3. Improper Integrals

We extend the concept of the definite integral f; f (x)dx to improper integrals.

There are two types of improper integrals:

1. The limit a or b (or both the limits) are infinite;

2. The function f(x) has one or more points of discontinuity in the interval
[a, b].

3.1 Integration over an Infinite Domain

Let f(x) be a continuous function on the interval [a, ). We define the
improper integral as [~ f (x)dx.
In order to integrate over the infinite domain [a,o0), we consider the limit of the

form

foof(x)dx = ii_fgoff(x)dx.
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Similarly, if a continuous function f(x) is given on the interval (—oo, b], the

improper integral of f(x) is defined as
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If these limits exist and are finite then we say that the improper integrals are
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convergent. Otherwise the integrals are divergent.
An improper integral might have two infinite limits. In this case, we can pick an
arbitrary point c and break the integral up there. As a result, we obtain two improper

integrals, each with one infinite limit:

ff(@dx: ff(x)dx+jof(x)dx.
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If, for some real number c, both of the integrals in the right-hand side are
convergent, then we say that the integral ffooo f (x)dx is also convergent; otherwise it

Is divergent.
Comparison Tests

Let f(x) and g(x) be continuous functions on the interval [a, o). Suppose that
0 < g(x) < f(x)orall x inthe interval [a, o).
1. If [ f(x)dx is convergent, then [~ g(x)dx is also convergent;
2. If fa°° g(x)dx is divergent, then f:’ f(x)dx is also divergent;
3. If [ |f(x)|dx is convergent, then [ f(x)dx is also convergent. In this
case, we say that the integral fa°° f(x)dx is absolutely convergent.

It is often convenient to make comparisons with improper integrals of the form:
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where p > 0 is a real number.
The integral f z—; converges if p > 1, and diverges if p < 1. If p = 1, then
1

the integral also diverges:
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3.2 Improper Integrals with Infinite Discontinuities

This type of improper integrals refers to integrands that are undefined at one or
more points of the domain of integration [a, b].
Let f(x) be a function which is continuous on the interval [a,b), but is

discontinuous at x = b. We define the improper integral as

b b—¢
ff(x)dx=gl_i)ror}+f f(x)dx.
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Similarly we can consider the case when the function f(x) is continuous on the

interval (a, b], but is discontinuous at x = a. Then

e-0+
a+te

b b
[ reoax = tim [ reoa

If these limits exist and are finite then we say that the integrals are convergent;



otherwise the integrals are divergent.

Finally, if the function f(x) is continuous on [a,c) U (c, b] with an infinite

discontinuity at x = c, then we define the improper integral as

ff(x)dxz ff(x)dx+fbf(x)dx,
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We say that the integral f(f f (x)dx is convergent if both of the integrals in the

right side are also convergent. Otherwise the improper integral is divergent.

Solved Problems

x2+1

Example 1. Calculate the integral j ax
1
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f @ __ j Y _ limfarctanx]? = lim [arct tan1] =
2yl dm | = im [arctan x]|{ = lim[arctann — arctan 1] =
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Hence, the integral converges.
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Example 2. Calculate the integral jo e
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The given integral converges.
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Example 3. Calculate the integral j

The original integral has two infinite limits. Therefore we split it into two

integrals and evaluate each as a one-sided improper integral:
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I_fdx_jdx +f dx L+
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Calculate each integral:
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Hence,

I=11+12=
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We see that the integral converges.

Example 4. Determine whether the integral J

[0 0]
1 . . .
== for all values x > 1. Since the improper integral j — s
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convergent then the given integral is also convergent by Comparison Test 1.

Example 5. Determine whether the integral j

We can write the obvious inequality for the absolute values:

sin x
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It’s easy to show that the integral f | \/% | dx converges. Indeed
1

1
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Then we conclude that the integral f |22X) dx also converges by Comparison
1
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Test 1.
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Example 6. Calculate the integralf =
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There is a discontinuity at x = 0, so that we must consider two improper

integrals:
2 0 2
dx dx dx
P Bl ey
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Using the definition of improper integral, we obtain
0 2 —-£ 2
dx dx dx dx
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For the first integral,
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Since it is divergent, the initial integral also diverges.

Example 7. Determine whether the improper integral j > dzx —5 converges or

diverges?

We can write this integral as
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. j dx B j dx N j‘ dx
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— 00 —00 0
By the definition of an improper integral, we have
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As both the limits exist and are finite, the given integral converges.
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Example 8. Determine whether the integral j converges or diverges?
0

There is a discontinuity in the integrand at x = 2, so that we must consider two

4 2 4
dx dx dx
0j(ac—2)3 =Of<x—2)3+2f<x—2)3'

Using the definition of an improper integral, we obtain

improper integrals:
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For the first integral,
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As it is divergent, the given integral j is also divergent.
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Example 9. Find the area above the curve y = [nx in the lower half-plane
between x = 0 and x = 1.

The given region is sketched in Figure
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Since it is infinite, we calculate the improper integral to find the area:
1

1
jlnxdx = lim | Inxdx.
0
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Use integration by parts. Let u = Inx, dv = dx. Then du = % v =X.

Thus
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We can apply L Hopital’s rule to find the limit:
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Hence, the improper integral is
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As you can see from the figure above, the required area is
1

A=|lim | Inxdx |
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Example 10. Find the circumference of the unit circle.
We calculate the length of the arc of the circle in the first quadrant between x = 0 and
x = 1 and then multiply the result by 4. The equation of the circle centered at the origin
IS

x?+y%=1.
Then the arc of the circle in the first quadrant (Figure) is described by the function

y=41—-x%2,0<x<1.
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Find the derivative of the function:
d —2x —X
= — 1 —_ xZ = =
dx 2V1—x2 VJ1-—=x2
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Since the length of an arc is given by f;:f Vv 1+ (y)?dx, we obtain
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Now we calculate the improper integralj0 \/%:
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f i = lim ax = lim (arcsinx)|5 ¢
; \/TXZ <s—>0+0 m -0+

[
= lim [arcsin(1l — ¢) —arcsin 0] = arcsin1 — 0 = —.
e—>0+ 2

Thus, the circumference of the unit circle is % -4



