
3. Improper Integrals 
 

We extend the concept of the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 to improper integrals. 

 There are two types of improper integrals: 

1. The limit a or b (or both the limits) are infinite; 

2. The function 𝑓(𝑥) has one or more points of discontinuity in the interval 

[𝑎, 𝑏]. 

3.1 Integration over an Infinite Domain 

Let 𝑓(𝑥) be a continuous function on the interval [𝑎, ∞). We define the 

improper integral as ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
.  

In order to integrate over the infinite domain [a,∞), we consider the limit of the 

form 

∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎

= 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓(𝑥)𝑑𝑥

𝑛

𝑎

. 

 

   (a)      (b) 

Similarly, if a continuous function 𝑓(𝑥) is given on the interval (−∞, 𝑏], the 

improper integral of 𝑓(𝑥) is defined as 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

−∞

= 𝑙𝑖𝑚
𝑛→−∞

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑛

. 

If these limits exist and are finite then we say that the improper integrals are 
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convergent. Otherwise the integrals are divergent. 

An improper integral might have two infinite limits. In this case, we can pick an 

arbitrary point c and break the integral up there. As a result, we obtain two improper 

integrals, each with one infinite limit: 

∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

−∞

+ ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑐

. 

 

If, for some real number c, both of the integrals in the right-hand side are 

convergent, then we say that the integral ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
 is also convergent; otherwise it 

is divergent. 

Comparison Tests 

Let 𝑓(𝑥) and 𝑔(𝑥) be continuous functions on the interval [𝑎, ∞). Suppose that 

0 ≤ 𝑔(𝑥) ≤ 𝑓(𝑥) or all x  in the interval [𝑎, ∞). 

1. If ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 is convergent, then ∫ 𝑔(𝑥)𝑑𝑥

∞

𝑎
 is also convergent; 

2. If ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 is divergent, then  ∫ 𝑓(𝑥)𝑑𝑥

∞
𝑎  is also divergent; 

3. If ∫ |𝑓(𝑥)|𝑑𝑥
∞

𝑎
 is convergent, then ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎
 is also convergent. In this 

case, we say that the integral  ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎  is absolutely convergent. 

It is often convenient to make comparisons with improper integrals of the form: 

∫
𝑑𝑥

𝑥𝑝
,

∞

1

 



where 𝑝 > 0 is a real number. 

 The integral ∫
𝑑𝑥

𝑥𝑝

∞

1

 converges if 𝑝 > 1, and diverges if 𝑝 < 1. If 𝑝 = 1, then 

the integral also diverges: 

𝑙𝑖𝑚
𝑛→∞

∫
𝑑𝑥

𝑥𝑝

𝑛

1

= 𝑙𝑖𝑚
𝑛→∞

∫
𝑑𝑥

𝑥

𝑛

1

= 𝑙𝑖𝑚
𝑛→∞

ln 𝑥 |1
𝑛 = ∞. 

3.2 Improper Integrals with Infinite Discontinuities 

This type of improper integrals refers to integrands that are undefined at one or 

more points of the domain of integration [𝑎, 𝑏]. 

Let 𝑓(𝑥) be a function which is continuous on the interval [𝑎, 𝑏), but is 

discontinuous at 𝑥 = 𝑏. We define the improper integral as 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑙𝑖𝑚
𝜀→0+

∫ 𝑓(𝑥)𝑑𝑥

𝑏−𝜀

𝑎

. 

  

  (a)       (b) 

Similarly we can consider the case when the function 𝑓(𝑥) is continuous on the 

interval (𝑎, 𝑏], but is discontinuous at 𝑥 = 𝑎. Then 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑙𝑖𝑚
𝜀→0+

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎+𝜀

. 

If these limits exist and are finite then we say that the integrals are convergent; 



otherwise the integrals are divergent. 

Finally, if the function 𝑓(𝑥) is continuous on [𝑎, 𝑐) ∪ (𝑐, 𝑏] with an infinite 

discontinuity at 𝑥 = 𝑐, then we define the improper integral as 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐

, 

 

We say that the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is convergent if both of the integrals in the 

right side are also convergent. Otherwise the improper integral is divergent. 

Solved Problems 

Example 1. Calculate the integral ∫
𝑑𝑥

𝑥2+1

∞

1

. 

∫
𝑑𝑥

𝑥2 + 1

∞

1

= 𝑙𝑖𝑚
𝑛→∞

∫
𝑑𝑥

𝑥2 + 1

𝑛

1

= 𝑙𝑖𝑚
𝑛→∞

[arctan 𝑥]1
𝑛 = 𝑙𝑖𝑚

𝑛→∞
[arctan 𝑛 − arctan 1] =

𝜋

2
−

𝜋

4

=
𝜋

4
. 

Hence, the integral converges. 

 

Example 2. Calculate the integral ∫
𝑑𝑥

𝑥2+16

∞

0
. 



∫
𝑑𝑥

𝑥2 + 16

∞

0

= 𝑙𝑖𝑚
𝑛→∞

∫
𝑑𝑥

𝑥2 + 16

𝑛

0

= 𝑙𝑖𝑚
𝑛→∞

∫
𝑑𝑥

𝑥2 + 42

𝑛

0

= 𝑙𝑖𝑚
𝑛→∞

(
1

4
arctan 

𝑥

4
)|0

𝑛

=
1

4
𝑙𝑖𝑚
𝑛→∞

(arctan 
𝑛

4
− arctan 

0

4
) =

1

4
𝑙𝑖𝑚
𝑛→∞

(arctan 
𝑛

4
− 0) =

1

4
⋅

𝜋

2
=

𝜋

8
. 

The given integral converges. 

 

Example 3. Calculate the integral ∫
𝑑𝑥

𝑥2+4

∞

−∞

. 

The original integral has two infinite limits. Therefore we split it into two 

integrals and evaluate each as a one-sided improper integral: 

𝐼 = ∫
𝑑𝑥

𝑥2 + 4

∞

−∞

= ∫
𝑑𝑥

𝑥2 + 22

0

−∞

+ ∫
𝑑𝑥

𝑥2 + 22

∞

0

= 𝐼1 + 𝐼2. 

Calculate each integral: 

𝐼1 = ∫
𝑑𝑥

𝑥2 + 22

0

−∞

= 𝑙𝑖𝑚
𝑛→−∞

∫
𝑑𝑥

𝑥2 + 22

0

𝑛

= 𝑙𝑖𝑚
𝑛→−∞

[
1

2
arctan 

𝑥

2
]𝑛

0

=
1

2
𝑙𝑖𝑚

𝑛→−∞
[arctan 0 − arctan 

𝑛

2
] =

1

2
(0 − (−

𝜋

2
)) =

𝜋

4
; 

𝐼2 = ∫
𝑑𝑥

𝑥2 + 22

∞

0

= 𝑙𝑖𝑚
𝑛→∞

∫
𝑑𝑥

𝑥2 + 22

𝑛

0

= 𝑙𝑖𝑚
𝑛→∞

[
1

2
arctan 

𝑥

2
]0

𝑛

=
1

2
𝑙𝑖𝑚

𝑛→−∞
[arctan 

𝑛

2
− arctan 0] =

1

2
(
𝜋

2
− 0) =

𝜋

4
. 

Hence, 

𝐼 = 𝐼1 + 𝐼2 =
𝜋

4
+

𝜋

4
=

𝜋

2
. 

We see that the integral converges. 

 

Example 4. Determine whether the integral ∫
𝑑𝑥

𝑥2𝑒𝑥

∞

1

 converges or diverges? 

Note, that 
1

𝑥2𝑒𝑥
≤

1

𝑥2
 for all values 𝑥 ≥ 1. Since the improper integral ∫

𝑑𝑥

𝑥2

∞

1

 is 



convergent then the given integral is also convergent by Comparison Test 1. 

 

Example 5. Determine whether the integral ∫
sin 𝑥

√𝑥3

∞

1

𝑑𝑥 converges or diverges? 

We can write the obvious inequality for the absolute values: 

|
sin 𝑥

√𝑥3
| ≤ |

1

√𝑥3
| = |

1

𝑥
3
2

|. 

It’s easy to show that the integral ∫ |
1

√𝑥3
|

∞

1

𝑑𝑥 converges. Indeed 

∫ |
1

√𝑥3
|𝑑𝑥

∞

1

= ∫
𝑑𝑥

√𝑥3

∞

1

= ∫
𝑑𝑥

𝑥
3
2

∞

1

= ∫ 𝑥−
3
2𝑑𝑥

∞

1

= 𝑙𝑖𝑚
𝑛→∞

∫ 𝑥−
3
2𝑑𝑥

𝑛

1

= 𝑙𝑖𝑚
𝑛→∞

(
𝑥−

3
2

+1

−
3
2

+ 1
)|1

𝑛

= −2 𝑙𝑖𝑚
𝑛→∞

(
1

√𝑥
)|1

𝑛 = −2 𝑙𝑖𝑚
𝑛→∞

(
1

√𝑛
− 1) = −2(0 − 1) = 2. 

Then we conclude that the integral ∫ |
sin 𝑥

√𝑥3
|

∞

1

𝑑𝑥 also converges by Comparison 

Test 1. 

Example 6. Calculate the integral ∫
𝑑𝑥

𝑥3

2

−2

. 

There is a discontinuity at 𝑥 = 0, so that we must consider two improper 

integrals: 

∫
𝑑𝑥

𝑥3

2

−2

= ∫
𝑑𝑥

𝑥3

0

−2

+ ∫
𝑑𝑥

𝑥3

2

0

. 

Using the definition of improper integral, we obtain 

∫
𝑑𝑥

𝑥3

2

−2

= ∫
𝑑𝑥

𝑥3

0

−2

+ ∫
𝑑𝑥

𝑥3

2

0

= 𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

𝑥3

−𝜀

−2

+ 𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

𝑥3

2

𝜀

. 

For the first integral, 



𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

𝑥3

−𝜀

−2

= 𝑙𝑖𝑚
𝜀→0+

(
𝑥−2

−2
)|−2

−𝜀 = −
1

2
𝑙𝑖𝑚

𝜀→0+
(

1

𝑥2
)|−2

−𝜀 = −
1

2
𝑙𝑖𝑚

𝜀→0+
[

1

(−𝜀)2
−

1

(−2)2
]

= −
1

2
𝑙𝑖𝑚

𝜀→0+
(

1

𝜀2
+

1

8
) = ∞. 

Since it is divergent, the initial integral also diverges. 

 

Example 7. Determine whether the improper integral ∫
𝑑𝑥

𝑥2+2𝑥+8

∞

−∞

 converges or 

diverges?  

We can write this integral as 

𝐼 = ∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

∞

−∞

= ∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

0

−∞

+ ∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

∞

0

. 

By the definition of an improper integral, we have 

𝐼 = ∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

∞

−∞

= ∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

0

−∞

+ ∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

∞

0

 

= 𝑙𝑖𝑚
𝑀→−∞

∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

0

𝑀

+ 𝑙𝑖𝑚
𝑁→∞

∫
𝑑𝑥

𝑥2 + 2𝑥 + 8

𝑁

0

= 𝑙𝑖𝑚
𝑀→−∞

∫
𝑑𝑥

(𝑥 + 1)2 + 7

0

𝑀

+ 𝑙𝑖𝑚
𝑁→∞

∫
𝑑𝑥

(𝑥 + 1)2 + 7

𝑁

0

= 𝑙𝑖𝑚
𝑀→−∞

(
1

√7
arctan 

𝑥 + 1

√7
)|𝑀

0 + 𝑙𝑖𝑚
𝑁→∞

(
1

√7
arctan 

𝑥 + 1

√7
)|0

𝑁

=
1

√7
(arctan

1

√7
− 𝑙𝑖𝑚

𝑀→−∞
arctan 

𝑀 + 1

√7
) +

1

√7
( 𝑙𝑖𝑚

𝑁→∞
arctan 

𝑁 + 1

√7

− arctan
1

√7
) =

1

√7
arctan 

1

√7
−

1

√7
⋅ (−

𝜋

2
) +

1

√7
⋅

𝜋

2
−

1

√7
arctan 

1

√7

=
1

√7
⋅

𝜋

2
+

1

√7
⋅

𝜋

2
=

𝜋

√7
. 

As both the limits exist and are finite, the given integral converges. 

 



Example 8. Determine whether the integral ∫
𝑑𝑥

(𝑥−2)3

4

0

 converges or diverges? 

There is a discontinuity in the integrand at 𝑥 = 2, so that we must consider two 

improper integrals: 

∫
𝑑𝑥

(𝑥 − 2)3

4

0

= ∫
𝑑𝑥

(𝑥 − 2)3

2

0

+ ∫
𝑑𝑥

(𝑥 − 2)3

4

2

. 

Using the definition of an improper integral, we obtain 

∫
𝑑𝑥

(𝑥 − 2)3

2

0

+ ∫
𝑑𝑥

(𝑥 − 2)3

4

2

= 𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

(𝑥 − 2)3

2−𝜀

0

+ 𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

(𝑥 − 2)3

4

2+𝜀

. 

For the first integral, 

𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

(𝑥 − 2)3

2−𝜀

0

= 𝑙𝑖𝑚
𝜀→0+

∫ (𝑥 − 2)−3𝑑(𝑥 − 2)

2−𝜀

0

= 𝑙𝑖𝑚
𝜀→0+

[
(𝑥 − 2)−3+1

−3 + 1
]0

2−𝜀

= −
1

2
𝑙𝑖𝑚

𝜀→0+
[

1

(𝑥 − 2)2
]|0

2−𝜀 = −
1

2
𝑙𝑖𝑚

𝜀→0+
[

1

(2 − 𝜀 − 2)2
−

1

(0 − 2)2
]

= −
1

2
𝑙𝑖𝑚

𝜀→0+
(

1

𝜀2
−

1

4
) = −∞. 

As it is divergent, the given integral ∫
𝑑𝑥

(𝑥−2)3

4

0

  is also divergent. 

 Example 9. Find the area above the curve 𝑦 = 𝑙𝑛𝑥 in the lower half-plane 

between 𝑥 = 0 and 𝑥 = 1. 

 The given region is sketched in Figure 

 



 Since it is infinite, we calculate the improper integral to find the area: 

∫ ln 𝑥𝑑𝑥

1

0

= 𝑙𝑖𝑚
𝜀→0+

∫ ln 𝑥𝑑𝑥

1

𝜀

. 

Use integration by parts. Let 𝑢 = ln 𝑥, 𝑑𝑣 = 𝑑𝑥. Then 𝑑𝑢 =
𝑑𝑥

𝑥
, 𝑣 = 𝑥. 

Thus 

𝑙𝑖𝑚
𝜀→0+

∫ ln 𝑥𝑑𝑥

1

𝜀

= 𝑙𝑖𝑚
𝜀→0+

[(𝑥ln 𝑥)|𝜀
1 − ∫ 𝑥

𝑑𝑥

𝑥

1

𝜀

] = 𝑙𝑖𝑚
𝜀→0+

[𝑥ln 𝑥 − 𝑥]|𝜀
1

= 𝑙𝑖𝑚
𝜀→0+

[(ln 1 − 1) − (𝜀ln 𝜀 − 𝜀)] = (0 − 1) − 𝑙𝑖𝑚
𝜀→0+

[𝜀(ln 𝜀 − 1)]

= −1 − 𝑙𝑖𝑚
𝜀→0+

ln 𝜀 − 1

1
𝜀

. 

We can apply L’Hopital’s rule to find the limit: 

𝑙𝑖𝑚
𝜀→0+

ln 𝜀 − 1

1
𝜀

= 𝑙𝑖𝑚
𝜀→0+

1
𝜀

−
1
𝜀2

= − 𝑙𝑖𝑚
𝜀→0+

𝜀2

𝜀
= − 𝑙𝑖𝑚

𝜀→0+
𝜀 = 0. 

Hence, the improper integral is 

𝑙𝑖𝑚
𝜀→0+

∫ ln 𝑥𝑑𝑥

1

𝜀

= −1 − 𝑙𝑖𝑚
𝜀→0+

ln 𝜀 − 1

1
𝜀

= −1 − 0 = −1. 

As you can see from the figure above, the required area is 

𝐴 = | 𝑙𝑖𝑚
𝜀→0+

∫ ln 𝑥𝑑𝑥

1

𝜀

| 

 

Example 10. Find the circumference of the unit circle. 

We calculate the length of the arc of the circle in the first quadrant between 𝑥 = 0 and 

𝑥 = 1 and then multiply the result by 4. The equation of the circle centered at the origin 

is 

𝑥2 + 𝑦2 = 1. 

Then the arc of the circle in the first quadrant (Figure) is described by the function 

𝑦 = √1 − 𝑥2, 0 ≤ 𝑥 ≤ 1. 



 

 Find the derivative of the function: 

𝑦′ =
𝑑

𝑑𝑥
√1 − 𝑥2 =

−2𝑥

2√1 − 𝑥2
=

−𝑥

√1 − 𝑥2
. 

 Since the length of an arc is given by ∫ √1 + (𝑦′)2𝑑𝑥
𝑥=𝛽

𝑥=𝛼
, we obtain 

∫ √1 + (
−𝑥

√1 − 𝑥2
)2𝑑𝑥

1

0

= ∫ √1 +
𝑥2

1 − 𝑥2
𝑑𝑥

1

0

= ∫ √
1 − 𝑥2 + 𝑥2

1 − 𝑥2
𝑑𝑥

1

0

= ∫
𝑑𝑥

√1 − 𝑥2

1

0

. 

Now we calculate the improper integral ∫
𝑑𝑥

√1−𝑥2

1

0

: 

∫
𝑑𝑥

√1 − 𝑥2

1

0

= 𝑙𝑖𝑚
𝜀→0+

∫
𝑑𝑥

√1 − 𝑥2

1−𝜀

0

= 𝑙𝑖𝑚
𝜀→0+

(arcsin 𝑥)|0
1−𝜀

= 𝑙𝑖𝑚
𝜀→0+

[arcsin (1 − 𝜀) − arcsin 0] = arcsin 1 − 0 =
𝜋

2
. 

Thus, the circumference of the unit circle is 
𝜋

2
⋅ 4 


