
An Example of Doing Mandatory Homework IDZ 3-1 

 

1. Find the Domain of a function 𝑧 = 𝑓(𝑥, 𝑦) and Plot this Region. 

a) 𝑓(𝑥, 𝑦) = ln⁡(9 − 𝑥2 − 9𝑦2) 

Solution: In this function we know that we can’t take the logarithm of a negative number 

or zero. Therefore, we need to require that, 

9 − 𝑥2 − 9𝑦2 > 0 ⇒
𝑥2

9
+ 𝑦2 < 1 

and upon rearranging we see that we need to stay interior to an ellipse for this function.  

Here is a sketch of this region as follows: 

 

 

b) 𝑓(𝑥, 𝑦) = √𝑥 + 𝑦  

Solution: In this case we know that we can’t take the square root of a negative number so 

this means that we must require, 

𝑥 + 𝑦 ≥ 0 

Here is a sketch of the graph of this region, 

 

 

c) 𝑓(𝑥, 𝑦) = √𝑥 + √𝑦 



Solution: Here we must require for each variable that,  

𝑥 ≥ 0 and 𝑦 ≥ 0 

and they really do need to be separate inequalities. There is one for each square root in 

the function. Here is the sketch of this region, 

 

d) 𝑓(𝑥, 𝑦) =
1

𝑥−𝑦2
. 

Solution: We see that 𝑓(𝑥, 𝑦) is undefined for 𝑥 = 𝑦2. The domain of the function therefore 

consists of all points in the 𝑥𝑦-plane except those which satisfy 𝑦 = ±√𝑥. Here is the 

sketch of this region, 

 

 

2. Partial Derivatives  

a) Find a total differential 𝑑𝑢 of the function 𝑢(𝑥, 𝑦, 𝑧) =
𝑥sin⁡(𝑦)

𝑧2
. 

Solution: Let’s do the derivatives with respect to 𝑥 and 𝑦 first. In both these cases the 

𝑧’s are constants and so the denominator in this is a constant and so we don’t really 

need to worry too much about it. Here are the derivatives for these two cases. 



𝑢𝑥(𝑥, 𝑦, 𝑧) =
𝜕𝑢

𝜕𝑥
=

sin(𝑦)

𝑧2
 and 𝑢𝑦(𝑥, 𝑦, 𝑧) =

𝜕𝑢

𝜕𝑦
=

𝑥cos⁡(𝑦)

𝑧2
 

Now, in the case of differentiation with respect to 𝑧  we can avoid the quotient rule with 

a quick rewrite of the function. Here is the rewrite as well as the derivative with respect 

to 𝑧: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑥sin⁡(𝑦)𝑧−2, 

then  

𝑢𝑧(𝑥, 𝑦, 𝑧) =
𝜕𝑢

𝜕𝑧
= −2𝑥sin⁡(𝑦)𝑧−3 = −

2𝑥sin⁡(𝑦)

𝑧3
 

Finally, the total differential of the function is calculated as follows: 

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑢

𝜕𝑧
𝑑𝑧 = 

sin(𝑦)

𝑧2
𝑑𝑥 +

𝑥cos⁡(𝑦)

𝑧2
𝑑𝑦 −

2𝑥sin⁡(𝑦)

𝑧3
𝑑𝑧 

b) Find a total differential 𝑑𝑓 of the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 − 𝑥𝑒𝑥 + 𝑥sin⁡𝑦 at a point 

(1,
𝜋

2
, 1): 

Solution: Let’s do the derivatives with respect to 𝑥, 𝑦 and 𝑧 first. 

𝑓𝑥(𝑥, 𝑦) =
∂

∂𝑥
(𝑥𝑦𝑧 − 𝑥𝑒𝑥 + 𝑥sin⁡𝑦) = 𝑦𝑧 − (𝑒𝑥 + 𝑥𝑒𝑥) + sin⁡𝑦

𝑓𝑦(𝑥, 𝑦) =
∂

∂𝑦
(𝑥𝑦𝑧 − 𝑥𝑒𝑥 + 𝑥sin⁡𝑦) = 𝑥𝑧 + 𝑥cos⁡𝑦

𝑓𝑧(𝑥, 𝑦) =
∂

∂𝑧
(𝑥𝑦𝑧 − 𝑥𝑒𝑥 + 𝑥sin⁡𝑦) = 𝑥𝑦

 

Then,  

𝑑𝑓(𝑥, 𝑦, 𝑧) = (𝑦𝑧 − (𝑒𝑥 + 𝑥𝑒𝑥) + sin 𝑦)𝑑𝑥 + (𝑥𝑧 + 𝑥cos⁡𝑦)𝑑𝑦 + (𝑥𝑦)𝑑𝑧 

Hence, 

𝑑𝑓 (1,
𝜋

2
, 1) = (

𝜋

2
∙ 1 − (𝑒1 + 1 ∙ 𝑒1) + sin

𝜋

2
) 𝑑𝑥 + (1 ∙ 1 + 1 ∙ cos⁡

𝜋

2
)𝑑𝑦 + (1 ∙

𝜋

2
)𝑑𝑧 = 

(
𝜋

2
− 2𝑒 + 1)𝑑𝑥 + 𝑑𝑦 +

𝜋

2
𝑑𝑧 

3. The Use of Chain Rule 

a) Compute 
𝑑𝑧

𝑑𝑡
 if 𝑧 = 𝑥𝑒𝑥𝑦, 𝑥 = 𝑡2 and 𝑦 = 𝑡−1 

Solution: There really isn’t all that much to do here other than using the formula. 

𝑑𝑧

𝑑𝑡
=
∂𝑓

∂𝑥

𝑑𝑥

𝑑𝑡
+
∂𝑓

∂𝑦

𝑑𝑦

𝑑𝑡
 



Then,  

∂𝑓

∂𝑥
=

𝜕

𝜕𝑥
(𝑥𝑒𝑥𝑦) = 𝑒𝑥𝑦 + 𝑦𝑥𝑒𝑥𝑦 and 

∂𝑓

∂𝑦
=

𝜕

𝜕𝑦
(𝑥𝑒𝑥𝑦) = 𝑥2𝑒𝑥𝑦 

𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑡2) = 2𝑡 and 

𝑑𝑦

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑡−1) = −𝑡−2 

Hence 

𝑑𝑧

𝑑𝑡
= (𝑒𝑥𝑦 + 𝑦𝑥𝑒𝑥𝑦)(2𝑡) + 𝑥2𝑒𝑥𝑦(−𝑡−2) 

= 2𝑡(𝑒𝑥𝑦 + 𝑦𝑥𝑒𝑥𝑦) − 𝑡−2𝑥2𝑒𝑥𝑦 

 

b) Compute 
𝑑𝑧

𝑑𝑡
 if 𝑧 = 𝑥2𝑦3 + 𝑦cos⁡𝑥, 𝑥 = ln⁡(𝑡2) and 𝑦 = sin⁡(4𝑡) 

Solution: In this case it would almost definitely be more work to do the substitution first so 

we’ll use the chain rule first and then substitute. 

𝑑𝑧

𝑑𝑡
= (2𝑥𝑦3 − 𝑦sin⁡𝑥)(

2

𝑡
) + (3𝑥2𝑦2 + cos⁡𝑥)(4cos⁡(4𝑡)) 

=
4sin3(4𝑡)ln⁡𝑡2 − 2sin⁡(4𝑡)sin⁡(ln 𝑡2)

𝑡
+ 4cos⁡(4𝑡)(3sin2(4𝑡)[ln 𝑡2]2 + cos⁡(ln 𝑡2))

 

 

c) Compute 
𝑑𝑧

𝑑𝑥
 if 𝑧 = 𝑥ln⁡(𝑥𝑦) + 𝑦3 and 𝑦 = cos⁡(𝑥2 + 1) 

Solution: This is a special case we have taken above. The formula now is  

𝑑𝑧

𝑑𝑥
=
∂𝑓

∂𝑥
+
∂𝑓

∂𝑦

𝑑𝑦

𝑑𝑥
 

Then,  

∂𝑓

∂𝑥
=

∂

∂𝑥
(𝑥ln⁡(𝑥𝑦) + 𝑦3) = ln⁡(𝑥𝑦) + 𝑥

𝑦

𝑥𝑦
 

∂𝑓

∂𝑦
=

∂

∂𝑦
(𝑥ln⁡(𝑥𝑦) + 𝑦3) = 𝑥

𝑥

𝑥𝑦
+ 3𝑦2 

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(cos⁡(𝑥2 + 1)) = −2𝑥sin⁡(𝑥2 + 1) 

Hence 

𝑑𝑧

𝑑𝑥
= (ln⁡(𝑥𝑦) + 𝑥

𝑦

𝑥𝑦
) + (𝑥

𝑥

𝑥𝑦
+ 3𝑦2)(−2𝑥sin⁡(𝑥2 + 1))

= ln⁡(𝑥cos⁡(𝑥2 + 1)) + 1 − 2𝑥sin⁡(𝑥2 + 1)(
𝑥

cos(𝑥2 + 1)
+ 3cos2(𝑥2 + 1))

= ln⁡(𝑥cos⁡(𝑥2 + 1)) + 1 − 2𝑥2tan⁡(𝑥2 + 1) − 6𝑥sin⁡(𝑥2 + 1)cos2(𝑥2 + 1)

 



 

d) Compute 
∂𝑧

∂𝑢
 and 

∂𝑧

∂𝑣
  if 𝑧 = 𝑒2𝑥sin⁡(3𝑦), 𝑥 = 𝑢 ∙ 𝑣 − 𝑣2 and 𝑦 = √𝑢2 + 𝑣2 

Solution: In this case if we were to substitute in for 𝑥⁡ and 𝑦 we would get that 𝑧 is a function 

of 𝑢 and 𝑣 and so it makes sense that we would be computing partial derivatives here and that 

there would be two of them. Here is the chain rule for both of these cases. 

∂𝑧

∂𝑢
=

∂𝑓

∂𝑥

∂𝑥

∂𝑢
+

∂𝑓

∂𝑦

∂𝑦

∂𝑢
 and 

∂𝑧

∂𝑣
=

∂𝑓

∂𝑥

∂𝑥

∂𝑣
+

∂𝑓

∂𝑦

∂𝑦

∂𝑣
 

Then, 

∂𝑓

∂𝑥
=

∂

∂𝑥
(𝑒2𝑥 sin(3𝑦)) = 2𝑒2𝑥sin⁡(3𝑦) 

∂𝑓

∂𝑦
=

∂

∂𝑦
(𝑒2𝑥 sin(3𝑦)) = 3𝑒2𝑥cos⁡(3𝑦) 

∂𝑥

∂𝑢
=

∂

∂𝑢
(𝑢 ∙ 𝑣 − 𝑣2) = 𝑣 

∂𝑥

∂𝑣
=

∂

∂𝑣
(𝑢 ∙ 𝑣 − 𝑣2) = 𝑢 − 2𝑣 

∂𝑦

∂𝑢
=

∂

∂𝑢
(√𝑢2 + 𝑣2) =

𝑢

√𝑢2 + 𝑣2
 

∂𝑦

∂𝑣
=

∂

∂𝑣
(√𝑢2 + 𝑣2) =

𝑣

√𝑢2 + 𝑣2
 

Here is the chain rule for 
∂𝑧

∂𝑢
 

∂𝑧

∂𝑢
= (2𝑒2𝑥sin⁡(3𝑦))(𝑣) + (3𝑒2𝑥cos⁡(3𝑦))

𝑢

√𝑢2 + 𝑣2

= 𝑣(2𝑒2(𝑢∙𝑣−𝑣
2)sin⁡(3√𝑢2 + 𝑣2)) +

3𝑢𝑒2(𝑢∙𝑣−𝑣
2)cos⁡(3√𝑢2 + 𝑣2)

√𝑢2 + 𝑣2

 

Now the chain rule for 
∂𝑧

∂𝑣
 

∂𝑧

∂𝑣
= (2𝑒2𝑥sin⁡(3𝑦))(𝑢 − 2𝑣) + (3𝑒2𝑥cos⁡(3𝑦))

𝑣

√𝑢2 + 𝑣2

= (𝑢 − 2𝑣)(2𝑒2(𝑢∙𝑣−𝑣
2)sin⁡(3√𝑢2 + 𝑣2)) +

3𝑣𝑒2(𝑢∙𝑣−𝑣
2)cos⁡(3√𝑢2 + 𝑣2)

√𝑢2 + 𝑣2

 

4. The Higher Order Partial Derivatives 

a) Compute all four second derivatives of 𝑓(𝑥, 𝑦) = 𝑥2𝑦2 

Solution: To take a derivative,' we must take a partial derivative with respect to 𝑥⁡or 𝑦, and 

there are four ways to do it in the following order: x then x, x then y, y then x, y then y. 



𝑓𝑥𝑥 =
𝜕

𝜕𝑥
(
𝜕

𝜕𝑥
(𝑥2𝑦2)) =

𝜕

𝜕𝑥
(2𝑥𝑦2) = 2𝑦2 

𝑓𝑥𝑦 =
𝜕

𝜕𝑦
(
𝜕

𝜕𝑥
(𝑥2𝑦2)) =

𝜕

𝜕𝑦
(2𝑥𝑦2) = 4𝑥𝑦 

𝑓𝑦𝑥 =
𝜕

𝜕𝑥
(
𝜕

𝜕𝑦
(𝑥2𝑦2)) =

𝜕

𝜕𝑥
(2𝑦𝑥2) = 4𝑥𝑦 

𝑓𝑦𝑦 =
𝜕

𝜕𝑦
(
𝜕

𝜕𝑦
(𝑥2𝑦2)) =

𝜕

𝜕𝑦
(2𝑦𝑥2) = 2𝑥2 

 Note. According to Clairaut's Theorem, the mixed partial derivatives are equal, if they are 

continuous. That is we might find either 𝑓𝑦𝑥 or 𝑓𝑥𝑦.  

b) Compute all second derivatives of 𝑓 =
𝑥𝑦

𝑥2+𝑦2
 

Solution:  

𝑓𝑥 =
𝜕

𝜕𝑥
(

𝑥𝑦

𝑥2+𝑦2
) =

𝑦3−𝑦𝑥2

(𝑥2+𝑦2)2
⁡, 𝑓𝑥𝑥 =

𝜕

𝜕𝑥
(
𝑦3−𝑦𝑥2

(𝑥2+𝑦2)2
) =

2𝑥3𝑦−6𝑥𝑦3

(𝑥2+𝑦2)3
,  

𝑓𝑥𝑦 =
𝜕

𝜕𝑦
(
𝑦3−𝑦𝑥2

(𝑥2+𝑦2)2
) =

6𝑥2𝑦2−𝑥4−𝑦4

(𝑥2+𝑦2)3
, 𝑓𝑦𝑥 = 𝑓𝑥𝑦 

𝑓𝑦 =
𝜕

𝜕𝑦
(

𝑥𝑦

𝑥2+𝑦2
) =

𝑥3−𝑥𝑦2

(𝑥2+𝑦2)2
, 𝑓𝑦𝑦 =

𝜕

𝜕𝑦
(
𝑥3−𝑥𝑦2

(𝑥2+𝑦2)2
) =

2𝑥𝑦3−6𝑥3𝑦

(𝑥2+𝑦2)3
 

 

 c)  

5. Implicit Differentiation Problems for a function 𝑧 = 𝑓(𝑥, 𝑦): find 
∂𝑧

∂𝑥
 and 

∂𝑧

∂𝑦
  

a) 𝑥3𝑧2 − 5𝑥𝑦5𝑧 = 𝑥2 + 𝑦3 

Solution: Let’s start with finding 
∂𝑧

∂𝑥
. We first will differentiate both sides with respect to 𝑥 

and remember to add on a 
∂𝑧

∂𝑥
 whenever we differentiate a 𝑧 from the chain rule.  

Remember that since we are assuming 𝑧 = 𝑧(𝑥, 𝑦) then any product of 𝑥’s and 𝑧’s will be a 

product and so will need the product rule! 

3𝑥2𝑧2 + 2𝑥3𝑧
∂𝑧

∂𝑥
− 5𝑦5𝑧 − 5𝑥𝑦5

∂𝑧

∂𝑥
= 2𝑥 

Now, solve for 
∂𝑧

∂𝑥
 



(2𝑥3𝑧 − 5𝑥𝑦5)
∂𝑧

∂𝑥
= 2𝑥 − 3𝑥2𝑧2 + 5𝑦5𝑧

∂𝑧

∂𝑥
=
2𝑥 − 3𝑥2𝑧2 + 5𝑦5𝑧

2𝑥3𝑧 − 5𝑥𝑦5

 

Now we’ll do the same thing for 
∂𝑧

∂𝑦
 except this time we’ll need to remember to add on a 

∂𝑧

∂𝑦
 

whenever we differentiate a 𝑧 from the chain rule. 

2𝑥3𝑧
∂𝑧

∂𝑦
− 25𝑥𝑦4𝑧 − 5𝑥𝑦5

∂𝑧

∂𝑦
= 3𝑦2

(2𝑥3𝑧 − 5𝑥𝑦5)
∂𝑧

∂𝑦
= 3𝑦2 + 25𝑥𝑦4𝑧

∂𝑧

∂𝑦
=
3𝑦2 + 25𝑥𝑦4𝑧

2𝑥3𝑧 − 5𝑥𝑦5

 

The second way for solving this task is the use of the rule, 

𝜕𝑧

𝜕𝑥
= −

𝜕𝐹/𝜕𝑥

𝜕𝐹/𝜕𝑧
 and 

𝜕𝑧

𝜕𝑦
= −

𝜕𝐹/𝜕𝑦

𝜕𝐹/𝜕𝑧
, 

where 

𝐹(𝑥, 𝑦, 𝑧) = 0 

We first rewrite the given function in the form:  

𝐹(𝑥, 𝑦, 𝑧) = 𝑥3𝑧2 − 5𝑥𝑦5𝑧 − 𝑥2 − 𝑦3 = 0 

Then, we differentiate 𝐹(𝑥, 𝑦, 𝑧) with respect to 𝑥, that is  

𝜕𝐹

𝜕𝑥
= 3𝑥2𝑧2 − 5𝑦5𝑧 − 2𝑥 

and with respect to 𝑦 

𝜕𝐹

𝜕𝑦
= −25𝑥𝑦4𝑧 − 3𝑦2 

and, finally, and with respect to 𝑧 

𝜕𝐹

𝜕𝑧
= 2𝑥3𝑧 − 5𝑥𝑦5 

Hence, 

𝜕𝑧

𝜕𝑥
= −

3𝑥2𝑧2 − 5𝑦5𝑧 − 2𝑥

2𝑥3𝑧 − 5𝑥𝑦5
=
2𝑥 − 3𝑥2𝑧2 + 5𝑦5𝑧

2𝑥3𝑧 − 5𝑥𝑦5
 

and 

𝜕𝑧

𝜕𝑦
= −

−25𝑥𝑦4𝑧 − 3𝑦2

2𝑥3𝑧 − 5𝑥𝑦5
=
3𝑦2 + 25𝑥𝑦4𝑧

2𝑥3𝑧 − 5𝑥𝑦5
 

 

b) 𝑥2sin⁡(2𝑦 − 5𝑧) = 1 + 𝑦cos⁡(6𝑧𝑥) 



We’ll do the same thing for this function as we did in the previous part. First let’s find 
𝜕𝑧

𝜕𝑥
. 

Don’t forget to do the chain rule on each of the trig functions and when we are differentiating 

the inside function on the cosine we will need to also use the product rule. 

2𝑥sin⁡(2𝑦 − 5𝑧) + 𝑥2cos⁡(2𝑦 − 5𝑧)(−5
∂𝑧

∂𝑥
) = −𝑦sin⁡(6𝑧𝑥)(6𝑧 + 6𝑥

∂𝑧

∂𝑥
) 

Now, solve for 
∂𝑧

∂𝑥
 

2𝑥sin⁡(2𝑦 − 5𝑧) − 5
∂𝑧

∂𝑥
𝑥2cos⁡(2𝑦 − 5𝑧) = −6𝑧𝑦sin⁡(6𝑧𝑥) − 6𝑦𝑥sin⁡(6𝑧𝑥)

∂𝑧

∂𝑥

2𝑥sin⁡(2𝑦 − 5𝑧) + 6𝑧𝑦sin⁡(6𝑧𝑥) = (5𝑥2cos⁡(2𝑦 − 5𝑧) − 6𝑦𝑥sin⁡(6𝑧𝑥))
∂𝑧

∂𝑥
∂𝑧

∂𝑥
=

2𝑥sin⁡(2𝑦 − 5𝑧) + 6𝑧𝑦sin⁡(6𝑧𝑥)

5𝑥2cos⁡(2𝑦 − 5𝑧) − 6𝑦𝑥sin⁡(6𝑧𝑥)

 

Now let’s take care of 
∂𝑧

∂𝑦
. This one will be slightly easier than the first one. 

𝑥2cos⁡(2𝑦 − 5𝑧)(2 − 5
∂𝑧

∂𝑦
) = cos⁡(6𝑧𝑥) − 𝑦sin⁡(6𝑧𝑥)(6𝑥

∂𝑧

∂𝑦
)

2𝑥2cos⁡(2𝑦 − 5𝑧) − 5𝑥2cos⁡(2𝑦 − 5𝑧)
∂𝑧

∂𝑦
= cos⁡(6𝑧𝑥) − 6𝑥𝑦sin⁡(6𝑧𝑥)

∂𝑧

∂𝑦

(6𝑥𝑦sin⁡(6𝑧𝑥) − 5𝑥2cos⁡(2𝑦 − 5𝑧))
∂𝑧

∂𝑦
= cos⁡(6𝑧𝑥) − 2𝑥2cos⁡(2𝑦 − 5𝑧)

∂𝑧

∂𝑦
=

cos⁡(6𝑧𝑥) − 2𝑥2cos⁡(2𝑦 − 5𝑧)

6𝑥𝑦sin⁡(6𝑧𝑥) − 5𝑥2cos⁡(2𝑦 − 5𝑧)

 

The second way is a bit easier. 

First let’s get everything on one side to form the function: 

𝐹(𝑥, 𝑦, 𝑧) = 𝑥2sin⁡(2𝑦 − 5𝑧) − 1 − 𝑦cos⁡(6𝑧𝑥) = 0 

Now, the function on the left is 𝐹(𝑥, 𝑦, 𝑧) and so all that we need to do is use the formulas 

developed above to find the derivatives. 

∂𝑧

∂𝑥
= −

2𝑥sin⁡(2𝑦 − 5𝑧) + 6𝑦𝑧sin⁡(6𝑧𝑥)

−5𝑥2cos⁡(2𝑦 − 5𝑧) + 6𝑦𝑥sin⁡(6𝑧𝑥)
 

and 

∂𝑧

∂𝑦
= −

2𝑥2cos⁡(2𝑦 − 5𝑧) − cos⁡(6𝑧𝑥)

−5𝑥2cos⁡(2𝑦 − 5𝑧) + 6𝑦𝑥sin⁡(6𝑧𝑥)
 

 

6. Find the plane tangent to a multi-variable function at a point. 

a) Find the plane tangent to and a straight line normal to 𝑥2 + 𝑦2 + 𝑧2 = 4 at (1,1, √2). 



Solution: For a surface given by a differentiable multivariable function 𝑧 = 𝑓(𝑥, 𝑦) the 

equation of the tangent plane at (𝑥0, 𝑦0, 𝑧0) is given as 

𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) − (𝑧 − 𝑧0) = 0 

whereas the canonical equations of the straight line normal to the tangent plane at 

(𝑥0, 𝑦0, 𝑧0) is given as 

(𝑥 − 𝑥0)

𝑓𝑥(𝑥0, 𝑦0)
=

(𝑦 − 𝑦0)

𝑓𝑦(𝑥0, 𝑦0)
=
(𝑧 − 𝑧0)

−1
 

 

As the point (1,1, √2). is on the upper hemisphere, so we can use 𝑓(𝑥, 𝑦) =

√4 − 𝑥2 − 𝑦2. Then, 

𝑓𝑥(𝑥, 𝑦) = −𝑥(4 − 𝑥2 − 𝑦2)−1/2 and 𝑓𝑦(𝑥, 𝑦) = −𝑦(4 − 𝑥2 − 𝑦2)−1/2, 

so 

𝑓𝑥(1,1) = 𝑓𝑦(1,1) = −1/√2 

and the equation of the plane is  

𝑧 = −
1

√2
(𝑥 − 1) −

1

√2
(𝑦 − 1) + √2. 

The equation of the straight line is 

(𝑥 − 1)

−
1

√2

=
(𝑦 − 1)

−
1

√2

=
𝑧 − √2

−1
 

 

b) Find the equation of the tangent plane to and a straight line normal to 𝑧 = ln⁡(2𝑥 + 𝑦) 

at 𝑀0(−1,3).  

Solution: We first find the applicate of the point at which the tangent plane and a normal 

straight line to the surface should be found: 𝑧0 = 𝑓(−1,3) = ln⁡(2(−1) + 3) = ln⁡(1) =

0 

Then, 

 𝑓𝑥(𝑥, 𝑦) =
2

2𝑥+𝑦
, 𝑓𝑥(−1,3) = 2 

𝑓𝑦(𝑥, 𝑦) =
1

2𝑥+𝑦
, 𝑓𝑦(−1,3) = 1 

 So, the equation of the plane is then, 

𝑧 − 0 = 2(𝑥 + 1) + (1)(𝑦 − 3) 

𝑧 = 2𝑥 + 𝑦 − 1 

 The equation of the straight line is 



(𝑥 + 1)

2
=
(𝑦 − 3)

1
=
𝑧 − 0

−1
 

 

c) Find an equation for the plane tangent to 2𝑥2 + 3𝑦2 − 𝑧2 = 4 at (1,1,−1). 

Solution: We find the partial derivatives by using implicit differentiation. First let’s get 

everything on one side to form the function: 

𝐹(𝑥, 𝑦, 𝑧) = 2𝑥2 + 3𝑦2 − 𝑧2 − 4 = 0 

Then,  

𝑓𝑥(𝑥, 𝑦) = −
𝜕𝐹

𝜕𝑥
𝜕𝐹

𝜕𝑧

, 𝑓𝑦(𝑥, 𝑦) = −

𝜕𝐹

𝜕𝑦

𝜕𝐹

𝜕𝑧

 

𝜕𝐹

𝜕𝑥
=

𝜕

𝜕𝑥
(2𝑥2 + 3𝑦2 − 𝑧2 − 4) = 4𝑥 

𝜕𝐹

𝜕𝑦
=

𝜕

𝜕𝑦
(2𝑥2 + 3𝑦2 − 𝑧2 − 4) = 6𝑦 

𝜕𝐹

𝜕𝑧
=

𝜕

𝜕𝑧
(2𝑥2 + 3𝑦2 − 𝑧2 − 4) = −2𝑧 

So, 

𝑓𝑥(𝑥, 𝑦) = −
4𝑥

−2𝑧
=

2𝑥

𝑧
, 𝑓𝑥(1,1) = 2 

and  

𝑓𝑦(𝑥, 𝑦) = −
6𝑦

−2𝑧
=

3𝑦

𝑧
, 𝑓𝑦(1,1) = 3 

 So, the equation of the plane is then, 

𝑧 + 1 = 2(𝑥 − 1) + 3(𝑦 − 1) 

𝑧 = 2𝑥 + 3𝑦 − 6 

 The equation of the straight line is 

(𝑥 − 1)

2
=
(𝑦 − 1)

3
=
𝑧 + 1

−1
 

 

7. Find the gradient of the function 𝑤 = 𝑤(𝑥, 𝑦, 𝑧) = 5𝑥2 − 2𝑥𝑦 + 𝑦2 − 4𝑦𝑧 + 𝑧2 + 3𝑥𝑧 

and its directional derivative in the direction of vector 𝑢
⇀
= −𝑖 + 2𝑗 + 2𝑘⃗⃗ at a point 

𝑀0(1,−2,3) 

We first calculate the partial derivatives of  𝑓⁡ 

𝑓𝑥(𝑥, 𝑦, 𝑧) = 10𝑥 − 2𝑦 + 3𝑧
𝑓𝑦(𝑥, 𝑦, 𝑧) = −2𝑥 + 2𝑦 − 4𝑧

𝑓𝑧(𝑥, 𝑦, 𝑧) = −4𝑦 + 2𝑧 + 3𝑥,

 



then substitute them into Equation 

∇
⇀

𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑥(𝑥, 𝑦, 𝑧)𝑖 + 𝑓𝑦(𝑥, 𝑦, 𝑧)𝑗 + 𝑓𝑧(𝑥, 𝑦, 𝑧)𝑘⃗⃗ = 

= (10𝑥 − 2𝑦 + 3𝑧)𝑖 + (−2𝑥 + 2𝑦 − 4𝑧)𝑗 + (−4𝑦 + 2𝑧 + 3𝑥)𝑘⃗⃗ 

Then, 

∇
⇀

𝑓(1,−2,3) = (10 ∙ 1 − 2 ∙ (−2) + 3 ∙ 3)𝑖 + (−2 ∙ 1 + 2 ∙ (−2) − 4 ∙ 3)𝑗 

+(−4 ∙ (−2) + 2 ∙ 3 + 3 ∙ 1)𝑘⃗⃗ = 23𝑖 − 18𝑗 + 17𝑘⃗⃗ 

 The directional derivative of  𝑓  in the direction of 𝑢
⇀

 is given by 

𝜕𝑓

𝜕𝑢⃗⃗
(𝑥, 𝑦, 𝑧) = ∇

⇀

𝑓(𝑥, 𝑦, 𝑧) ⋅ 𝑢
⇀
= 𝑓𝑥(𝑥, 𝑦, 𝑧)cos⁡𝛼 + 𝑓𝑦(𝑥, 𝑦, 𝑧)cos⁡𝛽 + 𝑓𝑧(𝑥, 𝑦, 𝑧)cos⁡𝛾. 

Since the vector is 𝑢
⇀

 not unit, we find the magnitude of 𝑢
⇀

 

‖𝑢
⇀
‖ = √(−1)2 + (2)2 + (2)2 = √9 = 3 

 Therefore, a unit vector in the direction of 𝑢
⇀

 is 

𝑢
⇀

‖𝑢
⇀
‖
=
−𝑖 + 2𝑗 + 2𝑘⃗⃗

3
= −

1

3
𝑖 +

2

3
𝑗 +

2

3
𝑘⃗⃗ 

so 

cos⁡𝛼 = −
1

3
, cos⁡𝛽 =

2

3
, and cos⁡𝛾 =

2

3
 

Hence, 

𝜕𝑓

𝜕𝑢⃗⃗
(1, −2,3) = 23 ∙ (−

1

3
) − 18 ∙ (

2

3
) + 17 ∙ (

2

3
) = −

25

3
 

 

8. Find the Local Extrema of the Function 

𝑓(𝑥, 𝑦) = 𝑥3 + 2𝑥𝑦 − 6𝑥 − 4𝑦2. 

We first calculate 𝑓𝑥(𝑥, 𝑦) and 𝑓𝑦(𝑥, 𝑦): 

𝑓𝑥(𝑥, 𝑦) = 3𝑥2 + 2𝑦 − 6 

𝑓𝑦(𝑥, 𝑦) = 2𝑥 − 8𝑦 

Equate the equations to zero yielding the system of equations: 

3𝑥2 + 2𝑦 − 6 = 0 

2𝑥 − 8𝑦 = 0 

The second equation gives 2𝑦 =
𝑥

4
. Substituting it into the first equation, we have the 

solutions to this system are (−
3

2
, −

3

8
) and (

4

3
,
1

3
)  Therefore they are critical points of 𝑓 . 

 Next, we calculate the second partial derivatives of  𝑓: 

𝑓𝑥𝑥(𝑥, 𝑦) = 6𝑥, 𝑓𝑥𝑦(𝑥, 𝑦) = 2, 𝑓𝑦𝑦(𝑥, 𝑦) = −8 

 Therefore,   



𝐷 (−
3

2
,−

3

8
) = 𝑓𝑥𝑥 (−

3

2
, −

3

8
) ∙ 𝑓𝑦𝑦 (−

3

2
,−

3

8
) − 𝑓2

𝑥𝑦
(−

3

2
,−

3

8
) = 

6 (−
3

2
) ∙ (−8) − 22 = 78 > 0 

𝐷 (
4

3
,
1

3
) = 𝑓𝑥𝑥 (

4

3
,
1

3
) ∙ 𝑓𝑦𝑦 (

4

3
,
1

3
) − 𝑓2

𝑥𝑦
(
4

3
,
1

3
) = 

6 (
4

3
) ∙ (−8) − 22 = −68 < 0 

Applying the theorem to point (−
3

2
, −

3

8
), where 𝑓𝑥𝑥(𝑥, 𝑦) = 6𝑥 = 6 (−

3

2
) = −9 < 0 

leads to case 2, which means that the point corresponds to a local maximum.  

Applying the theorem to point (
4

3
,
1

3
) leads to case 3, which means that  the point is a 

saddle point. 

 

 Example. Use the second derivative test to find the local extrema of the function: 

𝑔(𝑥, 𝑦) =
1

3
𝑥3 + 𝑦2 + 2𝑥𝑦 − 6𝑥 − 3𝑦 + 4 

 Setting 𝑔𝑥(𝑥, 𝑦) and 𝑔𝑦(𝑥, 𝑦) equal to zero yields the system of equations 

𝑥2 + 2𝑦 − 6 = 0
2𝑦 + 2𝑥 − 3 = 0.

 

To solve this system, first solve the second equation for  𝑦 . This gives 𝑦 =
3−2𝑥

2
. Substituting 

this into the first equation gives 

𝑥2 + 3 − 2𝑥 − 6 = 0
𝑥2 − 2𝑥 − 3 = 0

(𝑥 − 3)(𝑥 + 1) = 0.
 

Therefore,  𝑥 = −1  or  𝑥 = 3 . Substituting these values into the equation 𝑦 =
3−2𝑥

2
, it yields the 

critical points  (−1,
5

2
) and (3,−

3

2
). 

 Calculate the second partial derivatives of  𝑔 : 

𝑔𝑥𝑥(𝑥, 𝑦) = 2𝑥
𝑔𝑥𝑦(𝑥, 𝑦) = 2

𝑔𝑦𝑦(𝑥, 𝑦) = 2.
 

Then, we find a general formula for  D : 

𝐷(𝑥0, 𝑦0) = 𝑔𝑥𝑥(𝑥0, 𝑦0)𝑔𝑦𝑦(𝑥0, 𝑦0) − (𝑔𝑥𝑦(𝑥0, 𝑦0))
2 

= (2𝑥0)(2) − 22 = 4𝑥0 − 4 

Next, we substitute each critical point into this formula: 



𝐷(−1,
5

2
) = (2(−1))(2) − (2)2 = −4 − 4 = −8

𝐷(3,−
3

2
) = (2(3))(2) − (2)2 = 12 − 4 = 8.

 

We note that, applying Note to point  (−1,
5

2
⁡)  leads to case 3, which means that (−1,

5

2
)  is a 

saddle point. Applying the theorem to point  (3,−
3

2
)  leads to case  1 , which means that  (3,−

3

2
)  

corresponds to a local minimum.  

 

9. Example 1. Find the absolute minimum and absolute maximum of 𝑓(𝑥, 𝑦) = 𝑥2 + 4𝑦2 −

2𝑥2𝑦 + 4 on the rectangle given by −1 ≤ 𝑥 ≤ 1 and −1 ≤ 𝑦 ≤ 1. 

 

Let’s first get a quick picture of the rectangle for 

reference purposes. The boundary of this rectangle 

is given by the following conditions. 

 

right side :𝑥 = 1,−1 ≤ 𝑦 ≤ 1

left side :𝑥 = −1,−1 ≤ 𝑦 ≤ 1

upper side :𝑦 = 1,−1 ≤ 𝑥 ≤ 1

lower side :𝑦 = −1,−1 ≤ 𝑥 ≤ 1

 

 

 We’ll start this off by finding all the critical points that lie inside the given rectangle. To 

do this we’ll need the two first order derivatives. 

𝑓𝑥 = 2𝑥 − 4𝑥𝑦, 𝑓𝑦 = 8𝑦 − 2𝑥2 

To find the critical points we will need to solve the system, 

2𝑥 − 4𝑥𝑦 = 0

8𝑦 − 2𝑥2 = 0
 

 We can solve the second equation for 𝑦  to get, 𝑦 =
𝑥2

4
. Plugging this into the first 

equation gives us, 2𝑥 − 4𝑥(
𝑥2

4
) = 2𝑥 − 𝑥3 = 𝑥(2 − 𝑥2) = 0.  

This tells us that we must have roots: 𝑥 = 0 and 𝑥 = ±√2 = ±1.414. .. 

 Now, recall that we only want critical points in the region that we’re given. That means 

that we only want critical points for which −1 ≤ 𝑥 ≤ 1. The only value of x that will satisfy 

this is the first one so we can ignore the last two for this problem. 



 Plugging 𝑥 = 0 into the equation for 𝑦 gives us, 𝑦 =
02

4
= 0. The single critical point, in 

the region (and again, that’s important), is (0,0). We now need to get the value of the function at 

the critical point: 𝑓(0,0) = 4.  

 Now, we’re going to look at what the function is doing along each of the sides of the 

rectangle listed above.  

 Let’s first take a look at the right side. As noted above the right side is defined by 𝑥 =

1,−1 ≤ 𝑦 ≤ 1. Let’s take advantage of this by defining a new function as follows, 

𝑔(𝑦) = 𝑓(1, 𝑦) = 12 + 4𝑦2 − 2(12)𝑦 + 4 = 5 + 4𝑦2 − 2𝑦 

 Now, finding the absolute extrema of 𝑓(𝑥, 𝑦) along the right side will be equivalent to 

finding the absolute extrema of 𝑔(𝑦) in the range −1 ≤ 𝑦 ≤ 1. 

 Let’s do that for this problem: 

𝑔′(𝑦) = 8𝑦 − 2 ⇒ 𝑦 =
1

4
 

In this range we will need the following function evaluations: 

𝑔(−1) = 11, 𝑔(1) = 7, 𝑔(
1

4
) =

19

4
= 4.75 

Notice that, using the definition of 𝑔(𝑦)  these are also function values for 𝑓(𝑥, 𝑦) at  

𝑔(−1) = 𝑓(1,−1) = 11
𝑔(1) = 𝑓(1,1) = 7

𝑔(
1

4
) = 𝑓(1,

1

4
) =

19

4
= 4.75

 

 We can now do the left side of the rectangle which is defined by, 𝑥 = −1,−1 ≤ 𝑦 ≤ 1 

Again, we’ll define a new function as follows, 

𝑔(𝑦) = 𝑓(−1, 𝑦) = (−1)2 + 4𝑦2 − 2(−1)2𝑦 + 4 = 5 + 4𝑦2 − 2𝑦 

We will find the critical point 𝑦 =
1

4
  (−1,

1

4
) and on the boundary (−1,−1) and (−1,1) 

𝑔(−1) = 𝑓(−1,−1) = 11
𝑔(1) = 𝑓(−1,1) = 7

𝑔(
1

4
) = 𝑓(−1,

1

4
) =

19

4
= 4.75

 

 Next, we can now look at the upper side defined by, 𝑦 = 1,−1 ≤ 𝑥 ≤ 1 

 Define a new function except this time it will be a function of x: 

ℎ(𝑥) = 𝑓(𝑥, 1) = 𝑥2 + 4(12) − 2𝑥2(1) + 4 = 8 − 𝑥2 

Hence, we need to find the absolute extrema of ℎ(𝑥) on the range −1 ≤ 𝑥 ≤ 1 

ℎ′(𝑥) = −2𝑥 ⇒ 𝑥 = 0 

The value of this function 𝑓(𝑥, 𝑦) at the critical point and the end points is, 



ℎ(−1) = 𝑓(−1,1) = 7
ℎ(1) = 𝑓(1,1) = 7
ℎ(0) = 𝑓(0,1) = 8

 

 Last, we need to take care of the lower side. This side is defined by,⁡𝑦 = −1,−1 ≤ 𝑥 ≤ 1 

The new function we’ll define in this case is, 

ℎ(𝑥) = 𝑓(𝑥,−1) = 𝑥2 + 4(−1)2 − 2𝑥2(−1) + 4 = 8 + 3𝑥2 

The critical point for this function is, 

ℎ′(𝑥) = 6𝑥 ⇒ 𝑥 = 0 

The function values 𝑓(𝑥, 𝑦) at the critical point and the endpoint are, 

ℎ(−1) = 𝑓(−1,−1) = 11
ℎ(1) = 𝑓(1,−1) = 11
ℎ(0) = 𝑓(0,−1) = 8

 

 Finally, we need compare all values of the function found in all the steps and take the 

largest and smallest as the absolute extrema of the function in the rectangle. 

𝑓(0,0) = 4 𝑓(1,−1) = 11 𝑓(1,1) = 7

𝑓(1,
1

4
) = 4.75 𝑓(−1,1) = 7 𝑓(−1,−1) = 11

𝑓(−1,
1

4
) = 4.75 𝑓(0,1) = 8 𝑓(0,−1) = 8

 

 The absolute minimum is at (0,0) since gives the smallest function value and the absolute 

maximum occurs at (1,−1) and (−1,−1) since these two points give the largest function value. 

 

 Example 2. Find the absolute minimum and absolute maximum of 𝑓(𝑥, 𝑦) = 2𝑥2 − 𝑦2 +

6𝑦 on the disk of radius 4, 𝑥2 + 𝑦2 ≤ 16. 

 Let’s first find the critical points of the function that lies inside the disk. This will require 

the following two first order partial derivatives. 

𝑓𝑥 = 4𝑥, 𝑓𝑦 = −2𝑦 + 6 

 To find the critical points we’ll need to solve the following system. 

4𝑥 = 0
−2𝑦 + 6 = 0

 

 So, the only critical point for this function is (0,3). The function value at this critical point 

is, 𝑓(0,3) = 9 

 Now we need to look at the boundary. We can solve this for x2 and plug this into the x2 in 

𝑓(𝑥, 𝑦) to get a function of y as follows: 𝑥2 = 16 − 𝑦2,  

𝑔(𝑦) = 2(16 − 𝑦2) − 𝑦2 + 6𝑦 = 32 − 3𝑦2 + 6𝑦 



We will need to find the absolute extrema of this function on the range −4 ≤ 𝑦 ≤ 4. We’ll first 

need the critical points of this function. 

𝑔′(𝑦) = −6𝑦 + 6 ⇒ 𝑦 = 1 

To find the points, we can do this by plugging the value of 𝑦  into our equation for the circle 

and solving for x as 

𝑦 = −4: 𝑥2 = 16 − 16 = 0 ⇒ 𝑥 = 0

𝑦 = 4: 𝑥2 = 16 − 16 = 0 ⇒ 𝑥 = 0

𝑦 = 1: 𝑥2 = 16 − 1 = 15 ⇒ 𝑥 = ±√15 = ±3.87

 

The function values for 𝑓(𝑥, 𝑦) 

𝑔(−4) = −40 ⇒ 𝑓(0,−4) = −40
𝑔(4) = 8 ⇒ 𝑓(0,4) = 8

𝑔(1) = 35 ⇒ 𝑓(−√15, 1) = 35⁡⁡⁡⁡and⁡⁡⁡𝑓(√15, 1) = 35

 

So, comparing these values to the value of the function at the critical point of 𝑓(𝑥, 𝑦) that we 

found earlier we can see that the absolute minimum occurs at (0,− 4) while the absolute 

maximum occurs twice at (−√15, 1) and (√15, 1). 


