
4. ORDINARY DIFFERENTIAL EQUATIONS 

4.1 Prelude to Differential Equations 

Many real-world phenomena can be modeled mathematically by using 

differential equations. Our goal is to develop solution techniques for different types of 

ordinary differential equations we will consider.  

Definition 1. A differential equation is an equation with one or more derivatives 

of a function or functions. In other words, it is defined as the equation that contains 

derivatives of one or more dependent variables with respect to one or more 

independent variables.  

Definition 2. An ordinary differential equation (ODE) is an equation containing 

an unknown function of one real or complex variable 𝑥, its derivatives, and some given 

functions of 𝑥. The unknown function is generally represented by a variable (often 

denoted 𝑦), which, therefore, depends on 𝑥. Thus 𝑥 is often called the independent 

variable of the equation.  

𝐹(𝑥; 𝑦, 𝑦′, 𝑦′′, 𝑦′′′, … , 𝑦(𝑛)) = 0 

The term "ordinary" is used in contrast with the term partial differential equation, 

which may be with respect to more than one independent variable.  

One of the most common types of differential equations is an equation 

containing an unknown function 𝑦 = 𝑓(𝑥) and its derivative, given by 
𝑑𝑦

𝑑𝑥
= 𝑦′, it is 

known as an ordinary differential equation.  

Consider an example of a differential equation: 

𝑑𝑦

𝑑𝑥
= 𝑦′ = 2𝑥, 

As seen the equation includes a derivative. There is a relationship between the 

variables 𝑥 and 𝑦 is an unknown function 𝑦(𝑥). Furthermore, the left-hand side of the 

equation is the derivative of 𝑦(𝑥). Therefore, we can interpret this equation as follows: 

start with some function 𝑦 = 𝑓(𝑥) and take its derivative. The answer must be equal 

to 2𝑥. What function has a derivative that is equal to 2𝑥? One such function is 𝑦 = 𝑥2, 

so this function is considered a solution to a differential equation. 

Definition. A solution to a differential equation is a function 𝑦 = 𝑓(𝑥)  that 

satisfies the differential equation when 𝑓(𝑥) and its derivatives are substituted into the 

equation. 



Example of verifying solutions of differential equation: 

Equation Solution 

𝑦′ = 2𝑥 𝑦 = 𝑥2 

𝑦′ + 3𝑦 = 6𝑥 + 11 𝑦 = 𝑒−3𝑥 + 2𝑥 + 3 

To verify the solution, we first calculate  𝑦′  using the chain rule for derivatives. 

This gives  𝑦′ = −3𝑒−3𝑥 + 2 Next we substitute  𝑦  and  𝑦′  into the left-hand side of 

the differential equation: 

(−3𝑒−2𝑥 + 2) + 3(𝑒−2𝑥 + 2𝑥 + 3). 

the resulting expression can be simplified by first distributing to eliminate the 

parentheses, giving 

−3𝑒−2𝑥 + 2 + 3𝑒−2𝑥 + 6𝑥 + 9. 

Combining like terms leads to the expression  6𝑥 + 11 , which is equal to the right-

hand side of the differential equation. This result verifies that  𝑦 = 𝑒−3𝑥 + 2𝑥 + 3 is a 

solution of the differential equation. 

 It is convenient to define characteristics of differential equations that make it 

easier to talk about them and categorize them. The most basic characteristic of a 

differential equation is its order. 

Definition. The order of a differential equation is the highest order of any 

derivative of the unknown function that appears in the equation. 

Example: 

 𝑦′ − 4𝑦 = 𝑥2 − 3𝑥 + 4 - The highest derivative in the equation is  𝑦′ ,so the 

order is 1. It is called a first order ordinary differential equation; 

 𝑥2𝑦‴ − 3𝑥𝑦″ + 𝑥𝑦′ − 3𝑦 = sin⁡𝑥 - The highest derivative in the equation is  

𝑦′′′ , so the order is  3. It is called the third order ordinary differential equation; 

 
4

𝑥
𝑦(4) −

6

𝑥2
𝑦″ +

12

𝑥4
𝑦 = 𝑥3 − 3𝑥2 + 4𝑥 − 12 - The highest derivative in the 

equation is 𝑦(4), so the order is 4. It is called the fourth order ordinary 

differential equation. 

4.2 General and Particular Solutions of First-Order Ordinary Differential 

Equation (FODE) 



 We can note that the differential equation 𝑦′ = 2𝑥 has not only the solution 𝑦 =

𝑥2, but the other 𝑦 = 𝑥2 + 4 is a solution too. The only difference between these two 

solutions is the last term, which is a constant. In fact, any function of the form 𝑦 =

𝑥2 + 𝐶 where  𝐶  represents any constant, is a solution as well. The reason is that the 

derivative of  𝑥2 + 𝐶 is 2𝑥, regardless of the value of 𝐶. It can be shown that any 

solution of this differential equation must be of the form 𝑦 = 𝑥2 + 4. This is an 

example of a general solution to a differential equation. 

 If we will graph some of these solutions 𝑦 = 𝑥2 + 𝐶 (Note: in this graph we use 

even integer values for C ranging between  −4  and  4 . In fact, there is no restriction 

on the value of  𝐶 ; it can be an integer or not.), we get a family (a set) of the parabolas 

that presents a general solution to the differential equation 𝑦′ = 2𝑥 (i.e. the family of 

solutions to the differential equation) 

 

 We are free to choose any solution we wish; for example, 𝑦 = 𝑥2 + 3 is a member 

of the family of solutions to this differential equation. This is called a particular 

solution to the differential equation.  

As seen, a particular solution can often be uniquely identified if we are given 

additional information about the problem. 

Example. Find the particular solution to the differential equation 𝑦′ = 2𝑥 passing 

through the point  (2,7). 

Any function of the form  𝑦 = 𝑥2 + 𝐶 is a solution to this differential equation. To 

determine the value of  𝐶 , we substitute the values 𝑥 = 2 and 𝑦 = 7 into this equation 

and solve for  𝐶: 

𝑦 = 𝑥2 + 𝐶, 7 = 22 + 𝐶,  7 = 4 + 𝐶,  𝐶 = 3 



Therefore the particular solution passing through the point (2,7) is⁡𝑦 = 𝑥2 +3. 

 4.3 Initial-Value Problems 

 As shown, a given differential equation has an infinite number of solutions, so it 

is natural to ask which one we want to use. To choose one solution, more information 

is needed. Some specific information that can be useful is an initial value, which is an 

ordered pair that is used to find a particular solution. 

 Definition. A differential equation together with one or more initial values is 

called an initial-value problem.  

 Thumb rule. The general rule is that the number of initial values needed for an 

initial-value problem is equal to the order of the differential equation.  

For example,  

 if we have the differential equation 𝑦′ = 2𝑥 then 𝑦(3) = 7 is an initial value, 

and when taken together, these equations form an initial-value problem. 

 if the differential equation 𝑦″ − 3𝑦′ + 2𝑦 = 4𝑒𝑥 is second order, so we need 

two initial values. With initial-value problems of order greater than one, the 

same value should be used for the independent variable. An example of initial 

values for this second-order equation would be 𝑦(0) = 2 and 𝑦′(0) = −1. 

These two initial values together with the differential equation form an initial-

value problem.  

Example. Verify that the function 𝑦 = 2𝑒−2𝑥 + 𝑒𝑥 is a solution to the initial-value 

problem 

𝑦′ + 2𝑦 = 3𝑒𝑥, 𝑦(0) = 3. 

We start by calculating  𝑦′. This gives 𝑦′ = −4𝑒−2𝑥 + 𝑒𝑥.  

Next we substitute both  𝑦  and  𝑦′  into the left-hand side of the differential equation 

and simplify:  

𝑦′ + 2𝑦 = (−4𝑒−2𝑥 + 𝑒𝑥) + 2(2𝑒−2𝑥 + 𝑒𝑥)

= −4𝑒−2𝑥 + 𝑒𝑥 + 4𝑒−2𝑥 + 2𝑒𝑥 = 3𝑒𝑥.
 

Next we calculate 𝑦(0): 

𝑦(0) = 2𝑒−2(0) + 𝑒0 = 2 + 1 = 3. 



This result verifies the initial value. Therefore, the given function satisfies the initial-

value problem. 

 Geometrical interpretation of FODE 

In general, a first-order differential equation can be written in the form 

𝑦′ = 𝑓(𝑥, 𝑦). 

Since the derivative of a function evaluated at a given point is the slope of the tangent 

line to the graph of that function at the same point, we get a direction field (also called 

a slope field) on the xy-plane. 

 As example, if 𝑇(𝑡) represents the temperature of an object at time 𝑡, and the 

ambient temperature is 72°F, then of cooling we have a differential equation in 

accordance with the Newton’s law as follows: 

𝑇′(𝑡) = −0.4(𝑇 − 72). 

Figure shows the direction field for this equation, where the red lines show two 

solutions: one with initial temperature less than 72°F and the other with initial 

temperature greater than 72°F: 

 

We can generate a direction field of this type for any differential equation of the form 

𝑦′ = 𝑓(𝑥, 𝑦): 

 Definition. A direction field (slope field) is a mathematical object used to 

graphically represent solutions to a first-order differential equation. At each point in a 

direction field, a line segment appears whose slope is equal to the slope of a solution 



to the differential equation passing through that point. 

Note. We can use a direction field to predict the behavior of solutions to a differential 

equation without knowing the actual solution. 

 4.4 Solving first-order ordinary differential equations 

 Now we will focus on methods of the solutions of various first-order ordinary 

differential equations. First we examine a solution technique for finding exact 

solutions to a class of differential equations known as separable differential equations. 

1. Separable Equations 

 Definition. A separable differential equation is any equation that can be written 

in the form: 

𝑦′ = 𝑓(𝑥)𝑔(𝑦). 

The term ‘separable’ refers to the fact that the right-hand side of Equation can be 

separated into a function of 𝑥 times a function of 𝑦. Examples of separable differential 

equations include 

𝑦′ = (𝑥2 − 4)(3𝑦 + 2)

𝑦′ = 6𝑥2 + 4𝑥

𝑦′ = sec⁡𝑦 + tan⁡𝑦

𝑦′ = 𝑥𝑦 + 3𝑥 − 2𝑦 − 6 = (𝑥 + 3)(𝑦 − 2).

 

If a differential equation is separable, then it is possible to solve the equation using the 

method of separation of variables as follows: 

1. Check for any values of 𝑦  hat make 𝑔(𝑦) = 0. These correspond to constant 

solutions1. 

2. Rewrite the differential equation in the form 

𝑑𝑦

𝑔(𝑦)
= 𝑓(𝑥)𝑑𝑥. 

3. Integrate both sides of the equation. 

4. Solve the resulting equation for  𝑦  if possible. 

5. If an initial condition exists, substitute the appropriate values for  𝑥⁡ and  𝑦⁡ into 

                                                 
1 We need to make sure that 𝑔(𝑦) ≠ 0. If there’s a number 𝑦0 such that 𝑔(𝑦0) = 0, then this number will also be a 

solution of the differential equation. Division by 𝑔(𝑦) causes loss of this solution. 



the equation and solve for the constant. 

Note that Step 4 states “Solve the resulting equation for  𝑦  if possible.” It is not always 

possible to obtain  𝑦  as an explicit function of  𝑥 . Quite often we have to be satisfied 

with finding 𝑦 as an implicit function of  𝑥 . 

Example 1. Find a general solution to the differential equation 

𝑦′ = (𝑥2 − 4)(3𝑦 + 2) 

Follow the five-step method of separation of variables.  

In this example, 𝑓(𝑥) = 𝑥2 − 4 and 𝑔(𝑦) = 3𝑦 + 2. Setting 𝑔(𝑦) = 0 gives 𝑦 = −
2

3
 

as a constant solution. 

Rewrite the differential equation in the separable form: 
𝑑𝑦

3𝑦+2
= (𝑥2 − 4)𝑑𝑥. 

Integrate both sides of the equation: ∫
𝑑𝑦

3𝑦+2
= ∫ (𝑥2 − 4)𝑑𝑥. So, the solution 

becomes: 
1

3
ln⁡|3𝑦 + 2| =

1

3
𝑥3 − 4𝑥 + 𝐶. 

To solve this equation for  𝑦 , first multiply both sides of the equation by  3, 

ln⁡|3𝑦 + 2| = 𝑥3 − 12𝑥 + 3𝐶. If we call the second arbitrary constant  𝐶1 , the 

equation becomes ln⁡|3𝑦 + 2| = 𝑥3 − 12𝑥 + 𝐶1. Now exponentiate both sides of the 

equation  

𝑒ln⁡|3𝑦+2| = 𝑒𝑥
3−12𝑥+𝐶1

|3𝑦 + 2| = 𝑒𝐶1𝑒𝑥
3−12𝑥

 

Again define a new constant 𝐶2 = 𝑒𝑐1: |3𝑦 + 2| = 𝐶2𝑒
𝑥3−12𝑥. Finally, the solution 

can be written in the form: 𝑦 =
−2+𝐶𝑒𝑥

3−12𝑥

3
. 

No initial condition is imposed, so we are finished. 

Example 2. Solving an initial-value problem 

𝑦′ = (2𝑥 + 3)(𝑦2 − 4), 𝑦(0) = −1. 

In this example: 𝑓(𝑥) = 2𝑥 + 3 and 𝑔(𝑦) = 𝑦2 − 4 then, setting 𝑔(𝑦) = 0 we get 𝑦 =

±2 as constant solutions. 



Separate the variables: 
𝑑𝑦

𝑦2−4
= (2𝑥 + 3)𝑑𝑥. 

Next integrate both sides: ∫
1

𝑦2−4
𝑑𝑦 = ∫ (2𝑥 + 3)𝑑𝑥. 

Integrating both sides and replacing  4𝐶  with  𝐶1  gives: ln⁡|
𝑦−2

𝑦+2
| = 4𝑥2 + 12𝑥 + 𝐶1.

Exponentiating both sides of the equation and define 𝐶2 = 𝑒𝐶1 yields:

|
𝑦 − 2

𝑦 + 2
| = 𝐶2𝑒

4𝑥2+12𝑥.

Finally, 

𝑦 =
2 + 2𝐶2𝑒

4𝑥2+12𝑥

1 − 𝐶2𝑒
4𝑥2+12𝑥

. 

To determine the value of  𝐶2 , substitute  𝑥 = 0  and  𝑦 = −1  into the general solution:

−1−2

−1+2
= 𝐶2𝑒

4(0)2+12(0)  𝐶2 = −3.

Therefore the solution to the initial-value problem is 

𝑦 =
2 − 6𝑒4𝑥

2+12𝑥

1 + 3𝑒4𝑥
2+12𝑥

. 




