1. Circles in polar coordinates:

$$
\rho=a \cos \varphi+b \sin \varphi, a=1, b=1
$$

2 Cardioid

$$
\rho=a(1+\cos \varphi), a>0
$$

Also, $\rho=a(1-\cos \varphi), \rho=a(1+\sin \varphi), \rho=a(1-\sin \varphi)$

$$
\rho=(1+\cos \varphi)
$$

$3 k$-petaled roses: $\rho=a \cos k \varphi, \rho=a \sin k \varphi, a>0$

4. Lemniscate of Bernoulli

$$
\rho=a \sqrt{\cos 2 \varphi}, a>0
$$

$\rho=\sqrt{\cos 2 \varphi}, a=1$

Lines in Parametric Form

Let f and g be continuous functions on an interval I. The set of all points $(x, y)=(f(t), g(t))$ in the Cartesian plane, as t varies over I, is the graph of the parametric equations $x=f(t)$ and $y=g(t)$, where t is the parameter. A curve is a graph along with the parametric equations that define it.

Example: Plotting parametric functions $x=\cos ^{2} t, y=\cos t+1$, for t in $[0, \pi]$. Sketch the graph of the parametric equations

t	x	y
0	1	2
$\pi / 4$	$1 / 2$	$1+\sqrt{2} / 2$
$\pi / 2$	0	1
$3 \pi / 4$	$1 / 2$	$1-\sqrt{2} / 2$
π	1	0

(a)

5 Ellipse

$x=2 \cos (t)$,
$y=4 \sin (t) .0 \leq t \leq 2 \pi$

6 Cycloid

A cycloid generated by a circle (or bicycle wheel) of radius a is given by the parametric equations

$$
\begin{aligned}
& x=a(t-\sin (t)), \\
& y=a(1-\cos (t)), 0 \leq t \leq 2 \pi
\end{aligned}
$$

A wheel traveling along a road without slipping; the point on the edge of the wheel traces out a cycloid.

7 Astroid

In this graph, the green circle is traveling around the blue circle in a counterclockwise direction. A point on the edge of the green circle traces out the red graph

$$
\begin{aligned}
& x=4 \cos ^{3}(t) \\
& y=4 \sin ^{3}(t), 0 \leq t \leq 2 \pi
\end{aligned}
$$

