approach—slicing—for finding these volumes. 

 

2.2 Volume and the Slicing Method (the Method of Cross Sections) 

 

Just as area is the numerical measure of a two-dimensional region, volume is the 

numerical measure of a three-dimensional solid. Most of us have computed volumes 

of solids by using basic geometric formulas: 

𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4

3
𝜋𝑟3, 

𝑉𝑐𝑜𝑛𝑒 =
1

3
𝜋𝑟2ℎ, 

𝑉𝑝𝑦𝑟𝑎𝑚𝑖𝑑 =
1

3
𝐴ℎ 

These formulas were derived using geometry alone, all these formulas can be 

obtained by using integration. Let’s calculate the volume of a cylinder:  

 

We define the cross-section of a solid to be the intersection of a plane with the 

solid. A cylinder is defined as any solid that can be generated by translating a plane 

region along a line perpendicular to the region, called the axis of the cylinder. Thus, 

all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown 

in Figure 1 is an example of a cylinder with a noncircular base. To calculate the volume 

of a cylinder, then, we simply multiply the area of the cross-section by the height of 

the cylinder:  

𝑉 = 𝐴 ⋅ ℎ ⟹  𝑉 =
𝜋𝑟2

2
ℎ. 

 
 



If a solid does not have a constant cross-section (and it is not one of the other 

basic solids), we may not have a formula for its volume. In this case, we can use a 

definite integral to calculate the volume of the solid. We do this by slicing the solid 

into pieces, estimating the volume of each slice, and then adding those estimated 

volumes together. The slices (cross-sections) should all be parallel to one another, and 

when we put all the slices together, we should get the whole solid. Consider, for 

example, the solid S shown in Figure 2 , extending along the x -axis. 

 

 
 

Notation: We want to divide S into slices perpendicular to the x -axis. There may 

be times when we want to slice the solid in some other direction—say, with slices 

perpendicular to the y -axis. The decision of which way to slice the solid is very 

important. If we make the wrong choice, the computations can get quite messy. 

 

For the purposes of this section, however, we use slices perpendicular to the x -

axis. Because the cross-sectional area is not constant, we let 𝐴(𝑥)  represent the area 

of the cross-section at point x. Now let 𝑃 = 𝑥0, 𝑥1 … , 𝑋𝑛   be a regular partition of  

[𝑎, 𝑏] , and for  𝑖 = 1,2, … 𝑛 , let  Si  represent the slice of  S  stretching from  xi−1  to  

xi . The following figure shows the sliced solid with 𝑛 = 3 . 

 

 
 



Finally, for 𝑖 = 1,2, … 𝑛, let 𝑥𝑖
∗ be an arbitrary point in [𝑥𝑖−1, 𝑥𝑖]. Then the 

volume of slice Si can be estimated by 𝑉(𝑆𝑖) ≈ 𝐴(𝑥𝑖
∗)𝛥𝑥. Adding these approximations 

together, we see the volume of the entire solid S  can be approximated by 

𝑉(𝑆) ≈ ∑ 𝐴(𝑥𝑖
∗)𝛥𝑥

𝑛

𝑖=1

. 

By now, we can recognize this as a Riemann sum, and our next step is to take 

the limit as  𝑛 → ∞.  Then we have 

𝑉(𝑆) = 𝑙𝑖𝑚
𝑛→∞

∑ 𝐴(𝑥𝑖
∗)𝛥𝑥

𝑛

𝑖=1

= ∫ 𝐴(𝑥)𝑑𝑥
𝑏

𝑎

. 

 

Example 1: deriving the formula for the volume of a pyramid. We know from 

geometry that the formula for the volume of a pyramid is 𝑉 =
1

3
𝐴ℎ. If the pyramid has 

a square base, this becomes 𝑉 =
1

3
𝑎2ℎ , where a denotes the length of one side of the 

base. We are going to use the slicing method to derive this formula. 

Solution: 

Let’s apply the slicing method to a pyramid with a square base. To set up the 

integral, consider the pyramid shown in Figure 3, oriented along the  x –axis: 

 

 
 

First, we need to determine the shape of a cross-section of the pyramid. We 

know the base is a square, so the cross-sections are squares as well. Now we can 

determine a formula for the area of one of these cross-sectional squares. Looking at 

Figure 3 (b), and using a proportion, since these are similar triangles, we have 

𝑠

𝑎
=

𝑥

ℎ
  or 𝑠 =

𝑎𝑥

ℎ
. 

Therefore, since the area of one of the cross-sectional squares is 

𝐴(𝑥) = 𝑠2 = (
𝑎𝑥

ℎ
)2, then we find the volume of the pyramid by integrating from 0 to 

h 

𝑉 = ∫ 𝐴(𝑥)
ℎ

0

𝑑𝑥 = ∫ (
𝑎𝑥

ℎ
)2

ℎ

0

𝑑𝑥 =
𝑎2

ℎ2
∫ 𝑥2

ℎ

0

𝑑𝑥 = [
𝑎2

ℎ2
(
1

3
𝑥3)]|0

ℎ =
1

3
𝑎2ℎ. 



2.3 Solids of Revolution 

 

If a region in a plane is revolved around a line in that plane, the resulting solid 

is called a solid of revolution, as shown in the following Figure: 

 

 
 

2.3.1 The Disk Method 

The slicing method can be used to calculate the volume of a solid of revolution. 

When we use the slicing method with solids of revolution, it is often called the disk 

method because, for solids of revolution, the slices used to over approximate the 

volume of the solid are disks.  

To see this, consider the solid of revolution generated by revolving the region 

between the graph of the function  𝑓(𝑥) = (𝑥 − 1)2 + 1   and the  x -axis over the 



interval  [−1,3]  around the  x -axis. The graph of the function and a representative disk 

are shown in Figure 4 (a) and (b). The region of revolution and the resulting solid are 

shown in Figure 4 (c) and (d): 

 

 
 

We already used the formal Riemann sum development of the volume formula 

when we developed the slicing method. We know that ∫ 𝐴(𝑥)
𝑏

𝑎
𝑑𝑥. The only difference 

with the disk method is that we know the formula for the cross-sectional area ahead of 

time; it is the area of a circle. This gives the following rule:  

Let  𝑓(𝑥)  be continuous and nonnegative. Define  R  as the region bounded 

above by the graph of  𝑓(𝑥) , below by the  x -axis, on the left by the line  𝑥 = 𝑎 , and 

on the right by the line  𝑥 = 𝑏 . Then, the volume of the solid of revolution formed by 

revolving  R  around the  x -axis is given by 

𝑉𝑂𝑥 = ∫ 𝜋
𝑏

𝑎

[𝑓(𝑥)]2𝑑𝑥. 

Example 2. The volume of the solid we have been studying (Figure 4) is given 



by 

𝑉 = ∫ 𝜋
𝑏

𝑎

[𝑓(𝑥)]2𝑑𝑥

= ∫ 𝜋
3

−1

[(𝑥 − 1)2 + 1]2𝑑𝑥 = 𝜋 ∫ [
3

−1

(𝑥 − 1)4 + 2(𝑥 − 1)2 + 1]2𝑑𝑥

= 𝜋[
1

5
(𝑥 − 1)5 +

2

3
(𝑥 − 1)3 + 𝑥]|−1

3

= 𝜋[(
32

5
+

16

3
+ 3) − (−

32

5
−

16

3
− 1)] =

412𝜋

15
units

3

 

 

So far, our examples have all concerned regions revolved around the x -axis, but 

we can generate a solid of revolution by revolving a plane region around any horizontal 

or vertical line. In the next example, we look at a solid of revolution that has been 

generated by revolving a region around the y -axis. The mechanics of the disk method 

are nearly the same as when the x -axis is the axis of revolution, but we express the 

function in terms of  y  and we integrate with respect to y as well. This is summarized 

in the following rule: 

Let  𝑔(𝑦)  be continuous and nonnegative. Define  Q  as the region bounded on 

the right by the graph of  𝑔(𝑦) , on the left by the  y -axis, below by the line  𝑦 = 𝑐 , 

and above by the line  𝑦 = 𝑑 . Then, the volume of the solid of revolution formed by 

revolving  Q  around the  y -axis is given by 

𝑉𝑜𝑦 = ∫ 𝜋
𝑑

𝑐

[𝑔(𝑦)]2𝑑𝑦. 

 

Example 3. Let  R  be the region bounded by the graph of  𝑔(𝑦) = √4 − 𝑦 and 

the  y-axis over the  y-axis interval  [0,4] . Use the disk method to find the volume of 

the solid of revolution generated by rotating R  around the  y -axis. 

Solution:  

Figure 5 shows the function and a representative disk that can be used to estimate 

the volume. Notice that since we are revolving the function around the y -axis, the 

disks are horizontal, rather than vertical. 

To find the volume, we integrate with respect to  y . We obtain 

𝑉 = ∫ 𝜋
𝑑

𝑐

[𝑔(𝑦)]2𝑑𝑦 = ∫ 𝜋
4

0

[√4 − 𝑦]2𝑑𝑦 = 𝜋 ∫ (4 − 𝑦)
4

0

𝑑𝑦 = 𝜋[4𝑦 −
𝑦2

2
]|0

4 = 8𝜋. 



 
 

2.3.2 The Washer Method 

Some solids of revolution have cavities in the middle; they are not solid all the 

way to the axis of revolution. Sometimes, this is just a result of the way the region of 

revolution is shaped with respect to the axis of revolution. In other cases, cavities arise 

when the region of revolution is defined as the region between the graphs of two 

functions. A third way this can happen is when an axis of revolution other than the  x 

-axis or  y -axis is selected. 

When the solid of revolution has a cavity in the middle, the slices used to 

approximate the volume are not disks, but washers (disks with holes in the center). For 

example, consider the region bounded above by the graph of the function  𝑓(𝑥) = √𝑥 

and below by the graph of the function  𝑔(𝑥) = 1  over the interval  [1,4] . When this 

region is revolved around the  x -axis, the result is a solid with a cavity in the middle, 

and the slices are washers. The graph of the function and a representative washer are 

shown in Figure  6 (a) and (b). The region of revolution and the resulting solid are 

shown in Figure  6 (c) and (d). 

 

 
(a) (b) 



 

 
 

The cross-sectional area, then, is the area of the outer circle less the area of the 

inner circle. In this case,  

𝐴(𝑥) = 𝜋(√𝑥)2 − 𝜋(1)2 = 𝜋(𝑥 − 1). 
Then the volume of the solid is 

𝑉 = ∫ 𝐴(𝑥)
𝑏

𝑎

𝑑𝑥 = ∫ 𝜋
4

1

(𝑥 − 1)𝑑𝑥 = 𝜋[
𝑥2

2
− 𝑥]|1

4 =
9

2
𝜋 units

3. 

 

Generalizing this process gives the Washer Method:  

Suppose 𝑓(𝑥) and 𝑔(𝑥) are continuous, nonnegative functions such that 𝑓(𝑥) ≥
𝑔(𝑥) over [𝑎, 𝑏]. Let R denote the region bounded above by the graph of 𝑓(𝑥), below 

by the graph of 𝑔(𝑥), on the left by the line 𝑥 = 𝑎, and on the right by the line 𝑥 = 𝑏. 

Then, the volume of the solid of revolution formed by revolving R around the x-axis is 

given by 

𝑉𝑂𝑥 = ∫ 𝜋
𝑏

𝑎

[(𝑓(𝑥))2 − (𝑔(𝑥))2]𝑑𝑥. 

 

As with the disk method, we can also apply the washer method to solids of 

revolution that result from revolving a region around the y -axis. In this case, the 

following rule applies. 

Suppose 𝑢(𝑦)  and 𝑣(𝑦) are continuous, nonnegative functions such that  

𝑣(𝑦) ≤ 𝑢(𝑦) for 𝑦 ∈ [𝑐, 𝑑]. Let Q denote the region bounded on the right by the graph 

of 𝑢(𝑦) , on the left by the graph of  𝑣(𝑦) , below by the line 𝑦 = 𝑐 , and above by the 

line 𝑦 = 𝑑. Then, the volume of the solid of revolution formed by revolving Q around 

the y -axis is given by 



𝑉𝑂𝑦 = ∫ 𝜋
𝑑

𝑐

[(𝑢(𝑦))2 − (𝑣(𝑦))2]𝑑𝑦. 

 

 Example 4. Find the volume of a solid of revolution formed by revolving the 

region bounded above by the graph of  𝑓(𝑥) = 𝑥  and below by the graph of  𝑔(𝑥) =
1

𝑥
 

over the interval  [1,4]  around the  x -axis. 

Solution: 

The graphs of the functions and the solid of revolution are shown in the 

following figure. 

 
 Then, we have 

𝑉 = ∫ 𝜋
𝑏

𝑎

[(𝑓(𝑥))2 − (𝑔(𝑥))2]𝑑𝑥 = 𝜋 ∫ [𝑥2 − (
1

𝑥
)2]

4

1

𝑑𝑥

= 𝜋[
𝑥3

3
+

1

𝑥
]|1

4 =
81𝜋

4
units

3.
 

 

 Example 5. Find the volume of a solid of revolution formed by revolving the 

region bounded above by  𝑓(𝑥) = 4 − 𝑥  and below by the  x -axis over the interval  

[0,4]  around the line  𝑦 = −2.  

Solution:  

The graph of the region and the solid of revolution are shown in the following 

figure. 

We can’t apply the volume formula to this problem directly because the axis of 

revolution is not one of the coordinate axes. However, we still know that the area of 

the cross-section is the area of the outer circle less the area of the inner circle. Looking 

at the graph of the function, we see the radius of the outer circle is given by  𝑓(𝑥) + 2,  

which simplifies to  

𝑓(𝑥) + 2 = (4 − 𝑥) + 2 = 6 − 𝑥. 
The radius of the inner circle is g(x)=2.  Therefore, we have 



 
 

𝑉 = ∫ 𝜋
4

0

[(6 − 𝑥)2 − (2)2]𝑑𝑥

= 𝜋 ∫ (𝑥2 − 12𝑥 + 32)
4

0

𝑑𝑥 = 𝜋[
𝑥3

3
− 6𝑥2 + 32𝑥]|0

4 =
160𝜋

3
units

3.
 

 

2.3.3 The Method of Cylindrical Shells 

 

In this section, we examine the method of cylindrical shells, the final method for 

finding the volume of a solid of revolution. We can use this method on the same kinds 

of solids as the disk method or the washer method; however, with the disk and washer 

methods, we integrate along the coordinate axis parallel to the axis of revolution. With 

the method of cylindrical shells, we integrate along the coordinate axis perpendicular 

to the axis of revolution. 

As before, we define a region R , bounded above by the graph of a function 𝑦 =
𝑓(𝑥), below by the x-axis, and on the left and right by the lines 𝑥 = 𝑎 and 𝑥 = 𝑏 , 

respectively, as shown in Figure 7a. We then revolve this region around the y -axis, as 

shown in Figure 7c. Note that this is different from what we have done before. 

Previously, regions defined in terms of functions of x were revolved around the x-axis 

or a line parallel to it. 

As we have done many times before, partition the interval [𝑎, 𝑏] using a regular 

partition, 𝑃 = 𝑥0, 𝑥1, … , 𝑥𝑛 and, for 𝑖 = 1,2, … , 𝑛, choose a point 𝑥𝑖
∗ ∈ [𝑥𝑖−1, 𝑥𝑖]. Then, 

construct a rectangle over the interval [𝑥𝑖−1, 𝑥𝑖] of height 𝑓(𝑥𝑖
∗) and width 𝛥𝑥. A 

representative rectangle is shown in Figure 7c. When that rectangle is revolved around 

the y-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in Fig. 7b. 



 
 

To calculate the volume of this shell, consider Figure 7d. 

 
 

Then the volume of the shell is 

𝑉𝑠ℎ𝑒𝑙𝑙 = 𝑓(𝑥𝑖
∗)(𝜋𝑥𝑖

2 − 𝜋𝑥𝑖−1
2 ) = 𝜋𝑓(𝑥𝑖

∗)(𝑥𝑖
2 − 𝑥𝑖−1

2 ) 

= 𝜋𝑓(𝑥𝑖
∗)(𝑥𝑖 + 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖−1) = 2𝜋𝑓(𝑥𝑖

∗)(
𝑥𝑖 + 𝑥𝑖−1

2
)(𝑥𝑖 − 𝑥𝑖−1). 

Here, 
𝑥𝑖+𝑥𝑖−1

2
 is both the midpoint of the interval [𝑥𝑖−1, 𝑥𝑖] and the average radius 

of the shell, and we can approximate this by 𝑥𝑖
∗ . We then have 

𝑉𝑠ℎ𝑒𝑙𝑙 ≈ 2𝜋𝑓(𝑥𝑖
∗)𝑥𝑖

∗𝛥𝑥. 

To calculate the volume of the entire solid, we then add the volumes of all the 

shells and obtain 

𝑉 ≈ ∑(2𝜋𝑥𝑖
∗𝑓(𝑥𝑖

∗)

𝑛

𝑖=1

𝛥𝑥). 



Here we have another Riemann sum, this time for the function 2𝜋𝑥𝑓(𝑥). Taking 

the limit as  𝑛 → ∞  gives us 

𝑉 = 𝑙𝑖𝑚
𝑛→∞

∑(2𝜋𝑥𝑖
∗𝑓(𝑥𝑖

∗)

𝑛

𝑖=1

𝛥𝑥) = ∫ (2𝜋𝑥𝑓(𝑥))
𝑏

𝑎

𝑑𝑥. 

This leads to the following rule for the method of cylindrical shells. 

Let  𝑓(𝑥)  be continuous and nonnegative. Define  R  as the region bounded 

above by the graph of  f(x) , below by the  x -axis, on the left by the line  x=a , and on 

the right by the line  x=b . Then the volume of the solid of revolution formed by 

revolving  R  around the  y -axis is given by 

𝑉𝑂𝑦 = ∫ (2𝜋𝑥𝑓(𝑥))
𝑏

𝑎

𝑑𝑥. 

 

Example 6. Define  R  as the region bounded above by the graph of  𝑓(𝑥) =
1

𝑥
 

and below by the  x -axis over the interval  [1,3]. Find the volume of the solid of 

revolution formed by revolving R  around the  y -axis. 

Solution 

First we must graph the region  R  and the associated solid of revolution, as 

shown in Figure 8.  

 

 
Then the volume of the solid is given by 

𝑉 = ∫ (2𝜋𝑥𝑓(𝑥))
𝑏

𝑎

𝑑𝑥 = ∫ (2𝜋𝑥 (
1

𝑥
))

3

1

𝑑𝑥 = ∫ 2𝜋
3

1

𝑑𝑥 = 2𝜋𝑥|1
3 = 4𝜋 units

3. 

 

As with the disk method and the washer method, we can use the method of 

cylindrical shells with solids of revolution, revolved around the  x -axis, when we want 

to integrate with respect to  y . The analogous rule for this type of solid is given here. 



Let  𝑔(𝑦)  be continuous and nonnegative. Define  Q  as the region bounded 

on the right by the graph of  𝑔(𝑦) , on the left by the  y -axis, below by the line  𝑦 =
𝑐 , and above by the line  𝑦 = 𝑑 . Then, the volume of the solid of revolution formed 

by revolving  Q  around the  x-axis is given by 

𝑉𝑂𝑥 = ∫ (2𝜋𝑦𝑔(𝑦))
𝑑

𝑐

𝑑𝑦. 

 

Example 7. Define  Q  as the region bounded on the right by the graph of  

𝑔(𝑦) = 2√𝑦  and on the left by the  y -axis for  𝑦 ∈ [0,4] . Find the volume of the solid 

of revolution formed by revolving  Q  around the  x -axis. 

Solution 

First, we need to graph the region  Q  and the associated solid of revolution, as 

shown in Figure 8. 

 

 

Then the volume of the solid is given by 

𝑉 = ∫ (2𝜋𝑦𝑔(𝑦))
𝑑

𝑐

𝑑𝑦 = ∫ (2𝜋𝑦(2√𝑦))
4

0

𝑑𝑦 = 4𝜋 ∫ 𝑦3/2
4

0

𝑑𝑦 

= 4𝜋[
2𝑦5/2

5
] ∣0

4=
256𝜋

5
units

3
 

 

Note that the axis of revolution is the y -axis, so the radius of a shell is given 

simply by x. We don’t need to make any adjustments to the x-term of our integrand. 



The height of a shell, though, is given by 𝑓(𝑥) − 𝑔(𝑥), so in this case we need to adjust 

the 𝑓(𝑥) term of the integrand. Then the volume of the solid is given by 

𝑉 = ∫ (2𝜋𝑥(𝑓(𝑥) − 𝑔(𝑥)))
4

1

𝑑𝑥 

 

Example 8. Define  R  as the region bounded above by the graph of the function  

𝑓(𝑥) = √𝑥 and below by the graph of the function  𝑔(𝑥) =
1

𝑥
 over the interval [1,4]. 

Find the volume of the solid of revolution generated by revolving R around the  y-axis. 

Solution: 

First, graph the region R and the associated solid of revolution, as shown in 

Figure 9. 

 

Then the volume of the solid is given by 

𝑉 = ∫ (2𝜋𝑥 (√𝑥 −
1

𝑥
))

4

1

𝑑𝑥 = 2𝜋 ∫ (𝑥3/2 − 1)
4

1

𝑑𝑥 

= 2𝜋[
2𝑥5/2

5
− 𝑥]|1

4 =
94𝜋

5
units

3. 

 


