
 3.9 Geometrical Applications of Derivatives  

3.9.1 Tangent Planes and Normal Lines 

Intuitively, it seems clear that, in a plane, only one line can be tangent to a curve at a 

point. However, in three-dimensional space, many lines can be tangent to a given point. 

If these lines lie in the same plane, they determine the tangent plane at that point. A 

more intuitive way to think of a tangent plane is to assume the surface is smooth at that 

point (no corners). Then, a tangent line to the surface at that point in any direction does 

not have any abrupt changes in slope because the direction changes smoothly. 

Therefore, in a small-enough neighborhood around the point, a tangent plane touches 

the surface at that point only. 

 

 Definition: Let 𝑃0 = (𝑥0, 𝑦0, 𝑧0) be a point on a surface 𝑆, and let 𝐶 be any curve 

passing through 𝑃0 and lying entirely in 𝑆. If the tangent lines to all such curves 𝐶 at 

𝑃0 lie in the same plane, then this plane is called the tangent plane to 𝑆 at 𝑃0 as shown 

in Figure. 

Note: For a tangent plane to a surface to exist at a point on that surface, it is sufficient 

for the function that defines the surface to be differentiable at that point. We define the 

term tangent plane here and then explore the idea intuitively. 



 Definition: Let 𝑆 be a surface defined by a differentiable function  𝑧 = 𝑓(𝑥, 𝑦),  

and let 𝑃0 = (𝑥0, 𝑦0) be a point in the domain of 𝑓 . Then, the equation of the tangent 

plane to 𝑆 at 𝑃0 is given by 

𝑧 = 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) 

Proof: To see why this formula is correct, let’s first find two tangent lines to the surface 

𝑆. The equation of the tangent line to the curve that is represented by the intersection 

of 𝑆 with the vertical trace given by 𝑥 = 𝑥0 is 

𝑧 = 𝑓(𝑥0, 𝑦0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) 

Similarly, the equation of the tangent line to the curve that is represented by the 

intersection of 𝑆 with the vertical trace given by 𝑦 = 𝑦0 is 

𝑧 = 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) 

A parallel vector to the first tangent line is  

𝑎
→
= 𝑗
→

+ 𝑓𝑦(𝑥0, 𝑦0)𝑘
→

 

and a parallel vector to the second tangent line is 

𝑏
→

= 𝑖
→

+ 𝑓𝑥(𝑥0, 𝑦0)𝑘
→

 

We can compose a vector by taking the cross product of these two vectors: 

𝑎
⇀
× 𝑏
⇀

= (𝑗 + 𝑓𝑦(𝑥0, 𝑦0)�⃗⃗�) × (𝑖 + 𝑓𝑥(𝑥0, 𝑦0)�⃗⃗�) = |
𝑖 𝑗 �⃗⃗�

0 1 𝑓𝑦(𝑥0, 𝑦0)

1 0 𝑓𝑥(𝑥0, 𝑦0)

| =

= 𝑓𝑥(𝑥0, 𝑦0)𝑖 + 𝑓𝑦(𝑥0, 𝑦0)𝑗 − �⃗⃗� 

which is perpendicular to both lines and is therefore perpendicular to the tangent plane. 

We can use this vector as a normal vector �⃗⃗� to the tangent plane, along with the point 

𝑃0 = (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) in the equation for a plane: 

𝑛
⇀
· ((𝑥 − 𝑥0)𝑖 + (𝑦 − 𝑦0)𝑗 + (𝑧 − 𝑓(𝑥0, 𝑦0))�⃗⃗�) = 0,

(𝑓𝑥(𝑥0, 𝑦0)𝑖 + 𝑓𝑦(𝑥0, 𝑦0)𝑗 − �⃗⃗�) · ((𝑥 − 𝑥0)𝑖 + (𝑦 − 𝑦0)𝑗 + (𝑧 − 𝑓(𝑥0, 𝑦0))�⃗⃗�) = 0,

𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) − (𝑧 − 𝑓(𝑥0, 𝑦0)) = 0.

 

 Definition: The vector 𝑛
⇀

 perpendicular to the tangent plane defines also a line 



normal to the surface 𝑆, i.e. the equation of the line normal to the surface 𝑆 is  

(𝑥 − 𝑥0)

𝑓𝑥(𝑥0, 𝑦0)
=
(𝑦 − 𝑦0)

𝑓𝑦(𝑥0, 𝑦0)
=
(𝑧 − 𝑓(𝑥0, 𝑦0))

−1
 

 Example 1: Find the equation of the tangent plane to the surface defined by the 

function 𝑓(𝑥, 𝑦) = 2𝑥2 − 3𝑥𝑦 + 8𝑦2 + 2𝑥 − 4𝑦 + 4 at point (2,−1). 

First, we must calculate 𝑓𝑥(𝑥, 𝑦) and 𝑓𝑦(x, 𝑦), then use the Equation with 𝑥0 = 2  and 

𝑦0 = −1: 

𝑓𝑥(𝑥, 𝑦) = 4𝑥 − 3𝑦 + 2
𝑓𝑦(𝑥, 𝑦) = −3𝑥 + 16𝑦 − 4

𝑓(2,−1) = 2(2)2 − 3(2)(−1) + 8(−1)2 + 2(2) − 4(−1) + 4 = 34
𝑓𝑥(2,−1) = 4(2) − 3(−1) + 2 = 13

𝑓𝑦(2,−1) = −3(2) + 16(−1) − 4 = −26.

 

Then the Equation of a tangent plane becomes 

𝑧 = 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0)

𝑧 = 34 + 13(𝑥 − 2) − 26(𝑦 − (−1))
𝑧 = 34 + 13𝑥 − 26 − 26𝑦 − 26

𝑧 = 13𝑥 − 26𝑦 − 18.

 

The Equation of a normal line is 

(𝑥 − 2)

13
=
(𝑦 + 1)

−26
=
(𝑧 − 34)

−1
 

 Example 2: Find the equation of the tangent plane to the surface defined by the 

function 𝑓(𝑥, 𝑦) = 𝑥3 − 𝑥2𝑦 + 𝑦2 − 2𝑥 + 3𝑦 − 2 at point (−1,3) 

Answer: 𝑧 = 7𝑥 + 8𝑦 − 3 

Note: A tangent plane to a surface does not always exist at every point on the surface. 

 3.9.2 Differentiability 

When working with a function 𝑦 = 𝑓(𝑥) of one variable, the function is said to be 

differentiable at a point 𝑥 = 𝑎 if 𝑓′(𝑎) exists. Furthermore, if a function of one variable 

is differentiable at a point, the graph is “smooth” at that point (i.e., no corners exist) 

and a tangent line is well-defined at that point. 

 The idea behind differentiability of a function of two variables is connected to 



the idea of smoothness at that point. In this case, a surface is considered to be smooth 

at point 𝑃0(𝑥0, 𝑦0), if a tangent plane to the surface exists at that point. If a function is 

differentiable at a point, then a tangent plane to the surface exists at that point. Since 

the Equation for a tangent plane at a point  (𝑥0, 𝑦0) is given by 

𝑧 = 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) 

for a tangent plane to exist at the point (𝑥0, 𝑦0), the partial derivatives must therefore 

exist at that point. However, this is not a sufficient condition for smoothness. 

 Definition: A function  𝑓(𝑥, 𝑦)  is differentiable at a point  𝑃0(𝑥0, 𝑦0), if, for all 

points  (𝑥, 𝑦) in a δ-disk around  𝑃0, we can write 

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) + 𝐸(𝑥, 𝑦), 

where the error term  𝐸  satisfies 

𝑙𝑖𝑚
(𝑥,𝑦)→(𝑥0,𝑦0)

𝐸(𝑥, 𝑦)

√(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2
= 0. 

The last term in Eq. is to as the error term and it represents how closely the tangent 

plane comes to the surface in a small neighborhood (δ-disk) of point 𝑃0. For the 

function 𝑓(𝑥, 𝑦) to be differentiable at 𝑃0, the function must be smooth—that is, the 

graph of 𝑓(𝑥, 𝑦)  must be close to the tangent plane for points near 𝑃0. 

 3.9.3 Continuity 

Differentiability and continuity for functions of two or more variables are connected, 

the same as for functions of one variable. In fact, with some adjustments of notation, 

the basic theorem is the same.  

Theorem: Let 𝑧 = 𝑓(𝑥, 𝑦) be a function of two variables with (𝑥0, 𝑦0) in the domain 

of 𝑓(𝑥, 𝑦). If 𝑓(𝑥, 𝑦) is differentiable at (𝑥0, 𝑦0), then 𝑓(𝑥, 𝑦) is continuous at (𝑥0, 𝑦0) 

(differentiability implies continuity). 

Note: if a function is differentiable at a point, then it is continuous there. However, if 

a function is continuous at a point, then it is not necessarily differentiable at that point. 

 We can further explore the connection between continuity and differentiability 

at a point. This next theorem says that if the function and its partial derivatives are 

continuous at a point, the function is differentiable. 

Theorem: Let 𝑧 = 𝑓(𝑥, 𝑦) be a function of two variables with (𝑥0, 𝑦0) in the domain 



of 𝑓(𝑥, 𝑦). If 𝑓(𝑥, 𝑦), 𝑓𝑥(𝑥, 𝑦), and 𝑓𝑦(𝑥, 𝑦) all exist in a neighborhood of (𝑥0, 𝑦0) and 

are continuous at (𝑥0, 𝑦0), then 𝑓(𝑥, 𝑦) is differentiable there (continuity of first 

partials implies differentiability).  

 3.10 Directional Derivatives and the Gradient 

A function 𝑧 = 𝑓(𝑥, 𝑦) has two partial derivatives: 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
. These derivatives 

correspond to each of the independent variables and can be interpreted as instantaneous 

rates of change (that is, as slopes of a tangent line). For example, 
𝜕𝑧

𝜕𝑥
 represents the 

slope of a tangent line passing through a given point on the surface defined by 𝑧 =

𝑓(𝑥, 𝑦), assuming the tangent line is parallel to the  x -axis. Similarly, 
𝜕𝑧

𝜕𝑦
 represents 

the slope of the tangent line parallel to the y -axis.  

 

 
 

Now we consider the possibility of a tangent line parallel to neither axis. 

 

 Directional Derivatives 

We start with the graph of a surface defined by the equation 𝑧 = 𝑓(𝑥, 𝑦). Given a point 

(𝑎, 𝑏) in the domain of 𝑓, we choose a direction to travel from that point. We measure 

the direction using an angle 𝜃, which is measured counterclockwise in the 𝑥𝑦-plane, 

starting at zero from the positive 𝑥-axis (Figure). The distance we travel is ℎ and the 

direction we travel is given by the unit vector 𝑢
⇀
= (cos 𝜃)𝑖 + (sin 𝜃)𝑗. Therefore, the 

𝑧-coordinate of the second point on the graph is given by 𝑧 = 𝑓(𝑎 + ℎcos 𝜃, 𝑏 +

ℎsin 𝜃). 



 
 

Definition: Suppose 𝑧 = 𝑓(𝑥, 𝑦) is a function of two variables with a domain of 𝐷. Let 

(𝑎, 𝑏) ∈ 𝐷 and define 𝑢
⇀
= (cos 𝜃)𝑖 + (sin 𝜃)𝑗. Then the directional derivative of 𝑓 in 

the direction of 𝑢
⇀

 is given by 

𝜕𝑓

𝜕�⃗⃗�
(𝑎, 𝑏) = 𝑙𝑖𝑚

ℎ→0

𝑓(𝑎 + ℎcos 𝜃, 𝑏 + ℎsin 𝜃) − 𝑓(𝑎, 𝑏)

ℎ
 

provided the limit exists. 

 

Note that since the point (𝑎, 𝑏) is chosen randomly from the domain 𝐷 of the function 

𝑓, we can use this definition to find the directional derivative as a function of 𝑥 and 𝑦 . 

That is, 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = 𝑓′�⃗⃗⃗�(𝑥, 𝑦) = 𝑙𝑖𝑚

ℎ→0

𝑓(𝑥 + ℎcos 𝜃, 𝑦 + ℎsin 𝜃) − 𝑓(𝑥, 𝑦)

ℎ
 

 

An easier approach to calculating directional derivatives involves partial derivatives. 

This is outlined in the following theorem. Since 

𝛥𝑧 = 𝑓𝑥(𝑥, 𝑦)∆𝑥 + 𝑓𝑦(𝑥, 𝑦)∆𝑦 + 𝑜(√∆𝑥
2 + ∆𝑦2) 

then 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = 𝑙𝑖𝑚

ℎ→0

∆𝑧

ℎ
= lim
ℎ→0

{𝑓𝑥(𝑥, 𝑦)
∆𝑥

ℎ⏟
=cos𝜃

+ 𝑓𝑦(𝑥, 𝑦)
∆𝑦

ℎ⏟
=sin𝜃

+
𝑜(√∆𝑥2 + ∆𝑦2)

ℎ⏟          
→0

} = 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = 𝑓′�⃗⃗⃗�(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦) ∙ cos 𝜃 + 𝑓𝑦(𝑥, 𝑦) ∙ sin 𝜃 

Theorem. Let 𝑧 = 𝑓(𝑥, 𝑦) be a function of two variables 𝑥 and 𝑦, and assume that 𝑓𝑥 

and 𝑓𝑦 exist. Then the directional derivative of 𝑓 in the direction of 𝑢
⇀
= (cos 𝜃)𝑖 +



(sin 𝜃)𝑗 is given by 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = 𝑓′�⃗⃗⃗�(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦) ∙ cos 𝜃 + 𝑓𝑦(𝑥, 𝑦) ∙ sin 𝜃 

 

 Example: Finding a directional derivative of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑥𝑦 + 3𝑦2 in the 

direction of 𝑢
⇀
= (cos 𝜃)𝑖 + (sin 𝜃)𝑗 if 𝜃 = arccos (3/5). 

 First, we must calculate the partial derivatives of 𝑓: 

𝑓𝑥(𝑥, 𝑦) = 2𝑥 − 𝑦
𝑓𝑦(𝑥, 𝑦) = −𝑥 + 6𝑦,

 

 Then we use Equation with 𝜃 = arccos (3/5), where 

cosθ =
3

5
, sinθ = √1 − cos2 𝜃 = √1 − (

3

5
)
2
=
4

5
 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)cos 𝜃 + 𝑓𝑦(𝑥, 𝑦)sin 𝜃 = (2𝑥 − 𝑦)

3

5
+

(−𝑥 + 6𝑦)
4

5
=
6𝑥

5
−
3𝑦

5
−
4𝑥

5
+
24𝑦

5
=
2𝑥 + 21𝑦

5
.

 

To calculate 
𝜕𝑓

𝜕�⃗⃗⃗�
(−1,2),  let  𝑥 = −1  and  𝑦 = 2: 

𝜕𝑓

𝜕�⃗⃗�
(−1,2) =

2(−1) + 21 ∙ 2

5
= 8 

 

 Example: Finding a directional derivative of 𝑓(𝑥, 𝑦) = 3𝑥2𝑦 − 4𝑥𝑦3 + 3𝑦2 −

4𝑥 in the direction of 𝑢
⇀
= (cos 

𝜋

3
)𝑖 + (sin 

𝜋

3
)𝑗 at the point (3,4). 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) =

(6𝑥𝑦 − 4𝑦3 − 4)(1)

2
+
(3𝑥2 − 12𝑥𝑦2 + 6𝑦)√3

2
 

𝜕𝑓

𝜕�⃗⃗�
(3,4) =

72 − 256 − 4

2
+
(27 − 576 + 24)√3

2
= −94 −

525√3

2
 

 

Note. If the vector that is given for the direction of the derivative is not a unit vector, 

then it is only necessary to divide by the norm of the vector. For example, if we wished 

to find the directional derivative of the function in the direction of the vector (−5,12), 

we would first divide by its magnitude to get 𝑢
⇀

. This gives us 𝑢
⇀
= (−

5

13
,
12

13
). 

 

 Gradient 

The right-hand side of Equation for a directional derivative is equal to 𝑓𝑥(𝑥, 𝑦)cos 𝜃 +

𝑓𝑦(𝑥, 𝑦)sin 𝜃, which can be written as the dot product of two vectors. Define the first 



vector as ∇
⇀

𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑖 + 𝑓𝑦(𝑥, 𝑦)𝑗 and the second vector as 𝑢
⇀
= (cos 𝜃)𝑖 +

(sin 𝜃)𝑗. Then the right-hand side of the equation can be written as the dot product of 

these two vectors: 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = 𝑓′�⃗⃗⃗�(𝑥, 𝑦) = ∇

⇀

𝑓(𝑥, 𝑦) ⋅ 𝑢
⇀

 

The first vector in this Equation has a special name: the gradient of the function 𝑓. The 

symbol ∇ is called nabla and the vector ∇
⇀

𝑓 is read “del 𝑓 .”  

 

 Definition. Let 𝑧 = 𝑓(𝑥, 𝑦) be a function of  𝑥  and  𝑦  such that 𝑓𝑥 and 𝑓𝑦 exist. 

The vector ∇
⇀

𝑓(𝑥, 𝑦) is called the gradient of 𝑓 and is defined as 

∇
⇀

𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑖 + 𝑓𝑦(𝑥, 𝑦)𝑗 

The vector ∇
⇀

𝑓(𝑥, 𝑦) is also written as “grad 𝑓 .” 

 

 Example. Find the gradient ∇
⇀

𝑓(𝑥, 𝑦)  of each of the following functions: 

𝑓(𝑥, 𝑦) = 𝑥2 − 𝑥𝑦 + 3𝑦2 

𝑓𝑥(𝑥, 𝑦) = 2𝑥 − 𝑦 and 𝑓𝑦(𝑥, 𝑦) = −𝑥 + 6𝑦 

∇
⇀

𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑖 + 𝑓𝑦(𝑥, 𝑦)𝑗 = (2𝑥 − 𝑦)𝑖 + (−𝑥 + 6𝑦)𝑗 

 Properties of the Gradient 

Following the definition of the dot product we can write: 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦) = ∇

⇀

𝑓(𝑥, 𝑦) ⋅ 𝑢
⇀
=‖∇

⇀

𝑓(𝑥, 𝑦)‖‖𝑢
⇀
‖⏟

=1

cos𝜑 = ‖∇
⇀

𝑓(𝑥, 𝑦)‖ cos𝜑 

Recall that  𝑐𝑜𝑠𝜑  ranges from  −1  to  1. Therefore, at (𝑥0, 𝑦0) 

If  𝜑 = 0,  then  𝑐𝑜𝑠𝜑 = 1  and ∇
⇀

𝑓(𝑥, 𝑦) and both point in the same direction;  

If  𝜑 = 𝜋,  then  𝑐𝑜𝑠𝜑 = −1  and ∇
⇀

𝑓(𝑥, 𝑦) and both point in opposite directions; 

In the first case, the value of  
𝜕𝑓

𝜕�⃗⃗⃗�
(𝑥0, 𝑦0) is maximized; in the second case, the value of  

𝜕𝑓

𝜕�⃗⃗⃗�
(𝑥0, 𝑦0)) is minimized.  

 Also see that if  ∇
⇀

𝑓(𝑥0, 𝑦0) = 0, then 
𝜕𝑓

𝜕�⃗⃗⃗�
(𝑥0, 𝑦0) = ∇

⇀

𝑓(𝑥0, 𝑦0) ⋅ 𝑢
⇀
= 0 for any 

vector 𝑢
⇀

.  

 

 Example. Find the direction for which the directional derivative of 𝑓(𝑥, 𝑦) =

3𝑥2 − 4𝑥𝑦 + 2𝑦2 at  (−2,3)  is a maximum. What is the maximum value? 



We start by calculating ∇
⇀

𝑓(𝑥, 𝑦) 

𝑓𝑥(𝑥, 𝑦) = 6𝑥 − 4𝑦 and 𝑓𝑦(𝑥, 𝑦) = −4𝑥 + 4𝑦 

so 

∇
⇀

𝑓(𝑥, 𝑦) = (6𝑥 − 4𝑦)𝑖 + (−4𝑥 + 4𝑦)𝑗 

Next, we evaluate the gradient at  (−2,3): 

∇
⇀

𝑓(−2,3) = (6 ∙ (−2) − 4 ∙ 3)𝑖 + (−4 ∙ (−2) + 4 ∙ 3)𝑗 = −24𝑖 + 20𝑗 

We need to find a unit vector that points in the same direction as ∇
⇀

𝑓(−2,3) so the next 

step is to divide ∇
⇀

𝑓(−2,3) by its magnitude, ‖∇
⇀

𝑓(−2,3)‖ = 4√61,  

∇
⇀

𝑓(−2,3)

‖∇
⇀

𝑓(−2,3)‖
=
−24

4√61
𝑖 +

20

4√61
𝑗 = −

6√61

61
𝑖 +

5√61

61
𝑗 

This is the unit vector that points in the same direction as ∇
⇀

𝑓(−2,3). To find the angle 

corresponding to this unit vector, we solve the equations  

cos 𝜃 =
−6√61

61
 and sin 𝜃 =

5√61

61
 

for  𝜃 . Since cosine is negative and sine is positive, the angle must be in the second 

quadrant. Therefore,  𝜃 = 𝜋 − arcsin ((5√61)/61) ≈ 2.45 rad 

 

 Suppose the function  𝑧 = 𝑓(𝑥, 𝑦)  has continuous first-order partial derivatives 

in an open disk centered at a point  (𝑥0, 𝑦0). If ∇
⇀

𝑓(𝑥0, 𝑦0) ≠ 0 then ∇
⇀

𝑓(𝑥0, 𝑦0)  is 

normal to the level curve of 𝑓 at (𝑥0, 𝑦0).  

 We can use this theorem to find tangent and normal vectors to level curves of a 

function. 

 

 Example. Finding tangents to level curves for the function 𝑓(𝑥, 𝑦) = 2𝑥2 −

3𝑥𝑦 + 8𝑦2 + 2𝑥 − 4𝑦 + 4, find a tangent vector to the level curve at point (−2,1). 

Graph the level curve corresponding to 𝑓(𝑥, 𝑦) = 10 and draw in ∇
⇀

𝑓(−2,1) and a 

tangent vector. 

 First, we must calculate ∇
⇀

𝑓(−2,1): 

𝑓𝑥(𝑥, 𝑦) = 4𝑥 − 3𝑦 + 2 and 𝑓𝑦(𝑥, 𝑦) = −3𝑥 + 16𝑦 − 4  so 

∇
⇀

𝑓(𝑥, 𝑦) = (4𝑥 − 3𝑦 + 2)𝑖 + (−3𝑥 + 16𝑦 − 4)𝑗, ∇
⇀

𝑓(−2,1) = −9𝑖 + 18𝑗 

 This vector is orthogonal to the curve at point (−2,1). We can obtain a tangent 

vector by reversing the components and multiplying either one by −1. Thus, for 

example, −9𝑖 + 18𝑗 is a tangent vector. 



 
 

 Three-Dimensional Gradients and Directional Derivatives 

 The definition of a gradient can be extended to functions of more than two 

variables.  

 

Definition. Let  𝑤 = 𝑓(𝑥, 𝑦, 𝑧)  be a function of three variables such that  𝑓𝑥, 𝑓𝑦, and  

𝑓𝑧  exist. The vector  ∇
⇀

𝑓(𝑥, 𝑦, 𝑧) is called the gradient of  𝑓  and is defined as  

∇
⇀

𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑥(𝑥, 𝑦, 𝑧)𝑖 + 𝑓𝑦(𝑥, 𝑦, 𝑧)𝑗 + 𝑓𝑧(𝑥, 𝑦, 𝑧)�⃗⃗� 

∇
⇀

𝑓(𝑥, 𝑦, 𝑧) can also be written as 𝑔𝑟𝑎𝑑 𝑓(𝑥, 𝑦, 𝑧). 

 

Calculating the gradient of a function in three variables is very similar to calculating 

the gradient of a function in two variables. First, we calculate the partial derivatives 

𝑓𝑥, 𝑓𝑦, and 𝑓𝑧. 

 

 Example. Find the gradient  of the function 𝑓(𝑥, 𝑦, 𝑧) = 5𝑥2 − 2𝑥𝑦 + 𝑦2 −

4𝑦𝑧 + 𝑧2 + 3𝑥𝑧. 

 We first calculate the partial derivatives  𝑓𝑥, 𝑓𝑦, and  𝑓𝑧  , then 

𝑓𝑥(𝑥, 𝑦, 𝑧) = 10𝑥 − 2𝑦 + 3𝑧, 

𝑓𝑦(𝑥, 𝑦, 𝑧) = −2𝑥 + 2𝑦 − 4𝑧, 

𝑓𝑧(𝑥, 𝑦, 𝑧) = 3𝑥 − 4𝑦 + 2𝑧 

So,  

∇
⇀

𝑓(𝑥, 𝑦, 𝑧) = (10𝑥 − 2𝑦 + 3𝑧)𝑖 + (−2𝑥 + 2𝑦 − 4𝑧)𝑗 + (3𝑥 − 4𝑦 + 2𝑧)�⃗⃗� 

 

The directional derivative can also be generalized to functions of three variables. To 

determine a direction in three dimensions, a vector with three components is needed. 

This vector is a unit vector, and the components of the unit vector are called directional 

cosines. Given a three-dimensional unit vector 𝑢
⇀

 in standard form (i.e., the initial point 



is at the origin), this vector forms three different angles with the positive 𝑥-,  𝑦-, and  

𝑧-axes. Let’s call these angles 𝛼, 𝛽, and 𝛾. Then the directional cosines are given by 

𝑐𝑜𝑠𝛼, 𝑐𝑜𝑠𝛽,  and  𝑐𝑜𝑠𝛾.  

 

Definition. Let  𝑓(𝑥, 𝑦, 𝑧)  be a differentiable function of three variables and let 𝑢
⇀
=

cos 𝛼𝑖 + cos 𝛽𝑗 + cos 𝛾�⃗⃗� be a unit vector. Then, the directional derivative of  𝑓  in the 

direction of 𝑢
⇀

 is given by 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦, 𝑧) = ∇

⇀

𝑓(𝑥, 𝑦, 𝑧) ⋅ 𝑢
⇀
= 𝑓𝑥(𝑥, 𝑦, 𝑧)cos 𝛼 + 𝑓𝑦(𝑥, 𝑦, 𝑧)cos 𝛽 + 𝑓𝑧(𝑥, 𝑦, 𝑧)cos 𝛾. 

 

Note. The three angles 𝛼, 𝛽, and 𝛾  determine the unit vector 𝑢
⇀

. In practice, we can use 

an arbitrary (nonunit) vector, then divide by its magnitude to obtain a unit vector in the 

desired direction. 

 

 Example: Finding a directional derivative in three dimensions 
𝜕𝑓

𝜕�⃗⃗⃗�
(1,−2,3) in 

direction 𝑢
⇀
= −𝑖 + 2𝑗 + 2�⃗⃗� for the function 𝑓(𝑥, 𝑦, 𝑧) = 5𝑥2 − 2𝑥𝑦 + 𝑦2 − 4𝑦𝑧 +

𝑧2 + 3𝑥𝑧. 

 First, we find the magnitude of 𝑢
⇀

,  

‖𝑢
⇀
‖ = √(−1)2 + (2)2 + (2)2 = √9 = 3 

Therefore, a unit vector in the direction of 𝑢
⇀

 is 

𝑢
⇀

‖𝑢
⇀
‖
=
−𝑖 + 2𝑗 + 2�⃗⃗�

3
= −

1

3
𝑖 +

2

3
𝑗 +

2

3
�⃗⃗� 

so 

cos 𝛼 = −
1

3
, cos 𝛽 =

2

3
, and cos 𝛾 =

2

3
 

Next, we calculate the partial derivatives of  𝑓 : 

𝑓𝑥(𝑥, 𝑦, 𝑧) = 10𝑥 − 2𝑦 + 3𝑧
𝑓𝑦(𝑥, 𝑦, 𝑧) = −2𝑥 + 2𝑦 − 4𝑧

𝑓𝑧(𝑥, 𝑦, 𝑧) = −4𝑦 + 2𝑧 + 3𝑥,

 

then substitute them into Equation 

𝜕𝑓

𝜕�⃗⃗�
(𝑥, 𝑦, 𝑧) = (10𝑥 − 2𝑦 + 3𝑧) (−

1

3
) + (−2𝑥 + 2𝑦 − 4𝑧) (

2

3
) 

+(−4𝑦 + 2𝑧 + 3𝑥) (
2

3
) = −

10𝑥

3
+
2𝑦

3
−
3𝑧

3
−
4𝑥

3
+
4𝑦

3
−
8𝑧

3
−
8𝑦

3
+
4𝑧

3
+
6𝑥

3
 

= −
8𝑥

3
−
2𝑦

3
−
7𝑧

3
 



Last, to find 
𝜕𝑓

𝜕�⃗⃗⃗�
(1,−2,3) we substitute  𝑥 = 1, 𝑦 = −2 , and  𝑧 = 3 

𝜕𝑓

𝜕�⃗⃗�
(1,−2,3) = −

8(1)

3
−
2(−2)

3
−
7(3)

3
= −

8

3
+
4

3
−
21

3
= −

25

3
 

 


