Example 1. Find the area of the region enclosed by the curve $y=\sqrt{x+1}$ and the line $y=x+1$.

Then, $A=\int_{-1}^{0}[\sqrt{x+1}-(x+1)] d x=\frac{2(x+1)^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}-\left.x\right|_{-1} ^{0}=\left(\frac{2}{3}-0-0\right)-(0-$ $\left.\frac{1}{2}+1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$.

Example 2. Find the area enclosed by the three petaled rose $\rho=\sin 3 \theta$

Since each petal has the same area, we calculate the area of one petal and multiply
the result by three. So we have

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} r^{2}(\theta) d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin ^{2}(3 \theta) d \theta=\frac{1}{4} \int_{0}^{\frac{\pi}{3}}[1-\cos (6 \theta)] d \theta \\
=\left.\frac{1}{4}\left[\theta-\frac{\sin (6 \theta)}{6}\right]\right|_{0} ^{\frac{\pi}{3}}=\frac{1}{4} \cdot \frac{\pi}{3}=\frac{\pi}{12}
\end{gathered}
$$

Hence, the area of the all region is $\frac{\pi}{4}$ (units ${ }^{2}$).

Example 3. Find the area enclosed by the cardioid $\rho=1+\cos \theta$

We can easily the area of the cardioid by integrating the polar equation in the interval $[0,2 \pi]$. This yields:

$$
\begin{aligned}
A=\frac{1}{2} \int_{0}^{2 \pi} r^{2} & (\theta) d \theta=\frac{1}{2} \int_{0}^{2 \pi}(1+\cos \theta)^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1+2 \cos \theta+\frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =\frac{1}{4} \int_{0}^{2 \pi}(3+4 \cos \theta+\cos 2 \theta) d \theta=\left.\frac{1}{4}\left[3 \theta+4 \sin \theta+\frac{\sin 2 \theta}{2}\right]\right|_{0} ^{2 \pi} \\
& =\frac{1}{4} \cdot 6 \pi=\frac{3 \pi}{2}
\end{aligned}
$$

Example 4. Find the area of the region bounded by the asteroid. We represent the
equation of the astroid in parametric form:

$$
x(t)=\cos ^{3} t, y(t)=\sin ^{3} t
$$

We apply the following integration formula:

$$
A=\frac{1}{2} \int_{0}^{T}\left[x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right] d t
$$

As

$$
x^{\prime}(t)=-3 \cos ^{2} t \sin t, y^{\prime}(t)=3 \sin ^{2} t \cos t
$$

we have

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{2 \pi}\left[x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right] d t=\frac{1}{2} \int_{0}^{2 \pi}\left[3 \cos ^{4} t \sin ^{2} t+3 \cos ^{2} t \sin ^{4} t\right] d t \\
=\frac{3}{2} \int_{0}^{2 \pi}\left[\cos ^{2} t \sin ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right)\right] d t=\frac{3}{8} \int_{0}^{2 \pi} \sin ^{2}(2 t) d t \\
=\frac{3}{16} \int_{0}^{2 \pi}[1-\cos (4 t)] d t=\left.\frac{3}{16}\left[t-\frac{\sin (4 t)}{4}\right]\right|_{0} ^{2 \pi}=\frac{3}{16} \cdot 2 \pi=\frac{3 \pi}{8}
\end{gathered}
$$

Example 5.Find the volume of a solid bounded by the elliptic paraboloid $z=\frac{x^{2}}{a^{2}}+$ $\frac{y^{2}}{b^{2}}$ and the plane $z=1$.

Consider an arbitrary planar section perpendicular to the z-axis at a point z, where $0<z \leq 1$. The cross section is an ellipse defined by the equation

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}, \Rightarrow \frac{x^{2}}{(a \sqrt{z})^{2}}+\frac{y^{2}}{(b \sqrt{z})^{2}}=1 .
$$

The area of the cross section is

$$
A(z)=\pi \cdot(a \sqrt{z}) \cdot(b \sqrt{z})=\pi a b z .
$$

Then, by the slice method where the cross-section formula is known,

$$
V=\int_{0}^{1} A(z) d z=\int_{0}^{1} \pi a b z d z=\pi a b \int_{0}^{1} z d z=\left.\pi a b \cdot \frac{z^{2}}{2}\right|_{0} ^{1}=\frac{\pi a b}{2}
$$

Example 6. Find the volume of the solid obtained by rotating the sine function between $x=0$ and $x=\pi$ about the x-axis.

By the disk method,

$$
V=\pi \int_{0}^{\pi}[\sin x]^{2} d x=\frac{\pi}{2} \int_{0}^{\pi}(1-\cos 2 x) d x=\left.\frac{\pi}{2}\left(x-\frac{\sin 2 x}{2}\right)\right|_{0} ^{\pi}
$$

Example 6. Calculate the volume of the right circular cone of height H and base radius R.

The slant height of the cone is defined by the equation: $x=R-\frac{R}{H} y$.

Hence, the volume of the cone is given by

$$
\begin{gathered}
V=\pi \int_{0}^{H}[x(y)]^{2} d y=\pi \int_{0}^{H}\left[R-\frac{R}{H} y\right]^{2} d y=\pi R^{2} \int_{0}^{H}\left(1-\frac{2 y}{H}+\frac{y^{2}}{H^{2}}\right) d y \\
=\left.\pi R^{2}\left(H-\frac{y^{2}}{H}+\frac{y^{3}}{3 H^{2}}\right)\right|_{0} ^{H}=\pi R^{2}\left(И-И+\frac{H}{3}\right)=\frac{\pi R^{2} H}{3} .
\end{gathered}
$$

Example 7. Calculate the volume of the solid obtained by rotating the region bounded by the parabola $y=x^{2}$ and the square root function $y=\sqrt{x}$ around the x-axis.

Both curves intersect at the points $x=0$ and $x=1$. Using the washer method, we have

$$
\begin{gathered}
V=\pi \int_{0}^{1}\left([\sqrt{x}]^{2}-\left[x^{2}\right]^{2}\right) d x=\pi \int_{0}^{1}\left(x-x^{4}\right) d x=\left.\pi\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\pi\left(\frac{1}{2}-\frac{1}{5}\right) \\
=\frac{3 \pi}{10} .
\end{gathered}
$$

Example 8 . Find the volume of the solid obtained by rotating the region bounded by two parabolas $y=x^{2}+1$ and $y=3-x^{2}$ about the x-axis.

First we determine the boundaries a and b :

$$
x^{2}+1=3-x^{2}, \Rightarrow 2 x^{2}=2, \Rightarrow x^{2}=1, \Rightarrow x_{1,2}= \pm 1 .
$$

Hence the limits of integration are $a=-1, b=1$. We sketch the bounding region and the solid of revolution. Using the washer method, we find the volume of the solid:

$$
V=\pi \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x=\pi \int_{-1}^{1}\left(\left(3-x^{2}\right)^{2}-\left(x^{2}+1\right)^{2}\right) d x
$$

$$
\begin{array}{r}
=\pi \int_{-1}^{1}\left(\left[3-x^{2}\right]^{2}-\left[x^{2}+1\right]^{2}\right) d x=\pi \int_{-1}^{1}\left(8-8 x^{2}\right) d x=8 \pi \int_{-1}^{1}\left(1-x^{2}\right) d x \\
=\left.8 \pi\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}=8 \pi\left[\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)\right]=8 \pi \cdot \frac{4}{3}=\frac{32 \pi}{3}
\end{array}
$$

Example 9. Calculate the volume of the solid obtained by rotating the region bounded by the curve $y=2 x-x^{2}$ and the x-axis about the y-axis.

Find the points of intersection of the parabola with the x-axis:

$$
2 x-x^{2}=0, \Rightarrow x(2-x)=0, \Rightarrow x_{1}=0, x_{2}=2
$$

As the region is revolved about the y-axis, we express the equation of the bounding curve in terms of y :
$y=2 x-x^{2}, \Rightarrow x^{2}-2 x+1=1-y, \Rightarrow(x-1)^{2}=1-y, \Rightarrow x-1= \pm \sqrt{1-y}$, $\Rightarrow x=1 \pm \sqrt{1-y}$.

The signs "plus" and "minus" correspond to the two branches of the curve:

$$
x=g(y)=1-\sqrt{1-y}, x=f(y)=1+\sqrt{1-y} .
$$

Given that the variable y varies from 0 to 1 and using the washer method, we find the volume of the solid:

$$
\begin{gathered}
V=\pi \int_{0}^{1}\left([f(y)]^{2}-[g(y)]^{2}\right) d y=\pi \int_{0}^{1}\left([1+\sqrt{1-y}]^{2}-[1-\sqrt{1-y}]^{2}\right) d y \\
=\pi \int_{0}^{1}(4 \sqrt{1-y}) d y=4 \pi \int_{0}^{1} \sqrt{1-y} d y=\left.\left[4 \pi \cdot \frac{2(1-y)^{\frac{3}{2}}}{3} \cdot(-1)\right]\right|_{0} ^{1} \\
=\left.\left[-\frac{8 \pi \sqrt{(1-y)^{3}}}{3}\right]\right|_{0} ^{1}=\frac{8 \pi}{3} .
\end{gathered}
$$

Example 10. One arch of the cycloid $x=\theta-\sin \theta, y=1-\cos \theta$ revolves around its base. Calculate the volume of the body bounded by the given surface.

The cycloid is given in parametric form. Therefore we express the integral $V=$ $\pi \int_{0}^{2 \pi} y^{2} d x$ in terms of the parameter:

$$
y^{2}=(1-\cos \theta)^{2}, d x=d(\theta-\sin \theta)=(1-\cos \theta) d \theta .
$$

Note that the variable x and the parameter θ change in the same range from 0 to 2π. Hence, the volume of the solid is given by the integral

$$
V=\pi \int_{0}^{2 \pi} y^{2} d x=\pi \int_{0}^{2 \pi}(1-\cos \theta)^{3} d \theta
$$

To calculate the integral we use the following algebraic and trigonometric identities:
$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}, \quad \cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta, \quad \cos ^{3} \theta=\frac{3}{4} \cos \theta+$ $\frac{1}{4} \cos 3 \theta$.
Hence, the volume of the solid is

$$
\begin{aligned}
V=\pi \int_{0}^{2 \pi}(1 & -\cos \theta)^{3} d \theta=\pi \int_{0}^{2 \pi}\left(1-3 \cos \theta+3 \cos ^{2} \theta-\cos ^{3} \theta\right) d \theta \\
& =\pi \int_{0}^{2 \pi}\left(1-3 \cos \theta+\frac{3}{2}+\frac{3}{2} \cos 2 \theta-\frac{3}{4} \cos \theta-\frac{1}{4} \cos 3 \theta\right) d \theta \\
& =\pi \int_{0}^{2 \pi}\left(\frac{5}{2}-\frac{15}{4} \cos \theta+\frac{3}{2} \cos 2 \theta-\frac{1}{4} \cos 3 \theta\right) d \theta \\
& =\left.\pi\left[\frac{5 \theta}{2}-\frac{15}{4} \sin \theta+\frac{3}{4} \sin 2 \theta-\frac{1}{12} \sin 3 \theta\right]\right|_{0} ^{2 \pi}=5 \pi^{2}
\end{aligned}
$$

Example 11. The cardioid $r=1+\cos \theta$ rotates around the polar axis. Find the area of the resulting surface.

As the curve is defined in polar coordinates and rotated about the x-axis, we calculate the surface area by the formula

$$
S=2 \pi \int_{\alpha}^{\beta} r(\theta) \sin \theta \sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}} d \theta
$$

Here

$$
r(\theta)=1+\cos \theta, r^{\prime}(\theta)=(1+\cos \theta)^{\prime}=-\sin \theta .
$$

Simplify the expression under the square root sign:

$$
\begin{aligned}
& {[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2} }=(1+\cos \theta)^{2}+(-\sin \theta)^{2}=1+2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta \\
&=2(1+\cos \theta)
\end{aligned}
$$

Let's recall now the double angle identities:

$$
1+\cos \theta=2 \cos ^{2} \frac{\theta}{2}, \sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} .
$$

Substituting these formulas we can write the integral in the form

$$
\begin{aligned}
S=2 \pi \int_{\alpha}^{\beta} r(\theta) & \sin \theta \sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}} d \theta \\
& =2 \pi \int_{0}^{\pi}(1+\cos \theta) \sin \theta \sqrt{2(1+\cos \theta)} d \theta \\
& =2 \pi \int_{0}^{\pi}\left(2 \cos ^{2} \frac{\theta}{2} \cdot 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cdot 2 \cos \frac{\theta}{2}\right) d \theta=16 \pi \int_{0}^{\pi} \cos ^{4} \frac{\theta}{2} \sin \frac{\theta}{2} d \theta
\end{aligned}
$$

It's convenient to change variable:

$$
\cos \frac{\theta}{2}=z, \Rightarrow-\frac{1}{2} \sin \frac{\theta}{2} d \theta=d z, \Rightarrow \sin \frac{\theta}{2} d \theta=-2 d z
$$

When $\theta=0, z=1$, and when $\theta=\pi, z=0$. Hence, the surface area is equal to

$$
\begin{gathered}
S=16 \pi \int_{0}^{\pi} \cos ^{4} \frac{\theta}{2} \sin \frac{\theta}{2} d \theta=16 \pi \int_{1}^{0} z^{4}(-2 d z)=32 \pi \int_{0}^{1} z^{4} d z=\left.32 \pi \cdot \frac{z^{5}}{5}\right|_{0} ^{1} \\
=\frac{32 \pi}{5}
\end{gathered}
$$

Example 12. Find the area of the surface formed by rotating the parabola $y=1-$ x^{2} on the interval $[0,1]$ around the y-axis.

Here $a=0, b=1, f^{\prime}(x)=\left(1-x^{2}\right)^{\prime}=-2 x$. Hence

$$
S=2 \pi \int_{0}^{1} x \sqrt{1+(-2 x)^{2}} d x=2 \pi \int_{0}^{1} x \sqrt{1+4 x^{2}} d x
$$

We make the substitution:

$$
1+4 x^{2}=t^{2}, \Rightarrow 8 x d x=2 t d t, \Rightarrow x d x=\frac{1}{4} t d t
$$

When $x=0, t=1$, and when $x=1, t=\sqrt{ } 5$. This yields

$$
S=2 \pi \int_{1}^{\sqrt{5}}\left(t \cdot \frac{1}{4} t\right) d t=\frac{\pi}{2} \int_{1}^{\sqrt{5}} t^{2} d t=\left.\frac{\pi}{2} \cdot \frac{t^{3}}{3}\right|_{1} ^{\sqrt{5}}=\frac{\pi}{6}(5 \sqrt{5}-1)
$$

Example 13. Find the area of the surface obtained by rotating the circle $r=2 \sin \theta$ around the y -axis.

Integrating from 0 to $\frac{\pi}{2}$ and substituting $r(\theta)=2 \sin \theta, r^{\prime}(\theta)=2 \cos \theta$, we have

$$
\begin{aligned}
& S=2 \pi \int_{0}^{\frac{\pi}{2}} 2 \sin \theta \cos \theta \sqrt{[2 \sin \theta]^{2}+[2 \cos \theta]^{2}} d \theta \\
&=4 \pi \int_{0}^{\frac{\pi}{2}} \sin 2 \theta \sqrt{\sin ^{2} \theta+\cos ^{2} \theta} d \theta=4 \pi \int_{0}^{\frac{\pi}{2}} \sin 2 \theta d \theta \\
&=\left.4 \pi\left(-\frac{\cos 2 \theta}{2}\right)\right|_{0} ^{\frac{\pi}{2}}=2 \pi(-\cos \pi+\cos 0)=4 \pi
\end{aligned}
$$

Example 14. One arch of the cycloid $x=\theta-\sin \theta, y=1-\cos \theta$ is rotated around the y-axis. Calculate the area of the resulting surface.

The curve is given in parametric form. Therefore, we use the following integration formula

$$
S=2 \pi \int_{\alpha}^{\beta} x(\theta) \sqrt{\left[x^{\prime}(\theta)\right]^{2}+\left[y^{\prime}(\theta)\right]^{2}} d \theta
$$

where the parameter θ varies from 0 to 2π.
Take the derivatives:

$$
\begin{gathered}
x^{\prime}(\theta)=(\theta-\sin \theta)^{\prime}=1-\cos \theta, \\
y^{\prime}(\theta)=(1-\cos \theta)^{\prime}=\sin \theta,
\end{gathered}
$$

and simplify the expression under the root square sign:

$$
\begin{gathered}
{\left[x^{\prime}(\theta)\right]^{2}+\left[y^{\prime}(\theta)\right]^{2}=(1-\cos \theta)^{2}+\sin ^{2} \theta=1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} \\
=2-2 \cos \theta=4 \sin ^{2} \frac{\theta}{2} .
\end{gathered}
$$

Then the surface area is given by

$$
\begin{gathered}
S=2 \pi \int_{0}^{2 \pi}\left[(\theta-\sin \theta) \cdot 2 \sin \frac{\theta}{2}\right] d \theta=4 \pi\left[\int_{0}^{2 \pi} \theta \sin \frac{\theta}{2} d \theta-\int_{0}^{2 \pi} \sin \theta \sin \frac{\theta}{2} d \theta\right] \\
=4 \pi\left[I_{1}-I_{2}\right]
\end{gathered}
$$

We calculate the first integral using integration by parts:

$$
\begin{gathered}
u=\theta \\
I_{1}=\int_{0}^{2 \pi} \theta \sin \frac{\theta}{2} d \theta=\left[\begin{array}{c}
d v=\sin \frac{\theta}{2} d \theta \\
u^{\prime}=1
\end{array}\right]=-\left.2 \theta \cos \frac{\theta}{2}\right|_{0} ^{2 \pi}-\int_{0}^{2 \pi}\left(-2 \cos \frac{\theta}{2}\right) d \theta \\
v=-2 \cos \frac{\theta}{2} \\
=-\left.2 \theta \cos \frac{\theta}{2}\right|_{0} ^{2 \pi}+2 \int_{0}^{2 \pi} \cos \frac{\theta}{2} d \theta=-\left.2 \theta \cos \frac{\theta}{2}\right|_{0} ^{2 \pi}+\left.4 \sin \frac{\theta}{2}\right|_{0} ^{2 \pi} \\
=\left.\left[4 \sin \frac{\theta}{2}-2 \theta \cos \frac{\theta}{2}\right]\right|_{0} ^{2 \pi}=4 \pi .
\end{gathered}
$$

Consider now the second integral. Notice that

$$
\int \sin \theta \sin \frac{\theta}{2} d \theta=2 \int \sin ^{2} \frac{\theta}{2} \cos \frac{\theta}{2} d \theta=4 \int \sin ^{2} \frac{\theta}{2} d\left(\sin \frac{\theta}{2}\right)=\frac{4}{3} \sin ^{3} \frac{\theta}{2}+C .
$$

Hence,

$$
I_{2}=\int_{0}^{2 \pi} \sin \theta \sin \frac{\theta}{2} d \theta=\left.\frac{4}{3} \sin ^{3} \frac{\theta}{2}\right|_{0} ^{2 \pi}=0
$$

So the area of the surface is

$$
A=4 \pi\left[I_{1}-I_{2}\right]=16 \pi^{2}
$$

