
 3.4 Partial Derivatives  

3.4.1 Derivatives of a Function of Two Variables 

We have already examined limits and continuity of functions of two variables, we can 

proceed to study derivatives. 

 When studying derivatives of functions of one variable, we found that one 

interpretation of the derivative is an instantaneous rate of change of  𝑦 – dependent 

variable as a function of 𝑥 – independent variable. Leibniz notation for the derivative 

is  
𝑑𝑦

𝑑𝑥
. 

For a function  𝑧 = 𝑓(𝑥, 𝑦)  of two variables,  𝑥  and  𝑦  are the independent variables 

and  𝑧  is the dependent variable. How do we adapt Leibniz notation for functions of 

two variables? The answer lies in introducing of partial derivatives. 

Definition of partial derivatives: Let  𝑓(𝑥, 𝑦)  be a function of two variables. Then the 

partial derivative of  𝑓  with respect to  𝑥 , written as  
𝜕𝑓

𝜕𝑥
, , or  𝑓𝑥,  is defined as  

𝜕𝑓

𝜕𝑥
= 𝑓𝑥(𝑥, 𝑦) = 𝑙𝑖𝑚

∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

∆𝑥
 

The partial derivative of  𝑓  with respect to  𝑦 , written as  
𝜕𝑓

𝜕𝑦
 , or  𝑓𝑦,  is defined as 

𝜕𝑓

𝜕𝑦
= 𝑓𝑦(𝑥, 𝑦) = 𝑙𝑖𝑚

∆𝑦→0

𝑓(𝑥, 𝑦 + ∆𝑦) − 𝑓(𝑥, 𝑦)

∆𝑦
. 

This definition shows two differences already. First, the notation changes, in the sense 

that we still use a version of Leibniz notation, but the  𝑑  in the original notation is 

replaced with the symbol  𝜕 . (This rounded  “d”  is usually called “partial,” so  𝜕𝑓/𝜕𝑥  

is spoken as the “partial of  𝑓  with respect to  𝑥 .”) 

Second, we now have two different derivatives we can take, since there are two 

different independent variables. Depending on which variable we choose, we can come 

up with different partial derivatives altogether, and often do. 

 As a practical hint, when calculating partial derivatives is to treat all independent 

variables, other than the variable with respect to which we are differentiating, as 

constants. Then proceed to differentiate as with a function of a single variable. In doing 

so all differentiation rules for differentiating functions of a single variable apply. 



 Example: Calculate  𝜕𝑓/𝜕𝑥  and  𝜕𝑓/𝜕𝑦  for the following functions: 

(a) 𝑓(𝑥, 𝑦) = 𝑥2 − 3𝑥𝑦 + 2𝑦2 − 4𝑥 + 5𝑦 − 12 

To calculate  𝜕𝑓/𝜕𝑥 , treat the variable  y  as a constant. Then differentiate  𝑓(𝑥, 𝑦)  

with respect to  𝑥  using the sum, difference, and power rules: 

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑥2 − 3𝑥𝑦 + 2𝑦2 − 4𝑥 + 5𝑦 − 12]

=
𝜕

𝜕𝑥
[𝑥2] −

𝜕

𝜕𝑥
[3𝑥𝑦] +

𝜕

𝜕𝑥
[2𝑦2] −

𝜕

𝜕𝑥
[4𝑥] +

𝜕

𝜕𝑥
[5𝑦] −

𝜕

𝜕𝑥
[12]

= 2𝑥 − 3𝑦 + 0 − 4 + 0 − 0 = 2𝑥 − 3𝑦 − 4.

 

Calculating  𝜕𝑓/𝜕𝑦 : 

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
[𝑥2 − 3𝑥𝑦 + 2𝑦2 − 4𝑥 + 5𝑦 − 12]

=
𝜕

𝜕𝑦
[𝑥2] −

𝜕

𝜕𝑦
[3𝑥𝑦] +

𝜕

𝜕𝑦
[2𝑦2] −

𝜕

𝜕𝑦
[4𝑥] +

𝜕

𝜕𝑦
[5𝑦] −

𝜕

𝜕𝑦
[12]

= −3𝑥 + 4𝑦 − 0 + 5 − 0 = −3𝑥 + 4𝑦 + 5.

 

(b) 𝑔(𝑥, 𝑦) = sin (𝑥2𝑦 − 2𝑥 + 4) 

To calculate  𝜕𝑔/𝜕𝑥,  treat the variable y as a constant. Then differentiate  𝑔(𝑥, 𝑦)  

with respect to  𝑥  using the chain rule and power rule: 

𝜕𝑔

𝜕𝑥
=

𝜕

𝜕𝑥
[sin (𝑥2𝑦 − 2𝑥 + 4)]

= cos (𝑥2𝑦 − 2𝑥 + 4)
𝜕

𝜕𝑥
[𝑥2𝑦 − 2𝑥 + 4]

= (2𝑥𝑦 − 2)cos (𝑥2𝑦 − 2𝑥 + 4).

 

To calculate  𝜕𝑔/𝜕𝑦,  treat the variable  𝑥  as a constant. Then differentiate  𝑔(𝑥, 𝑦)  

with respect to  𝑦  using the chain rule and power rule: 

𝜕𝑔

𝜕𝑦
=

𝜕

𝜕𝑦
[sin (𝑥2𝑦 − 2𝑥 + 4)] 

= cos (𝑥2𝑦 − 2𝑥 + 4)
𝜕

𝜕𝑦
[𝑥2𝑦 − 2𝑥 + 4] = 𝑥2cos (𝑥2𝑦 − 2𝑥 + 4). 



(c) 𝑓(𝑥, 𝑦) = tan (𝑥3 − 3𝑥2𝑦2 + 2𝑦4) 

𝜕𝑓

𝜕𝑥
= (3𝑥2 − 6𝑥𝑦2)sec2 (𝑥3 − 3𝑥2𝑦2 + 2𝑦4) 

𝜕𝑓

𝜕𝑦
= (−6𝑥2𝑦 + 8𝑦3)sec2 (𝑥3 − 3𝑥2𝑦2 + 2𝑦4) 

We can interpret these partial derivatives as follows. If we graph  𝑓(𝑥, 𝑦)  and  𝑓(𝑥 +

∆𝑥, 𝑦)  for an arbitrary point  (𝑥, 𝑦),  then the slope of the secant line passing through 

these two points is given by 

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

∆𝑥
 

This line is parallel to the  x -axis. Therefore, the slope of the secant line represents an 

average rate of change of the function  𝑓  as we travel parallel to the  x -axis. As  ∆𝑥  

approaches zero, the slope of the secant line approaches the slope of the tangent line. 

If we choose to change  y  instead of  x  by the same incremental value ∆𝑦, then the 

secant line is parallel to the  y -axis and so is the tangent line. Therefore, 𝜕𝑓/𝜕𝑥 

represents the slope of the tangent line passing through the point (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) parallel 

to the  x -axis and  𝜕𝑓/𝜕𝑦  represents the slope of the tangent line passing through the 

point  (𝑥, 𝑦, 𝑓(𝑥, 𝑦))  parallel to the  y -axis.  

If we wish to find the slope of a tangent line passing through the same point in any 

other direction, then we need what are called directional derivatives. 

 3.4.2 Functions of More Than Two Variables 

Suppose we have a function of three variables, such as  𝑤 = 𝑓(𝑥, 𝑦, 𝑧).  We can 

calculate partial derivatives of  𝑤  with respect to any of the independent variables, 

simply as extensions of the definitions for partial derivatives of functions of two 

variables. 

Definition of Partial Derivatives: Let  𝑓(𝑥, 𝑦, 𝑧)  be a function of three variables. Then, 

the partial derivative of 𝑓 with respect to  𝑥 , written as  𝜕𝑓/𝜕𝑥, or 𝑓𝑥,  is defined to be  

𝜕𝑓

𝜕𝑥
= 𝑓𝑥(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚

∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

∆𝑥
. 

The partial derivative of  𝑓  with respect to 𝑦, written as 𝜕𝑓/𝜕𝑦 , or 𝑓𝑦, is defined to be 



𝜕𝑓

𝜕𝑦
= 𝑓𝑦(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚

∆𝑦→0

𝑓(𝑥, 𝑦 + ∆𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

∆𝑦
 

The partial derivative of  𝑓  with respect to 𝑧, written as 𝜕𝑓/𝜕𝑧, or 𝑓𝑧 , is defined to be 

𝜕𝑓

𝜕𝑧
= 𝑓𝑧(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚

∆𝑧→0

𝑓(𝑥, 𝑦, 𝑧 + ∆𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

∆𝑧
. 

We can calculate a partial derivative of a function of three variables using the same 

idea we used for a function of two variables. For example, if we have a function  𝑓  of  

𝑥, 𝑦 , and  𝑧 , and we wish to calculate  𝜕𝑓/𝜕𝑥 , then we treat the other two independent 

variables as if they are constants, then differentiate with respect to  𝑥 . 

 Example: Calculate the three partial derivatives of the following functions. 

(a) 𝑓(𝑥, 𝑦, 𝑧) =
(𝑥2𝑦−4𝑥𝑧+𝑦2)

(𝑥−3𝑦𝑧)
 

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
[
𝑥2𝑦 − 4𝑥𝑧 + 𝑦2

𝑥 − 3𝑦𝑧
]

=

𝜕
𝜕𝑥

(𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)(𝑥 − 3𝑦𝑧) − (𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)
𝜕

𝜕𝑥
(𝑥 − 3𝑦𝑧)

(𝑥 − 3𝑦𝑧)2

=
(2𝑥𝑦 − 4𝑧)(𝑥 − 3𝑦𝑧) − (𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)(1)

(𝑥 − 3𝑦𝑧)2

=
2𝑥2𝑦 − 6𝑥𝑦2𝑧 − 4𝑥𝑧 + 12𝑦𝑧2 − 𝑥2𝑦 + 4𝑥𝑧 − 𝑦2

(𝑥 − 3𝑦𝑧)2

=
𝑥2𝑦 − 6𝑥𝑦2𝑧 − 4𝑥𝑧 + 12𝑦𝑧2 + 4𝑥𝑧 − 𝑦2

(𝑥 − 3𝑦𝑧)2

 

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
[
𝑥2𝑦 − 4𝑥𝑧 + 𝑦2

𝑥 − 3𝑦𝑧
]

=

𝜕
𝜕𝑦

(𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)(𝑥 − 3𝑦𝑧) − (𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)
𝜕

𝜕𝑦
(𝑥 − 3𝑦𝑧)

(𝑥 − 3𝑦𝑧)2

=
(𝑥2 + 2𝑦)(𝑥 − 3𝑦𝑧) − (𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)(−3𝑧)

(𝑥 − 3𝑦𝑧)2

=
𝑥3 − 3𝑥2𝑦𝑧 + 2𝑥𝑦 − 6𝑦2𝑧 + 3𝑥2𝑦𝑧 − 12𝑥𝑧2 + 3𝑦2𝑧

(𝑥 − 3𝑦𝑧)2

=
𝑥3 + 2𝑥𝑦 − 3𝑦2𝑧 − 12𝑥𝑧2

(𝑥 − 3𝑦𝑧)2

 



𝜕𝑓

𝜕𝑧
=

𝜕

𝜕𝑧
[
𝑥2𝑦 − 4𝑥𝑧 + 𝑦2

𝑥 − 3𝑦𝑧
]

=

𝜕
𝜕𝑧

(𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)(𝑥 − 3𝑦𝑧) − (𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)
𝜕

𝜕𝑧
(𝑥 − 3𝑦𝑧)

(𝑥 − 3𝑦𝑧)2

=
(−4𝑥)(𝑥 − 3𝑦𝑧) − (𝑥2𝑦 − 4𝑥𝑧 + 𝑦2)(−3𝑦)

(𝑥 − 3𝑦𝑧)2

=
−4𝑥2 + 12𝑥𝑦𝑧 + 3𝑥2𝑦2 − 12𝑥𝑦𝑧 + 3𝑦3

(𝑥 − 3𝑦𝑧)2

=
−4𝑥2 + 3𝑥2𝑦2 + 3𝑦3

(𝑥 − 3𝑦𝑧)2

 

(b) 𝑔(𝑥, 𝑦, 𝑧) = sin (𝑥2𝑦 − 𝑧) + cos (𝑥2 − 𝑦𝑧) 

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
[sin (𝑥2𝑦 − 𝑧) + cos (𝑥2 − 𝑦𝑧)]

= (cos (𝑥2𝑦 − 𝑧))
𝜕

𝜕𝑥
(𝑥2𝑦 − 𝑧) − (sin (𝑥2 − 𝑦𝑧))

𝜕

𝜕𝑥
(𝑥2 − 𝑦𝑧)

= 2𝑥𝑦cos (𝑥2𝑦 − 𝑧) − 2𝑥sin (𝑥2 − 𝑦𝑧)

 

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
[sin (𝑥2𝑦 − 𝑧) + cos (𝑥2 − 𝑦𝑧)]

= (cos (𝑥2𝑦 − 𝑧))
𝜕

𝜕𝑦
(𝑥2𝑦 − 𝑧) − (sin (𝑥2 − 𝑦𝑧))

𝜕

𝜕𝑦
(𝑥2 − 𝑦𝑧)

= 𝑥2cos (𝑥2𝑦 − 𝑧) + 𝑧sin (𝑥2 − 𝑦𝑧)

 

𝜕𝑓

𝜕𝑧
=

𝜕

𝜕𝑧
[sin (𝑥2𝑦 − 𝑧) + cos (𝑥2 − 𝑦𝑧)]

= (cos (𝑥2𝑦 − 𝑧))
𝜕

𝜕𝑧
(𝑥2𝑦 − 𝑧) − (sin (𝑥2 − 𝑦𝑧))

𝜕

𝜕𝑧
(𝑥2 − 𝑦𝑧)

= −cos (𝑥2𝑦 − 𝑧) + 𝑦sin (𝑥2 − 𝑦𝑧)

 

 3.5 Higher-Order Partial Derivatives 

Consider the function  

𝑓(𝑥, 𝑦) = 2𝑥3 − 4𝑥𝑦2 + 5𝑦3 − 6𝑥𝑦 + 5𝑥 − 4𝑦 + 12. 

Its partial derivatives are 

𝜕𝑓

𝜕𝑥
= 6𝑥2 − 4𝑦2 − 6𝑦 + 5 and 

𝜕𝑓

𝜕𝑦
= −8𝑥𝑦 + 15𝑦2 − 6𝑥 − 4. 



Each of these partial derivatives is a function of two variables, so we can calculate 

partial derivatives of these functions. Just as with derivatives of single-variable 

functions, we can call these second-order derivatives, third-order derivatives, and so 

on. In general, they are referred to as higher-order partial derivatives. There are four 

second-order partial derivatives for any function (provided they all exist): 

𝜕2𝑓

𝜕𝑥2
=

𝜕

𝜕𝑥
[
𝜕𝑓

𝜕𝑥
]

𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦
[
𝜕𝑓

𝜕𝑥
]

𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
[
𝜕𝑓

𝜕𝑦
]

𝜕2𝑓

𝜕𝑦2
=

𝜕

𝜕𝑦
[
𝜕𝑓

𝜕𝑦
].

 

An alternative notation for each is  𝑓𝑥𝑥, 𝑓𝑥𝑦, 𝑓𝑦𝑥,  and  𝑓𝑦𝑦, respectively. Higher-order 

partial derivatives calculated with respect to different variables, such as  𝑓𝑥𝑦  and  𝑓𝑦𝑥, 

are commonly called mixed partial derivatives. 

Example: Calculate all four second partial derivatives for the function. 

(a) 𝑓(𝑥, 𝑦) = 𝑥𝑒−3𝑦 + sin (2𝑥 − 5𝑦). We first calculate 𝜕𝑓/𝜕𝑥: 
𝜕𝑓

𝜕𝑥
= 𝑒−3𝑦 + 2cos (2𝑥 − 5𝑦). 

Then, 

𝜕2𝑓

𝜕𝑥2
=

𝜕

𝜕𝑥
[
𝜕𝑓

𝜕𝑥
] =

𝜕

𝜕𝑥
[𝑒−3𝑦 + 2cos (2𝑥 − 5𝑦)] = −4sin (2𝑥 − 5𝑦) 

𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦
[
𝜕𝑓

𝜕𝑥
] =

𝜕

𝜕𝑦
[𝑒−3𝑦 + 2cos (2𝑥 − 5𝑦)] = −3𝑒−3𝑦 + 10sin (2𝑥 − 5𝑦) 

Also, calculating  𝜕𝑓/𝜕𝑦: 
𝜕𝑓

𝜕𝑦
= −3𝑥𝑒−3𝑦 − 5cos (2𝑥 − 5𝑦). 

We can calculate  

𝜕2𝑓

𝜕𝑦2
=

𝜕

𝜕𝑦
[
𝜕𝑓

𝜕𝑦
] =

𝜕

𝜕𝑦
[−3𝑥𝑒−3𝑦 − 5cos (2𝑥 − 5𝑦)] = 9𝑥𝑒−3𝑦 − 25sin (2𝑥 − 5𝑦) 

𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
[
𝜕𝑓

𝜕𝑦
] =

𝜕

𝜕𝑥
[−3𝑥𝑒−3𝑦 − 5cos (2𝑥 − 5𝑦)] = −3𝑒−3𝑦 + 10sin (2𝑥 − 5𝑦) 



(b) 𝑓(𝑥, 𝑦) = sin (3𝑥 − 2𝑦) + cos (𝑥 + 4𝑦). 

𝜕2𝑓

𝜕𝑥2
= −9sin (3𝑥 − 2𝑦) − cos (𝑥 + 4𝑦) 

𝜕2𝑓

𝜕𝑦𝜕𝑥
= 6sin (3𝑥 − 2𝑦) − 4cos (𝑥 + 4𝑦) 

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 6sin (3𝑥 − 2𝑦) − 4cos (𝑥 + 4𝑦) 

𝜕2𝑓

𝜕𝑦2
= −4sin (3𝑥 − 2𝑦) − 16cos (𝑥 + 4𝑦) 

At this point we should notice that, in both Example and the checkpoint, it was true 

that 
𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕2𝑓

𝜕𝑥𝜕𝑦
 Under certain conditions, this is always true. In fact, it is a direct 

consequence of the following theorem. 

Equality of Mixed Partial Derivatives (Clairaut’s Theorem) Suppose that 𝑓(𝑥, 𝑦) is 

defined on an open disk 𝐷 that contains the point (𝑎, 𝑏). If the functions 𝑓𝑥𝑦 and 𝑓𝑦𝑥 

are continuous on 𝐷, then 𝑓𝑥𝑦 = 𝑓𝑦𝑥.  

Clairaut’s theorem guarantees that as long as mixed second-order derivatives are 

continuous, the order in which we choose to differentiate the functions (i.e., which 

variable goes first, then second, and so on) does not matter. It can be extended to 

higher-order derivatives as well. Two other second-order partial derivatives can be 

calculated for any function 𝑓(𝑥, 𝑦). The partial derivative 𝑓𝑥𝑥 is equal to the partial 

derivative of 𝑓𝑥 with respect to 𝑥, and 𝑓𝑦𝑦 is equal to the partial derivative of 𝑓𝑦 with 

respect to 𝑦. 
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 3.6 Differentials 

The differential of a function of one variable 𝑦 = 𝑓(𝑥), written as 𝑑𝑦, is defined as 

𝑓′(𝑥)𝑑𝑥 . The differential is used to approximate 𝛥𝑦 = 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥), where 



𝛥𝑥 = 𝑑𝑥. Extending this idea to the linear approximation of a function of two variables 

at the point (𝑥0, 𝑦0) yields the formula for the total differential for a function of two 

variables. 

 Definition: Let 𝑧 = 𝑓(𝑥, 𝑦) be a function of two variables with (𝑥0, 𝑦0) in the 

domain of 𝑓(𝑥, 𝑦), and let 𝛥𝑥 and  𝛥𝑦 be chosen so that  (𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦)  is also 

in the domain of 𝑓(𝑥, 𝑦). If 𝑓(𝑥, 𝑦) is differentiable at the point (𝑥0, 𝑦0), then the 

differentials 𝑑𝑥 and 𝑑𝑦 are defined as 

𝑑𝑥 = 𝛥𝑥 and 𝑑𝑦 = 𝛥𝑦 

The differential 𝑑𝑧, also called the total differential of 𝑧 = 𝑓(𝑥, 𝑦) at (𝑥0, 𝑦0), is 

defined as 

𝑑𝑧 = 𝑓𝑥(𝑥0, 𝑦0)𝑑𝑥 + 𝑓𝑦(𝑥0, 𝑦0)𝑑𝑦. 

Notice that the symbol ∂  is not used to denote the total differential; rather, 𝑑 appears 

in front of 𝑧. 

Now, let’s define 𝛥𝑧 = 𝑓(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) − 𝑓(𝑥, 𝑦). We use 𝑑𝑧 to approximate 𝛥𝑧, 

so  

𝛥𝑧 ≈ 𝑑𝑧 = 𝑓𝑥(𝑥0, 𝑦0)𝑑𝑥 + 𝑓𝑦(𝑥0, 𝑦0)𝑑𝑦. 

Therefore, the differential is used to approximate the change in the function 𝑧 =

𝑓(𝑥0, 𝑦0) at the point (𝑥0, 𝑦0) for given values of 𝛥𝑥 and 𝛥𝑦. Since 𝛥𝑧 = 𝑓(𝑥 +

𝛥𝑥, 𝑦 + 𝛥𝑦) − 𝑓(𝑥, 𝑦) this can be used further to approximate 𝑓(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦): 

𝑓(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) ≈ 𝑓(𝑥, 𝑦) + 𝑓𝑥(𝑥0, 𝑦0)𝛥𝑥 + 𝑓𝑦(𝑥0, 𝑦0)𝛥𝑦. 

 Example: Find the differential  𝑑𝑧  of the function 𝑓(𝑥, 𝑦) = 3𝑥2 − 2𝑥𝑦 + 𝑦2 and 

use it to approximate 𝛥𝑧 at point (2, −3).  Use 𝛥𝑥 = 0.1 and  𝛥𝑦 = −0.05. What is 

the exact value of 𝛥𝑧 ? 

First, we must calculate 𝑓(𝑥0, 𝑦0), 𝑓𝑥(𝑥0, 𝑦0), and 𝑓𝑦(𝑥0, 𝑦0) using 𝑥0 = 2 and 𝑥0 =

−3.  

𝑓(𝑥0, 𝑦0) = 𝑓(2, −3) = 3(2)2 − 2(2)(−3) + (−3)2 = 12 + 12 + 9 = 33 

𝑓𝑥(𝑥, 𝑦) = 6𝑥 − 2𝑦, 𝑓𝑥(𝑥0, 𝑦0) = 𝑓𝑥(2, −3) = 6(2) − 2(−3) = 12 + 6 = 18 

𝑓𝑦(𝑥, 𝑦) = −2𝑥 + 2𝑦, 𝑓𝑦(𝑥0, 𝑦0) = 𝑓𝑦(2, −3) = −2(2) + 2(−3) = −4 − 6 = −10 

Then, we substitute these quantities into Equation of the differential: 



𝑑𝑧 = 𝑓𝑥(𝑥0, 𝑦0)𝑑𝑥 + 𝑓𝑦(𝑥0, 𝑦0)𝑑𝑦

𝑑𝑧 = 18(0.1) − 10(−0.05) = 1.8 + 0.5 = 2.3.
 

This is the approximation to 𝛥𝑧 = 𝑓(𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦) − 𝑓(𝑥0, 𝑦0). The exact value 

of  𝛥𝑧  is given by 

𝛥𝑧 = 𝑓(𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦) − 𝑓(𝑥0, 𝑦0)  = 𝑓(2 + 0.1, −3 − 0.05) − 𝑓(2, −3)
= 𝑓(2.1, −3.05) − 𝑓(2, −3) = 2.3425 

 Example: Find an approximate value of   033
980

.
. . 

The required value can be considered as a value of the function yxz   at 

xxx  0 , yyy  0 , where 10 x , 30 y , 020.x , 030.y . 
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According to the formula we have     94.002.03198.0
03.3
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 Differentials of a Function of more than Two Variables 

The differential 𝑑𝑢 , also called the total differential of 𝑢 = 𝑓(𝑥, 𝑦, 𝑧)  at  (𝑥0, 𝑦0, 𝑧0), 

is defined as 

𝑑𝑢 = 𝑓𝑥(𝑥0, 𝑦0, 𝑧0)𝑑𝑥 + 𝑓𝑦(𝑥0, 𝑦0, 𝑧0)𝑑𝑦 + 𝑓𝑧(𝑥0, 𝑦0, 𝑧0)𝑑𝑧 

 

Example. Find total differential of the function ).yxzln(u 22   Let’s 

find the partial derivatives first: 
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In general case, the total differential of function  nxxxfu ...,,, 21  of 𝑛 

variables is defined by  

 2
2

1
1

n
n

dx
x

u
dx

x

u
dx

x

u
du












 ...  

 Differentials of the higher orders 

Let the function  nxxxfu ...,,, 21  have continuous partial derivatives of the 

1st order. Obviously du  is also the function of 𝑛 variables nxxx ...,,, 21  and therefore 

we can find the total differential of this function, i.e.  dud , which is called the 

differential of the 2nd order and is designated as ud 2 .  

Similarly we can find  uddud 23  – differential of the 3rd order, etc. Thus, the 

differential of the nth order takes the form: 

 uddud nn 1  

Note: Thus the increments ndxdxdx ...,,, 21  of independent variables are considered 

constant and while passing from one differential to another they remain the same. 

 Let’s consider a function of two variables   yxfz , . Then, 

𝑑2𝑧 = 𝑑(𝑑𝑧) = 𝑑 (
𝜕𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑧

𝜕𝑦
𝑑𝑦) =

𝜕

𝜕𝑥
(

𝜕𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑧

𝜕𝑦
𝑑𝑦) 𝑑𝑥 + 

𝜕

𝜕𝑦
(

𝜕𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑧

𝜕𝑦
𝑑𝑦) 𝑑𝑦 =

𝜕2𝑧

𝜕𝑥2
𝑑𝑥2 +

𝜕2𝑧

𝜕𝑦𝜕𝑥
𝑑𝑦𝑑𝑥 +

𝜕2𝑧

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑧

𝜕𝑦2
𝑑𝑦2 = 

𝜕2𝑧

𝜕𝑥2
𝑑𝑥2 + 2

𝜕2𝑧

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑧

𝜕𝑦2
𝑑𝑦2 = (

𝜕2

𝜕𝑥2
𝑑𝑥2 + 2

𝜕2

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2

𝜕𝑦2
𝑑𝑦2) 𝑧 = 

(
𝜕

𝜕𝑥
𝑑𝑥 +

𝜕

𝜕𝑦
𝑑𝑦)
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For differentials of higher orders there takes place the following symbolical 

formula: 

udx
x

dx
x

dx
x

ud m
n

n

m )...( 2
2

1
1 










  

 Example. y/xarctanz  . Find zd 2 .At first let’s find the partial 

derivatives of the 1st order of the given function 

222

2

2

22

2

2

)(

1

1

1

1

1

yx

x

y

x

y
xy

u

yx

y

y

y
xx

u























 

Then let’s find partial derivatives of the 2nd order 
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Substituting found derivatives in the formula we obtain 
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 3.7 The Chain Rule for Multivariable Functions 

In single-variable calculus, we found that one of the most useful differentiation rules 



is the chain rule, which allows us to find the derivative of the composition of two 

functions. The same thing is true for multivariable calculus, but this time we have to 

deal with more than one form of the chain rule. In this section, we study extensions of 

the chain rule and learn how to take derivatives of compositions of functions of more 

than one variable. 

Recall that the chain rule for the derivative of a composite of two functions can be 

written in the form 

𝑑

𝑑𝑥
(𝑓(𝑔(𝑥))) = 𝑓′(𝑔(𝑥))𝑔′(𝑥). 

In this equation, both 𝑓(𝑥) and 𝑔(𝑥) are functions of one variable. Now suppose that 

𝑓 is a function of two variables and 𝑔(𝑥) is a function of one variable. Or perhaps they 

are both functions of two variables, or even more. How would we calculate the 

derivative in these cases? The following theorem gives us the answer for the case of 

one independent variable. 

 3.7.1 Chain Rule for One Independent Variables 

Suppose that 𝑥 = 𝑔(𝑡) and 𝑦 = ℎ(𝑡) are differentiable functions of 𝑡 and 𝑧 = 𝑓(𝑥, 𝑦) 

is a differentiable function of 𝑥 and 𝑦. Then 𝑧 = 𝑓(𝑥(𝑡), 𝑦(𝑡)) is a differentiable 

function of 𝑡  and 

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑥
⋅

𝑑𝑥

𝑑𝑡
+

𝜕𝑧

𝜕𝑦
⋅

𝑑𝑦

𝑑𝑡
, 

where the ordinary derivatives are evaluated at 𝑡  and the partial derivatives are 

evaluated at (𝑥, 𝑦). 

Two terms appear on the right-hand side of the formula, and 𝑓 is a function of two 

variables. This pattern works with functions of more than two variables as well. 

 Example. Calculate  
𝑑𝑧

𝑑𝑡
 for each of the following functions: 

1) 𝑧 = 𝑓(𝑥, 𝑦) = 4𝑥2 + 3𝑦2, 𝑥 = 𝑥(𝑡) = sin 𝑡, 𝑦 = 𝑦(𝑡) = cos 𝑡  

To use the chain rule, we need four quantities: 
𝜕𝑧

𝜕𝑥
= 8𝑥, 

𝑑𝑥

𝑑𝑡
= cos 𝑡, 

𝜕𝑧

𝜕𝑦
= 6𝑦, 

𝑑𝑦

𝑑𝑡
=

−sin 𝑡 

Thus, 
𝑑𝑧

𝑑𝑡
=

∂𝑧

∂𝑥
⋅

𝑑𝑥

𝑑𝑡
+

∂𝑧

∂𝑦
⋅

𝑑𝑦

𝑑𝑡
= (8𝑥)(cos 𝑡) + (6𝑦)(−sin 𝑡) = 8𝑥cos 𝑡 − 6𝑦sin 𝑡. 



This answer has three variables in it. To reduce it to one variable, use the fact that 

𝑥(𝑡) = sin 𝑡 and 𝑦(𝑡) = cos 𝑡. We obtain 

𝑑𝑧

𝑑𝑡
= 8𝑥cos 𝑡 − 6𝑦sin 𝑡 = 8(sin 𝑡)cos 𝑡 − 6(cos 𝑡)sin 𝑡 = 2sin 𝑡cos 𝑡. 

This derivative can also be calculated by first substituting  𝑥(𝑡)  and  𝑦(𝑡)  into  𝑓(𝑥, 𝑦),  

then differentiating with respect to  𝑡 : 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑓(𝑥(𝑡), 𝑦(𝑡)) = 4(𝑥(𝑡))2 + 3(𝑦(𝑡))2 = 4sin2 𝑡 + 3cos2 𝑡. 

Then, 

𝑑𝑧

𝑑𝑡
= 2(4sin 𝑡)(cos 𝑡) + 2(3cos 𝑡)(−sin 𝑡) = 8sin 𝑡cos 𝑡 − 6sin 𝑡cos 𝑡

= 2sin 𝑡cos 𝑡, 

which is the same solution. However, it may not always be this easy to differentiate in 

this form. 

2) 𝑧 = 𝑓(𝑥, 𝑦) = √𝑥2 − 𝑦2, 𝑥 = 𝑥(𝑡) = 𝑒2𝑡 , 𝑦 = 𝑦(𝑡) = 𝑒−𝑡 

 
𝜕𝑧

𝜕𝑥
=

𝑥

√𝑥2−𝑦2
, 

𝑑𝑥

𝑑𝑡
= 2𝑒2𝑡, 

𝜕𝑧

𝜕𝑦
=

−𝑦

√𝑥2−𝑦2
, 

𝑑𝑥

𝑑𝑡
= −𝑒−𝑡 . 

𝑑𝑧

𝑑𝑡
=

∂𝑧

∂𝑥
⋅

𝑑𝑥

𝑑𝑡
+

∂𝑧

∂𝑦
⋅

𝑑𝑦

𝑑𝑡
= (

𝑥

√𝑥2 − 𝑦2
)(2𝑒2𝑡) + (

−𝑦

√𝑥2 − 𝑦2
)(−𝑒−𝑡)

=
2𝑥𝑒2𝑡 − 𝑦𝑒−𝑡

√𝑥2 − 𝑦2
 

To reduce this to one variable, we use the fact that 𝑥(𝑡) = 𝑒2𝑡 and 𝑦(𝑡) = 𝑒−𝑡 

𝑑𝑧

𝑑𝑡
=

2𝑥𝑒2𝑡 + 𝑦𝑒−𝑡

√𝑥2 − 𝑦2
=

2(𝑒2𝑡)𝑒2𝑡 + (𝑒−𝑡)𝑒−𝑡

√𝑒4𝑡 − 𝑒−2𝑡
=

2𝑒4𝑡 + 𝑒−2𝑡

√𝑒4𝑡 − 𝑒−2𝑡
 

3) 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 − 3𝑥𝑦 + 2𝑦2, 𝑥 = 𝑥(𝑡) = 3sin 2𝑡, 𝑦 = 𝑦(𝑡) = 4cos 2𝑡 

𝑑𝑧

𝑑𝑡
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
 = (2𝑥 − 3𝑦)(6cos 2𝑡) + (−3𝑥 + 4𝑦)(−8sin 2𝑡) 

= −92sin 2𝑡cos 2𝑡 − 72(cos2 2𝑡 − sin2 2𝑡)  = −46sin 4𝑡 − 72cos 4𝑡. 

 In case, 𝑧 = 𝑓(𝑥, 𝑦) is a function of 𝑥  nd  𝑦, and both 𝑥 = 𝑔(𝑢, 𝑣) and 𝑦 =



ℎ(𝑢, 𝑣) are functions of the independent variables 𝑢  and 𝑣 . 

3.7.2 Chain Rule for Two Independent Variables:  

Suppose 𝑥 = 𝑔(𝑢, 𝑣) and 𝑦 = ℎ(𝑢, 𝑣) are differentiable functions of 𝑢 and 𝑣, and 𝑧 =

𝑓(𝑥, 𝑦) is a differentiable function of 𝑥 and 𝑦. Then, 𝑧 = 𝑓(𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)) is a 

differentiable function of 𝑢 and 𝑣, and 

𝜕𝑧

𝜕𝑢
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑢
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑢
 and 

𝜕𝑧

𝜕𝑣
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑣
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑣
. 

 Example: Using the chain rule for two variables calculate  
𝜕𝑧

𝜕𝑢
  and  

𝜕𝑧

𝜕𝑣
  of the 

following functions: 

1) 𝑧 = 𝑓(𝑥, 𝑦) = 3𝑥2 − 2𝑥𝑦 + 𝑦2, 𝑥 = 𝑥(𝑢, 𝑣) = 3𝑢 + 2𝑣, 𝑦 = 𝑦(𝑢, 𝑣) = 4𝑢 − 𝑣. 

To implement the chain rule for two variables, we need six partial derivatives: 

𝜕𝑧

𝜕𝑥
= 6𝑥 − 2𝑦, 

𝜕𝑧

𝜕𝑦
= −2𝑥 + 2𝑦, 

𝜕𝑥

𝜕𝑢
= 3

𝜕𝑥

𝜕𝑣
= 2,  

𝜕𝑦

𝜕𝑢
= 4

𝜕𝑦

𝜕𝑣
= −1. 

To find  
𝜕𝑧

𝜕𝑢
,  we use Equation  

𝜕𝑧

𝜕𝑢
=

𝜕𝑧

𝜕𝑥
⋅

𝜕𝑥

𝜕𝑢
+

𝜕𝑧

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑢
= 3(6𝑥 − 2𝑦) + 4(−2𝑥 + 2𝑦) = 10𝑥 + 2𝑦 

Next, we substitute 𝑥(𝑢, 𝑣) = 3𝑢 + 2𝑣 and 𝑦(𝑢, 𝑣) = 4𝑢 − 𝑣: 

𝜕𝑧

𝜕𝑢
= 10𝑥 + 2𝑦 = 10(3𝑢 + 2𝑣) + 2(4𝑢 − 𝑣) = 38𝑢 + 18𝑣 

To find  
𝜕𝑧

𝜕𝑣
,  we use Equation 

𝜕𝑧

𝜕𝑣
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑣
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑣
= 2(6𝑥 − 2𝑦) + (−1)(−2𝑥 + 2𝑦)  = 14𝑥 − 6𝑦 

Then we substitute 𝑥(𝑢, 𝑣) = 3𝑢 + 2𝑣 and 𝑦(𝑢, 𝑣) = 4𝑢 − 𝑣: 

𝜕𝑧

𝜕𝑣
= 14𝑥 − 6𝑦 = 14(3𝑢 + 2𝑣) − 6(4𝑢 − 𝑣)  = 18𝑢 + 34𝑣 

 Example: Using the chain rule for two variables calculate   𝜕𝑧/𝜕𝑢  and  𝜕𝑧/𝜕𝑣  

given the following functions: 



𝑧 = 𝑓(𝑥, 𝑦) =
2𝑥 − 𝑦

𝑥 + 3𝑦
, 𝑥(𝑢, 𝑣) = 𝑒2𝑢cos 3𝑣, 𝑦(𝑢, 𝑣) = 𝑒2𝑢sin 3𝑣. 

𝜕𝑧

𝜕𝑢
= 0,

𝜕𝑧

𝜕𝑣
=

−21

(3sin 3𝑣 + cos 3𝑣)2
 

 3.7.3 The Generalized Chain Rule 

Now that we’ve see how to extend the original chain rule to functions of two variables, 

it is natural to ask: Can we extend the rule to more than two variables? The answer is 

yes, as the generalized chain rule states. 

Let 𝑤 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) be a differentiable function of  𝑚  independent variables, 

and for each  𝑖 ∈ 1, … , 𝑚,  let 𝑥𝑖 = 𝑥𝑖(𝑡1, 𝑡2, … , 𝑡𝑛) be a differentiable function of  𝑛  

independent variables. Then 

𝜕𝑤

𝜕𝑡𝑗
=

𝜕𝑤

𝜕𝑥1

𝜕𝑥1

𝜕𝑡𝑗
+

𝜕𝑤

𝜕𝑥2

𝜕𝑥2

𝜕𝑡𝑗
+ ⋯ +

𝜕𝑤

𝜕𝑥𝑚

𝜕𝑥𝑚

𝜕𝑡𝑗
 

for any 𝑗 ∈ 1,2, … , 𝑛. 

 Example: Using the generalized chain rule  

 𝑤 = 𝑓(𝑥, 𝑦, 𝑧) = 3𝑥2 − 2𝑥𝑦 + 4𝑧2 ,  

 𝑥 = 𝑥(𝑢, 𝑣) = 𝑒𝑢sin 𝑣, 𝑦 = 𝑦(𝑢, 𝑣) = 𝑒𝑢cos 𝑣, 𝑧 = 𝑧(𝑢, 𝑣) = 𝑒𝑢 

The formulas for  𝜕𝑤/𝜕𝑢  and  𝜕𝑤/𝜕𝑣  are 

𝜕𝑤

𝜕𝑢
=

𝜕𝑤

𝜕𝑥
⋅

𝜕𝑥

𝜕𝑢
+

𝜕𝑤

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑢
+

𝜕𝑤

𝜕𝑧
⋅

𝜕𝑧

𝜕𝑢
𝜕𝑤

𝜕𝑣
=

𝜕𝑤

𝜕𝑥
⋅

𝜕𝑥

𝜕𝑣
+

𝜕𝑤

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑣
+

𝜕𝑤

𝜕𝑧
⋅

𝜕𝑧

𝜕𝑣
.

 

Therefore, there are nine different partial derivatives that need to be calculated and 

substituted. We need to calculate each of them: 

 
𝜕𝑤

𝜕𝑥
= 6𝑥 − 2𝑦, 

𝜕𝑤

𝜕𝑦
= −2𝑥, 

𝜕𝑤

𝜕𝑧
= 8𝑧 

 
𝜕𝑥

𝜕𝑢
= 𝑒𝑢sin 𝑣, 

𝜕𝑦

𝜕𝑢
= 𝑒𝑢cos 𝑣, 

𝜕𝑧

𝜕𝑢
= 𝑒𝑢,  

 
𝜕𝑥

𝜕𝑣
= 𝑒𝑢cos 𝑣, 

𝜕𝑦

𝜕𝑣
= −𝑒𝑢sin 𝑣, 

𝜕𝑧

𝜕𝑣
= 0 



 Now, we substitute each of them into the first formula to calculate 𝜕𝑤/𝜕𝑢: 

𝜕𝑤

𝜕𝑢
=

𝜕𝑤

𝜕𝑥
⋅

𝜕𝑥

𝜕𝑢
+

𝜕𝑤

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑢
+

𝜕𝑤

𝜕𝑧
⋅

𝜕𝑧

𝜕𝑢
= (6𝑥 − 2𝑦)𝑒𝑢sin 𝑣 − 2𝑥𝑒𝑢cos 𝑣 + 8𝑧𝑒𝑢 

then substitute 𝑥(𝑢, 𝑣) = 𝑒𝑢sin 𝑣, 𝑦(𝑢, 𝑣) = 𝑒𝑢cos 𝑣, 𝑧(𝑢, 𝑣) = 𝑒𝑢 into this equation: 

𝜕𝑤

𝜕𝑢
= (6𝑥 − 2𝑦)𝑒𝑢sin 𝑣 − 2𝑥𝑒𝑢cos 𝑣 + 8𝑧𝑒𝑢

= (6𝑒𝑢sin 𝑣 − 2𝑒𝑢cos 𝑣)𝑒𝑢sin 𝑣 − 2(𝑒𝑢sin 𝑣)𝑒𝑢cos 𝑣 + 8𝑒2𝑢

= 6𝑒2𝑢sin2 𝑣 − 4𝑒2𝑢sin 𝑣cos 𝑣 + 8𝑒2𝑢

= 2𝑒2𝑢(3sin2 𝑣 − 2sin 𝑣cos 𝑣 + 4).

 

Next, we calculate  𝜕𝑤/𝜕𝑣 : 

𝜕𝑤

𝜕𝑣
=

𝜕𝑤

𝜕𝑥
⋅

𝜕𝑥

𝜕𝑣
+

𝜕𝑤

𝜕𝑦
⋅

𝜕𝑦

𝜕𝑣
+

𝜕𝑤

𝜕𝑧
⋅

𝜕𝑧

𝜕𝑣
= (6𝑥 − 2𝑦)𝑒𝑢cos 𝑣 − 2𝑥(−𝑒𝑢sin 𝑣) + 8𝑧(0) 

then substitute 𝑥(𝑢, 𝑣) = 𝑒𝑢sin 𝑣, 𝑦(𝑢, 𝑣) = 𝑒𝑢cos 𝑣, 𝑧(𝑢, 𝑣) = 𝑒𝑢 into this equation: 

𝜕𝑤

𝜕𝑣
= (6𝑥 − 2𝑦)𝑒𝑢cos 𝑣 − 2𝑥(−𝑒𝑢sin 𝑣)

= (6𝑒𝑢sin 𝑣 − 2𝑒𝑢cos 𝑣)𝑒𝑢cos 𝑣 + 2(𝑒𝑢sin 𝑣)(𝑒𝑢sin 𝑣)

= 2𝑒2𝑢sin2 𝑣 + 6𝑒2𝑢sin 𝑣cos 𝑣 − 2𝑒2𝑢cos2 𝑣
= 2𝑒2𝑢(sin2 𝑣 + sin 𝑣cos 𝑣 − cos2 𝑣).

 

 3.8 Implicit Differentiation of a Function of Two or More Variables 

Theorem: Suppose the function 𝑧 = 𝑓(𝑥, 𝑦) defines y implicitly as a function 𝑦 =

𝑔(𝑥) of 𝑥 via the equation 𝑓(𝑥, 𝑦) = 0. Then 

𝑑𝑦

𝑑𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑦
 

provided 𝑓𝑦(𝑥, 𝑦) ≠ 0. 

If the equation 𝑓(𝑥, 𝑦, 𝑧) = 0 defines 𝑧 implicitly as a differentiable function of 𝑥 and 

𝑦, then 

𝑑𝑧

𝑑𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑧
 and 

𝑑𝑧

𝑑𝑦
= −

𝜕𝑓/𝜕𝑦

𝜕𝑓/𝜕𝑧
 

as long as 𝑓𝑧(𝑥, 𝑦, 𝑧) ≠ 0. 



 Example. 𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑦2 + 4𝑦 − 4,  

 
𝜕𝑓

𝜕𝑥
= 2𝑥 and 

𝜕𝑓

𝜕𝑦
= 6𝑦 + 4  

Then, 

𝑑𝑦

𝑑𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑦
= −

2𝑥

6𝑦 + 4
= −

𝑥

3𝑦 + 2
, 
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 Example. 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑒𝑦 − 𝑦𝑧𝑒𝑥. 

 
𝜕𝑓

𝜕𝑥
= 2𝑥𝑒𝑦 − 𝑦𝑧𝑒𝑥, and 

𝜕𝑓

𝜕𝑦
= 𝑥2𝑒𝑦 − 𝑧𝑒𝑥 and 

𝜕𝑓

𝜕𝑧
= −𝑦𝑒𝑥 

𝜕𝑧

𝜕𝑥
= −

𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑧
= −

2𝑥𝑒𝑦 − 𝑦𝑧𝑒𝑥

−𝑦𝑒𝑥
=

2𝑥𝑒𝑦 − 𝑦𝑧𝑒𝑥

𝑦𝑒𝑥
 

𝜕𝑧

𝜕𝑦
= −

𝜕𝑓/𝜕𝑦

𝜕𝑓/𝜕𝑧
= −

𝑥2𝑒𝑦 − 𝑧𝑒𝑥

−𝑦𝑒𝑥
=

𝑥2𝑒𝑦 − 𝑧𝑒𝑥

𝑦𝑒𝑥
 

  


