
Example 1. Find the area of the region enclosed by the curve 𝑦 = √𝑥 + 1 and the 

line 𝑦 = 𝑥 + 1. 

 

Then, 𝐴 = ∫ [√𝑥 + 1 − (𝑥 + 1)]𝑑𝑥
0

−1
=

2(𝑥+1)
3
2

3
−

𝑥2

2
− 𝑥|−1

0 = (
2

3
− 0 − 0) − (0 −

1

2
+ 1) =

2

3
−

1

2
=

1

6
. 

 

Example 2. Find the area enclosed by the three petaled rose 𝜌 = 𝑠𝑖𝑛3𝜃 

 

Since each petal has the same area, we calculate the area of one petal and multiply 



the result by three. So we have 

𝐴 =
1

2
∫ 𝑟2(𝜃)𝑑𝜃

𝜋
3

0

=
1

2
∫ sin2(3𝜃)𝑑𝜃

𝜋
3

0

=
1

4
∫[1 − cos⁡(6𝜃)]𝑑𝜃

𝜋
3

0

=
1

4
[𝜃 −

sin(6𝜃)

6
]|0

𝜋
3 =

1

4
⋅
𝜋

3
=

𝜋

12
 

Hence, the area of the all region is 
𝜋

4
 (units2). 

 

Example 3. Find the area enclosed by the cardioid 𝜌 = 1 + 𝑐𝑜𝑠𝜃 

 

We can easily the area of the cardioid by integrating the polar equation in the 

interval [0,2𝜋]. This yields: 

𝐴 =
1

2
∫ 𝑟2(𝜃)𝑑𝜃

2𝜋

0

=
1

2
∫ (1 + cos⁡𝜃)2𝑑𝜃

2𝜋

0

=
1

2
∫ (1 + 2cos⁡𝜃 + cos2𝜃)𝑑𝜃

2𝜋

0

=
1

2
∫ (1 + 2cos⁡𝜃 +

1 + cos⁡2𝜃

2
)𝑑𝜃

2𝜋

0

=
1

4
∫ (3 + 4cos⁡𝜃 + cos⁡2𝜃)𝑑𝜃

2𝜋

0

=
1

4
[3𝜃 + 4sin⁡𝜃 +

sin⁡2𝜃

2
]|0
2𝜋

=
1

4
⋅ 6𝜋 =

3𝜋

2
 

 

Example 4. Find the area of the region bounded by the asteroid. We represent the 



equation of the astroid in parametric form: 

𝑥(𝑡) = cos3𝑡, 𝑦(𝑡) = sin3𝑡. 

 

We apply the following integration formula: 

𝐴 =
1

2
∫[𝑥(𝑡)𝑦′(𝑡) − 𝑥′(𝑡)𝑦(𝑡)]𝑑𝑡

𝑇

0

. 

As 

𝑥′(𝑡) = −3cos2𝑡sin⁡𝑡, 𝑦′(𝑡) = 3sin2𝑡cos⁡𝑡, 

we have 

𝐴 =
1

2
∫ [𝑥(𝑡)𝑦′(𝑡) − 𝑥′(𝑡)𝑦(𝑡)]𝑑𝑡

2𝜋

0

=
1

2
∫ [3cos4𝑡sin2𝑡 + 3cos2𝑡sin4𝑡]𝑑𝑡

2𝜋

0

=
3

2
∫[cos2𝑡sin2𝑡(cos2𝑡 + sin2𝑡)

⏟

1

]𝑑𝑡

2𝜋

0

=
3

8
∫ sin2(2𝑡)𝑑𝑡

2𝜋

0

=
3

16
∫ [1 − cos⁡(4𝑡)]𝑑𝑡

2𝜋

0

=
3

16
[𝑡 −

sin(4𝑡)

4
]|0
2𝜋 =

3

16
⋅ 2𝜋 =

3𝜋

8
 

 



Example 5.Find the volume of a solid bounded by the elliptic paraboloid 𝑧 =
𝑥2

𝑎2
+

𝑦2

𝑏2
 and the plane 𝑧 = 1. 

 
Consider an arbitrary planar section perpendicular to the z−axis at a point z, where 

0 < 𝑧 ≤ 1. The cross section is an ellipse defined by the equation 

𝑧 =
𝑥2

𝑎2
+
𝑦2

𝑏2
, ⇒

𝑥2

(𝑎√𝑧)2
+

𝑦2

(𝑏√𝑧)2
= 1. 

The area of the cross section is 

𝐴(𝑧) = 𝜋 ⋅ (𝑎√𝑧) ⋅ (𝑏√𝑧) = 𝜋𝑎𝑏𝑧. 

Then, by the slice method where the cross-section formula is known, 

𝑉 = ∫𝐴(𝑧)𝑑𝑧

1

0

= ∫𝜋𝑎𝑏𝑧𝑑𝑧

1

0

= 𝜋𝑎𝑏∫𝑧𝑑𝑧

1

0

= 𝜋𝑎𝑏 ⋅
𝑧2

2
|0
1 =

𝜋𝑎𝑏

2
 

 

Example 6. Find the volume of the solid obtained by rotating the sine function 

between 𝑥 = 0 and 𝑥 = 𝜋 about the x−axis. 

By the disk method, 

𝑉 = 𝜋∫[sin 𝑥]2𝑑𝑥

𝜋

0

=
𝜋

2
∫(1 − cos⁡2𝑥)𝑑𝑥

𝜋

0

=
𝜋

2
(𝑥 −

sin⁡2𝑥

2
)|0
𝜋 



 

=
𝜋

2
[(𝜋 − 0) − (0 − 0)] =

𝜋2

2
. 

 

Example 6. Calculate the volume of the right circular cone of height H  and base 

radius R. 

The slant height of the cone is defined by the equation: 𝑥 = 𝑅 −
𝑅

𝐻
𝑦. 

  

Hence, the volume of the cone is given by 

𝑉 = 𝜋∫[𝑥(𝑦)]2𝑑𝑦

𝐻

0

= 𝜋∫[𝑅 −
𝑅

𝐻
𝑦]2𝑑𝑦

𝐻

0

= 𝜋𝑅2∫(1 −
2𝑦

𝐻
+
𝑦2

𝐻2
)𝑑𝑦

𝐻

0

 

= 𝜋𝑅2(𝐻 −
𝑦2

𝐻
+

𝑦3

3𝐻2
)|0
𝐻 = 𝜋𝑅2(𝐻 − 𝐻 +

𝐻

3
) =

𝜋𝑅2𝐻

3
. 

 



Example 7. Calculate the volume of the solid obtained by rotating the region 

bounded by the parabola 𝑦 = 𝑥2 and the square root function 𝑦 = √𝑥 around the 

x−axis. 

 

Both curves intersect at the points 𝑥 = 0 and 𝑥 = 1. Using the washer method, we 

have 

𝑉 = 𝜋∫([√𝑥]2 − [𝑥2]2)𝑑𝑥

1

0

= 𝜋∫(𝑥 − 𝑥4)𝑑𝑥

1

0

= 𝜋(
𝑥2

2
−
𝑥5

5
)|0
1 = 𝜋 (

1

2
−
1

5
)

=
3𝜋

10
. 

 

Example 8. Find the volume of the solid obtained by rotating the region bounded by 

two parabolas 𝑦 = 𝑥2 + 1 and 𝑦 = 3 − 𝑥2 about the x−axis. 

 First we determine the boundaries a and b: 

𝑥2 + 1 = 3 − 𝑥2, ⇒ 2𝑥2 = 2,⇒ 𝑥2 = 1,⇒ 𝑥1,2 = ±1. 

Hence the limits of integration are 𝑎 = −1, 𝑏 = 1. We sketch the bounding region 

and the solid of revolution. Using the washer method, we find the volume of the 

solid: 

𝑉 = 𝜋∫([𝑓(𝑥)]2 − [𝑔(𝑥)]2)𝑑𝑥

𝑏

𝑎

= 𝜋 ∫((3 − 𝑥2)2 − (𝑥2 + 1)2)𝑑𝑥

1

−1

 



 

= 𝜋 ∫([3 − 𝑥2]2 − [𝑥2 + 1]2)𝑑𝑥

1

−1

= 𝜋 ∫(8 − 8𝑥2)𝑑𝑥

1

−1

= 8𝜋 ∫(1 − 𝑥2)𝑑𝑥

1

−1

= 8𝜋(𝑥 −
𝑥3

3
)|−1
1 = 8𝜋[(1 −

1

3
) − (−1 +

1

3
)] = 8𝜋 ⋅

4

3
=
32𝜋

3
 

 

Example 9. Calculate the volume of the solid obtained by rotating the region 

bounded by the curve 𝑦 = 2𝑥 − 𝑥2 and the x−axis about the y−axis. 

Find the points of intersection of the parabola with the x−axis: 

2𝑥 − 𝑥2 = 0,⇒ 𝑥(2 − 𝑥) = 0,⇒ 𝑥1 = 0, 𝑥2 = 2. 

As the region is revolved about the y−axis, we express the equation of the bounding 

curve in terms of y: 

𝑦 = 2𝑥 − 𝑥2, ⇒ 𝑥2 − 2𝑥 + 1 = 1 − 𝑦,⇒ (𝑥 − 1)2 = 1 − 𝑦,⇒ 𝑥 − 1 = ±√1 − 𝑦, 

⇒ 𝑥 = 1 ± √1 − 𝑦. 

 

The signs “plus” and “minus” correspond to the two branches of the curve: 



𝑥 = 𝑔(𝑦) = 1 − √1 − 𝑦, 𝑥 = 𝑓(𝑦) = 1 + √1 − 𝑦. 

Given that the variable y varies from 0 to 1 and using the washer method, we find 

the volume of the solid: 

𝑉 = 𝜋∫([𝑓(𝑦)]2 − [𝑔(𝑦)]2)𝑑𝑦

1

0

= 𝜋∫([1 + √1 − 𝑦]2
1

0

− [1 − √1 − 𝑦]2)𝑑𝑦

= 𝜋∫(4√1 − 𝑦)𝑑𝑦

1

0

= 4𝜋∫√1 − 𝑦𝑑𝑦

1

0

= [4𝜋 ⋅
2(1 − 𝑦)

3
2

3
⋅ (−1)]|0

1

= [−
8𝜋√(1 − 𝑦)3

3
]|0
1 =

8𝜋

3
. 

 

Example 10. One arch of the cycloid 𝑥 = 𝜃 − sin⁡𝜃, 𝑦 = 1 − cos⁡𝜃 revolves around 

its base. Calculate the volume of the body bounded by the given surface. 

 

The cycloid is given in parametric form. Therefore we express the integral 𝑉 =

𝜋 ∫ 𝑦2𝑑𝑥
2𝜋

0
 in terms of the parameter: 

𝑦2 = (1 − cos⁡𝜃)2, 𝑑𝑥 = 𝑑(𝜃 − sin⁡𝜃) = (1 − cos⁡𝜃)𝑑𝜃. 

Note that the variable x and the parameter θ change in the same range from 0 to 2π. 

Hence, the volume of the solid is given by the integral 

𝑉 = 𝜋∫ 𝑦2𝑑𝑥

2𝜋

0

= 𝜋∫ (1 − cos⁡𝜃)3𝑑𝜃

2𝜋

0

. 

To calculate the integral we use the following algebraic and trigonometric identities: 



(𝑎 − 𝑏)3 = 𝑎3 − 3𝑎2𝑏 + 3𝑎𝑏2 − 𝑏3, cos2𝜃 =
1

2
+

1

2
cos⁡2𝜃, cos3𝜃 =

3

4
cos⁡𝜃 +

1

4
cos⁡3𝜃.  

Hence, the volume of the solid is 

𝑉 = 𝜋∫ (1 − cos⁡𝜃)3𝑑𝜃

2𝜋

0

= 𝜋∫ (1 − 3cos⁡𝜃

2𝜋

0

+ 3cos2𝜃 − cos3𝜃)𝑑𝜃

= 𝜋∫ (1 − 3cos⁡𝜃

2𝜋

0

+
3

2
+
3

2
cos⁡2𝜃 −

3

4
cos⁡𝜃 −

1

4
cos⁡3𝜃)𝑑𝜃

= 𝜋∫ (
5

2
−
15

4
cos⁡𝜃

2𝜋

0

+
3

2
cos⁡2𝜃 −

1

4
cos⁡3𝜃)𝑑𝜃

= 𝜋[
5𝜃

2
−
15

4
sin⁡𝜃 +

3

4
sin⁡2𝜃 −

1

12
sin⁡3𝜃]|0

2𝜋 = 5𝜋2. 

 

Example 11. The cardioid 𝑟 = 1 + cos⁡𝜃 rotates around the polar axis. Find the area 

of the resulting surface. 

As the curve is defined in polar coordinates and rotated about the x−axis, we 

calculate the surface area by the formula 

𝑆 = 2𝜋∫ 𝑟(𝜃)sin⁡𝜃√[𝑟(𝜃)]2 + [𝑟′(𝜃)]2𝑑𝜃

𝛽

𝛼

 

 

Here 

𝑟(𝜃) = 1 + cos⁡𝜃, 𝑟′(𝜃) = (1 + cos⁡𝜃)′ = −sin⁡𝜃. 



Simplify the expression under the square root sign: 

[𝑟(𝜃)]2 + [𝑟′(𝜃)]2 = (1 + cos⁡𝜃)2 + (−sin⁡𝜃)2 = 1 + 2cos⁡𝜃 + cos2𝜃 + sin2𝜃

= 2(1 + cos⁡𝜃). 

Let’s recall now the double angle identities: 

1 + cos 𝜃 = 2cos2
𝜃

2
, sin 𝜃 = 2 sin

𝜃

2
cos

𝜃

2
. 

Substituting these formulas we can write the integral in the form 

𝑆 = 2𝜋 ∫ 𝑟(𝜃)sin⁡𝜃√[𝑟(𝜃)]2 + [𝑟′(𝜃)]2𝑑𝜃

𝛽

𝛼

= 2𝜋∫(1 + cos⁡𝜃)sin⁡𝜃√2(1 + cos⁡𝜃)𝑑𝜃

𝜋

0

= 2𝜋∫(2cos2
𝜃

2
⋅ 2sin⁡

𝜃

2
cos⁡

𝜃

2
⋅

𝜋

0

2cos⁡
𝜃

2
)𝑑𝜃 = 16𝜋∫ cos4

𝜃

2
sin⁡

𝜃

2
𝑑𝜃.

𝜋

0

 

It’s convenient to change variable: 

cos⁡
𝜃

2
= 𝑧,⇒ −

1

2
sin⁡

𝜃

2
𝑑𝜃 = 𝑑𝑧,⇒ sin⁡

𝜃

2
𝑑𝜃 = −2𝑑𝑧. 

When 𝜃 = 0, 𝑧 = 1, and when 𝜃 = 𝜋, 𝑧 = 0. Hence, the surface area is equal to 

𝑆 = 16𝜋∫ cos4
𝜃

2
sin⁡

𝜃

2
𝑑𝜃

𝜋

0

= 16𝜋∫𝑧4(−2𝑑𝑧)

0

1

= 32𝜋∫𝑧4𝑑𝑧

1

0

= 32𝜋 ⋅
𝑧5

5
|0
1

=
32𝜋

5
 

 

Example 12. Find the area of the surface formed by rotating the parabola 𝑦 = 1 −

𝑥2 on the interval [0,1] around the y−axis. 



 

Here 𝑎 = 0, 𝑏 = 1, 𝑓′(𝑥) = (1 − 𝑥2)′ = −2𝑥. Hence 

𝑆 = 2𝜋∫𝑥√1 + (−2𝑥)2𝑑𝑥

1

0

= 2𝜋∫𝑥√1 + 4𝑥2𝑑𝑥

1

0

. 

We make the substitution: 

1 + 4𝑥2 = 𝑡2, ⇒ 8𝑥𝑑𝑥 = 2𝑡𝑑𝑡,⇒ 𝑥𝑑𝑥 =
1

4
𝑡𝑑𝑡. 

When 𝑥 = 0, 𝑡 = 1, and when 𝑥 = 1, 𝑡 = √5. This yields 

𝑆 = 2𝜋∫ (𝑡 ⋅
1

4
𝑡)𝑑𝑡

√5

1

=
𝜋

2
∫ 𝑡2𝑑𝑡

√5

1

=
𝜋

2
⋅
𝑡3

3
|1
√5 =

𝜋

6
(5√5 − 1). 

 

Example 13. Find the area of the surface obtained by rotating the circle 𝑟 = 2 sin 𝜃 

around the y−axis. 

 



Integrating from 0 to 
𝜋

2
 and substituting 𝑟(𝜃) = 2sin⁡𝜃, 𝑟′(𝜃) = 2cos⁡𝜃, we have 

𝑆 = 2𝜋∫2sin⁡𝜃cos⁡𝜃

𝜋
2

0

√[2sin⁡𝜃]2 + [2cos⁡𝜃]2𝑑𝜃

= 4𝜋∫ sin⁡2𝜃

𝜋
2

0

√sin2𝜃 + cos2𝜃
⏟

=1

𝑑𝜃 = 4𝜋∫ sin⁡2𝜃

𝜋
2

0

𝑑𝜃

= 4𝜋(−
cos⁡2𝜃

2
)|0

𝜋
2 = 2𝜋(−cos⁡𝜋 + cos⁡0) = 4𝜋. 

 

Example 14. One arch of the cycloid 𝑥 = 𝜃 − sin⁡𝜃, 𝑦 = 1 − cos⁡𝜃 is rotated 

around the y−axis. Calculate the area of the resulting surface. 

 

The curve is given in parametric form. Therefore, we use the following integration 

formula 

𝑆 = 2𝜋∫ 𝑥(𝜃)√[𝑥′(𝜃)]2 + [𝑦′(𝜃)]2𝑑𝜃

𝛽

𝛼

, 

where the parameter θ varies from 0 to 2π. 

Take the derivatives: 

𝑥′(𝜃) = (𝜃 − sin⁡𝜃)′ = 1 − cos⁡𝜃, 

𝑦′(𝜃) = (1 − cos⁡𝜃)′ = sin⁡𝜃, 

and simplify the expression under the root square sign: 



[𝑥′(𝜃)]2 + [𝑦′(𝜃)]2 = (1 − cos⁡𝜃)2 + sin2𝜃 = 1 − 2cos⁡𝜃 + cos2𝜃 + sin2𝜃
⏟

=1

= 2 − 2cos⁡𝜃 = 4sin2
𝜃

2
. 

Then the surface area is given by 

𝑆 = 2𝜋∫ [(𝜃 − sin⁡𝜃) ⋅ 2sin⁡
𝜃

2
]𝑑𝜃

2𝜋

0

= 4𝜋[∫ 𝜃sin⁡
𝜃

2
𝑑𝜃

2𝜋

0

−∫ sin⁡𝜃sin⁡
𝜃

2
𝑑𝜃

2𝜋

0

]

= 4𝜋[𝐼1 − 𝐼2]. 
We calculate the first integral using integration by parts: 

𝐼1 = ∫ 𝜃sin⁡
𝜃

2
𝑑𝜃

2𝜋

0

= [

𝑢 = 𝜃

𝑑𝑣 = sin⁡
𝜃

2
𝑑𝜃

𝑢′ = 1

𝑣 = −2cos⁡
𝜃

2

] = −2𝜃cos⁡
𝜃

2
|0
2𝜋 −∫ (−2cos⁡

𝜃

2
)𝑑𝜃

2𝜋

0

= −2𝜃cos⁡
𝜃

2
|0
2𝜋 + 2∫ cos⁡

𝜃

2
𝑑𝜃

2𝜋

0

= −2𝜃cos⁡
𝜃

2
|0
2𝜋 + 4sin⁡

𝜃

2
|0
2𝜋

= [4sin⁡
𝜃

2
− 2𝜃cos⁡

𝜃

2
]|0
2𝜋 = 4𝜋. 

Consider now the second integral. Notice that 

∫ sin⁡𝜃sin⁡
𝜃

2
𝑑𝜃 = 2∫ sin2

𝜃

2
cos⁡

𝜃

2
𝑑𝜃 = 4∫ sin2

𝜃

2
𝑑(sin

𝜃

2
) =

4

3
sin3

𝜃

2
+ 𝐶. 

Hence, 

𝐼2 = ∫ sin⁡𝜃sin⁡
𝜃

2
𝑑𝜃

2𝜋

0

=
4

3
sin3

𝜃

2
|0
2𝜋 = 0. 

So the area of the surface is 

𝐴 = 4𝜋[𝐼1 − 𝐼2] = 16𝜋2. 


