
𝑦′ = [𝐶(𝑥)𝑥]′ = 𝐶′(𝑥)𝑥 + 𝐶(𝑥). 

Substituting this into the equation gives: 

𝑥[𝐶′(𝑥)𝑥 + 𝐶(𝑥)] = 𝐶(𝑥)𝑥 + 2𝑥3,⇒ 𝐶′(𝑥)𝑥2 + 𝐶(𝑥)𝑥 = 𝐶(𝑥)𝑥 + 2𝑥3, ⇒ 

𝐶′(𝑥) = 2𝑥. 

Upon integration, we find the function 𝐶(𝑥): 

𝐶(𝑥) = ∫ 2𝑥𝑑𝑥 = 𝑥2 + 𝐶1, where 𝐶1 is an arbitrary real number. 

Thus, the general solution of the given equation is written in the form 

𝑦 = 𝐶(𝑥)𝑥 = (𝑥2 + 𝐶1)𝑥 = 𝑥3 + 𝐶1𝑥. 

 

4. Bernoulli Equation 

 Bernoulli equation is one of the well-known nonlinear differential equations of 

the first order. It is written as 

  𝑦′ + 𝑎(𝑥)𝑦 = 𝑏(𝑥)𝑦𝑚, (1) 

where 𝑎(𝑥) and  𝑏(𝑥) are continuous functions. 

 Note. If 𝑚 = 0 the equation (1) becomes a linear differential equation. In case 

𝑚 = 1, the equation (1) becomes separable. 

 In general case, when 𝑚 ≠ 0, 1 Bernoulli equation can be converted to a linear 

differential equation using the change of variable 

𝑧 = 𝑦1−𝑚 . 

The new differential equation for the function 𝑧(𝑥) has the form: 

𝑧′ + (1 −𝑚)𝑎(𝑥)𝑧 = (1 −𝑚)𝑏(𝑥) 

and can be solved by the methods described on the page Linear Differential Equation 

of First Order. 

 

 Example 1. Find the general solution of the equation 𝑦′ − 𝑦 = 𝑦2𝑒𝑥. 

We set 𝑚 = 2 for the given Bernoulli equation, so we use the substitution  

𝑧 = 𝑦1−𝑚 = 𝑦1−2 =
1

𝑦
. 

Differentiating both sides of the equation (we consider 𝑦 in the right side as a 

composite function of 𝑥), we obtain: 

𝑧′ = (
1

𝑦
)
′

= −
1

𝑦2
𝑦′. 



Divide both sides of the original differential equation by 𝑦2 

𝑦′ − 𝑦 = 𝑦2𝑒𝑥,⇒
𝑦′

𝑦2
−
1

𝑦
= 𝑒𝑥. 

Substituting 𝑧 and 𝑧′ we find  

−𝑧 − 𝑧 = 𝑒𝑥, ⇒ 𝑧′ + 𝑧 = −𝑒𝑥. 

We get the linear equation for the function 𝑧(𝑥). To solve it, we use the integrating 

factor: 

𝑢(𝑥) = 𝑒∫ 1𝑑𝑥 = 𝑒𝑥. 

Then the general solution of the linear equation is given by 

𝑧(𝑥) =
∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 + 𝐶

𝑢(𝑥)
=
∫ 𝑒𝑥(−𝑒𝑥)𝑑𝑥 + 𝐶

𝑒𝑥
=
−
𝑒2𝑥

2
+ 𝐶

𝑒𝑥
= −

𝑒𝑥

2
+ 𝐶𝑒−𝑥

=
2𝐶𝑒−𝑥 − 𝑒𝑥

2
. 

Since 𝐶 is an arbitrary constant, we can replace 2𝐶 with a constant 𝐶1.  Returning to 

the function 𝑦(𝑥), we obtain the implicit expression: 

𝑦 =
1

𝑧
=

2

𝐶1𝑒
−𝑥 − 𝑒𝑥

. 

Note that we have lost the solution 𝑦 = 0 when dividing the equation by 𝑦2. Thus, the 

final answer is given by 

𝑦 =
2

𝐶1𝑒
−𝑥 − 𝑒𝑥

, 𝑦 = 0. 

 

 Example 2. Find the solution of the differential equation 4𝑥𝑦𝑦′ = 𝑦2 + 𝑥2, 

satisfying the initial condition 𝑦(1) = 1. 

First we should check whether this differential equation is a Bernoulli equation: 

4𝑥𝑦𝑦′ = 𝑦2 + 𝑥2, ⇒
4𝑥𝑦𝑦′

4𝑥𝑦
−

𝑦2

4𝑥𝑦
=

𝑥2

4𝑥𝑦
,⇒ 𝑦′ −

𝑦

4𝑥
=

𝑥

4𝑦
. 

As it can be seen, we have a Bernoulli equation with the parameter 𝑚 = −1. Hence, 

we can make the substitution 

𝑧 = 𝑦1−𝑚 = 𝑦2 

The derivative of the function is 𝑧′ = 2𝑦𝑦′.  

Next, we multiply both sides of the differential equation by 2𝑦 



2𝑦𝑦′ −
2𝑦2

4𝑥
=
2𝑥𝑦

4𝑦
,⇒ 2𝑦𝑦′ −

𝑦2

2𝑥
=
𝑥

2
. 

By replacing 𝑦 with 𝑧, we can convert the Bernoulli equation into the linear differential 

equation: 

𝑧′ −
𝑧

2𝑥
=
𝑥

2
. 

Calculate the integrating factor: 

𝑢(𝑥) = 𝑒∫ (−
1
2𝑥

)𝑑𝑥 = 𝑒−
1
2
∫
𝑑𝑥
𝑥 = 𝑒−

1
2
ln|𝑥| = 𝑒

ln
1

√|𝑥| =
1

√|𝑥|
. 

Let’s choose the function 𝑢(𝑥) =
1

√𝑥
 and make sure that the left side of the equation 

becomes the derivative of the product 𝑧(𝑥)𝑢(𝑥) after multiplying by 𝑢(𝑥) 

(𝑧′ −
𝑧

2𝑥
)𝑢(𝑥) = 𝑧′ ⋅

1

√𝑥
−

𝑧

2𝑥
⋅
1

√𝑥
= 𝑧′ ⋅

1

√𝑥
− 𝑧 ⋅

1

2𝑥
3
2

= 𝑧′ ⋅
1

√𝑥
− 𝑧 ⋅

𝑥−
3
2

2

= 𝑧′ ⋅
1

√𝑥
+ 𝑧 ⋅ (𝑥−

1
2)′ = 𝑧′ ⋅

1

√𝑥
+ 𝑧 ⋅ (

1

√𝑥
)′ = (𝑧 ⋅

1

√𝑥
)′ 

Find the general solution of the linear equation: 

𝑧 =
∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 + 𝐶

𝑢(𝑥)
=

∫
1

√𝑥
⋅
𝑥
2
𝑑𝑥 + 𝐶

1

√𝑥

=

1
2
∫ √𝑥𝑑𝑥 + 𝐶

1

√𝑥

= √𝑥[
1

2
⋅
2𝑥

3
2

3
+ 𝐶]

=
𝑥2

3
+ 𝐶√𝑥. 

Taking into account that 𝑧 = 𝑦2, we obtain the following solution: 

𝑦 = ±√
𝑥2

3
+ 𝐶√𝑥. 

Now we determine the value of the constant 𝐶  that matches the initial condition 

𝑦(1) = 1. We see that only solution with the positive sign satisfies this condition. 

Hence, 

𝑦 = √
12

3
+ 𝐶√1 = √

1

3
+ 𝐶 = 1. 

This gives: 𝐶 =
2

3
. 

So the solution of the IVP is given by the function 



𝑦 = √
𝑥2

3
+
2√𝑥

3
. 

 

5. General Riccati Equations 

The Riccati equation is one of the most interesting nonlinear differential equations of 

first order. It’s written in the form: 

𝑦′ = 𝑎(𝑥)𝑦 + 𝑏(𝑥)𝑦2 + 𝑐(𝑥), 

where 𝑎(𝑥), 𝑏(𝑥),  𝑐(𝑥) are continuous functions of 𝑥. 

The differential equation given above is called the general Riccati equation. It can be 

solved with help of the following theorem: 

Theorem. If a particular solution 𝑦1 of a Riccati equation is known, the general solution 

of the equation is given by 

𝑦 = 𝑦1 + 𝑢. 

Indeed, substituting the solution 𝑦 = 𝑦1 + 𝑢 into Riccati equation, we have 

(𝑦1 + 𝑢)′ = 𝑎(𝑥)(𝑦1 + 𝑢) + 𝑏(𝑥)(𝑦1 + 𝑢)2 + 𝑐(𝑥), 

𝑦1
′ + 𝑢′ = 𝑎(𝑥)𝑦1 + 𝑎(𝑥)𝑢 + 𝑏(𝑥)𝑦1

2 + 2𝑏(𝑥)𝑦1𝑢 + 𝑏(𝑥)𝑢2 + 𝑐(𝑥). 

The underlined terms in the left and in the right side can be canceled because 𝑦1 is a 

particular solution satisfying the equation. As a result we obtain the differential 

equation for the function 𝑢(𝑥): 

𝑢′ = 𝑏(𝑥)𝑢2 + [2𝑏(𝑥)𝑦1 + 𝑎(𝑥)]𝑢, 

which is a Bernoulli equation. 

Substitution of 𝑧 =
1

𝑢
 converts the given Bernoulli equation into a linear differential 

equation that allows integration. 

 So, we can construct the general solution if a particular solution is known. 

Unfortunately, there is no strict algorithm to find the particular solution, which 

depends on the types of the functions 𝑎(𝑥), 𝑏(𝑥),  𝑐(𝑥). 

 Special Case 1: Coefficients 𝑎, 𝑏, 𝑐 are constants. 

If the coefficients in the Riccati equation are constants, this equation can be reduced 

to a separable differential equation. The solution is described by the integral of a 

rational function with a quadratic function in the denominator: 

𝑦′ = 𝑎𝑦 + 𝑏𝑦2 + 𝑐,⇒
𝑑𝑦

𝑑𝑥
= 𝑎𝑦 + 𝑏𝑦2 + 𝑐,⇒ ∫

𝑑𝑦

𝑎𝑦 + 𝑏𝑦2 + 𝑐
= ∫ 𝑑𝑥. 



This integral can be easily calculated at any values of 𝑎, 𝑏, 𝑐. 

 Special Case 2: Equation of type 𝑦′ = 𝑏𝑦2 + 𝑐𝑥𝑛 

That is the function 𝑎(𝑥) at the linear term is zero, the coefficient 𝑏 at 𝑦2 is a constant, 

and 𝑐(𝑥) is a power function: 

𝑎(𝑥) ≡ 0, 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐𝑥𝑛. 

First of all, if 𝑛 = 0, we get the Case 1 where the variables are separated and the 

differential equation can be integrated. 

If 𝑛 = −2, the Riccati equation is converted into a homogeneous equation with help 

of the substitution 𝑦 =
1

𝑧
 and then also can be integrated. 

This differential equation can be also solved at 

𝑛 =
4𝑘

1 − 2𝑘
,where𝑘 = ±1,±2,±3,… 

Here the general solution is expressed through cylinder functions. 

At all other values of the power n, the solution of the Riccati equation can be expressed 

through integrals of elementary functions. This fact was discovered by the French 

mathematician Joseph Liouville  

 

 Example 1. Find the solution of the differential equation 𝑦′ = 𝑦 + 𝑦2 + 1. 

The given equation is a simple Riccati equation with constant coefficients. Here the 

variables 𝑥, 𝑦 can be easily separated, so the general solution of the equation is given 

by 

𝑑𝑦

𝑑𝑥
= 𝑦 + 𝑦2 + 1,⇒

𝑑𝑦

𝑦 + 𝑦2 + 1
= 𝑑𝑥,⇒ ∫

𝑑𝑦

𝑦 + 𝑦2 + 1
= ∫ 𝑑𝑥,

⇒ ∫
𝑑𝑦

𝑦2 + 𝑦 +
1
4
+
3
4

= ∫ 𝑑𝑥,⇒ ∫
𝑑𝑦

(𝑦 +
1
2)

2 + (
√3
2 )2

= ∫ 𝑑𝑥,

⇒
1

√3
2

arctan
𝑦 +

1
2

√3
2

= 𝑥 + 𝐶,⇒
2

√3
arctan

2𝑦 + 1

√3
= 𝑥 + 𝐶. 

 

 Example 2. Find the solution of the differential equation 𝑦′ + 𝑦2 = 
2

𝑥2
. 

We will seek for a particular solution in the form: 

𝑦 =
𝑐

𝑥
,⇒ 𝑦′ = −

𝑐

𝑥2
. 



Substituting this into the equation, we obtain: 

−
𝑐

𝑥2
+ (

𝑐

𝑥
)
2

=
2

𝑥2
or −

𝑐

𝑥2
+
𝑐2

𝑥2
=

2

𝑥2
. 

We get a quadratic equation for 𝑐: 

𝑐2 − 𝑐 − 2 = 0,⇒ 𝐷 = 1 − 4 ⋅ (−2) = 9,⇒ 𝑐1,2 =
1 ± 3

2
= −1,2. 

We can take any value of 𝑐. For example, let 𝑐 = 2. Now, when the particular solution 

is known, we make the replacement: 

𝑦 = 𝑧 +
2

𝑥
,⇒ 𝑦′ = 𝑧′ −

2

𝑥2
. 

Now substitute this into the original Riccati equation: 

𝑧′ −
2

𝑥2
+ (𝑧 +

2

𝑥
)2 =

2

𝑥2
, ⇒ 𝑧′ −

2

𝑥2
+ 𝑧2 +

4

𝑥
𝑧 +

4

𝑥2
=

2

𝑥2
, ⇒ 𝑧′ +

4

𝑥
𝑧 = −𝑧2. 

As it can be seen, we have a Bernoulli equation with the parameter 𝑚 = 2. Make one 

more substitution: 

𝑣 = 𝑧1−𝑚 =
1

𝑧
,⇒ 𝑣′ = −

𝑧′

𝑧2
. 

Divide the Bernoulli equation by 𝑧2 (assuming that 𝑧 ≠ 0) and rewrite it in terms of 

𝑣: 

𝑧′

𝑧2
+

4𝑧

𝑥𝑧2
= −1,⇒ −

𝑧′

𝑧2
−

4

𝑥𝑧
= 1,⇒ 𝑣′ −

4

𝑥
𝑣 = 1. 

The last equation is linear and can be easily solved using the integrating factor: 

𝑢 = 𝑒∫ (−
4
𝑥
)𝑑𝑥 = 𝑒−4∫

𝑑𝑥
𝑥 = 𝑒−4ln|𝑥| = 𝑒

ln
1

|𝑥|4 =
1

|𝑥|4
=

1

𝑥4
. 

The general solution of the linear equation is given by 

𝑣 =
∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 + 𝐶

𝑢(𝑥)
=

∫
1
𝑥4

⋅ 1𝑑𝑥 + 𝐶

1
𝑥4

=
∫ 𝑥−4𝑑𝑥 + 𝐶

1
𝑥4

= (−
1

3
𝑥−3 + 𝐶)𝑥4

= −
𝑥

3
+ 𝐶𝑥4. 

From now on we will subsequently return back to the previous variables. Since 𝑧 =
1

𝑣
, 

the general solution for 𝑧 is written as follows: 

1

𝑧
= −

𝑥

3
+ 𝐶𝑥4, ⇒ 𝑧 =

1

−
𝑥
3
+ 𝐶𝑥4

= −
3

𝑥 + 3𝐶𝑥4
= −

3

𝑥(1 + 3𝐶𝑥3)
. 



Hence, 

𝑦 = 𝑧 +
2

𝑥
= −

3

𝑥(1 + 3𝐶𝑥3)
+
2

𝑥
=
−3 + 2(1 + 3𝐶𝑥3)

𝑥(1 + 3𝐶𝑥3)
=
−3 + 2 + 6𝐶𝑥3

𝑥(1 + 3𝐶𝑥3)

=
6𝐶𝑥3 − 1

𝑥(1 + 3𝐶𝑥3)
. 

We can take: 3𝐶 = 𝐶1 and write the answer in the form: 

𝑦 =
2𝐶1𝑥

3 − 1

𝑥(1 + 𝐶1𝑥
3)
, 

where 𝐶1 is an arbitrary real number. 

 

 Example 3. Find the solution of the differential equation 𝑦′ + 6𝑦2 =
1

𝑥2
. 

As it can be seen, this is a special Riccati equation of type 𝑦′ = 𝑏𝑦2 + 𝑐𝑥𝑛 with 𝑛 =

−2.  

By making the substitution 𝑦 =
1

𝑧
 we can convert the equation to a homogeneous one 

and then integrate.  

Let 𝑧 =
1

𝑦
, 𝑧′ = −

𝑦′

𝑦2
. Then 

𝑦′ + 6𝑦2 =
1

𝑥2
, ⇒ 𝑦′ = −6𝑦2 +

1

𝑥2
, ⇒ −

𝑦′

𝑦2
= 6 −

1

𝑦2𝑥2
, ⇒ 𝑧′ = 6 −

𝑧2

𝑥2
, ⇒ 

𝑧′ = 6 − (
𝑧

𝑥
)
2

. 

To solve the homogeneous equation we make one more substitution: 𝑧 = 𝑡𝑥, 𝑧′ =

𝑡′𝑥 + 𝑡.  

Hence, 

𝑡′𝑥 + 𝑡 = 6 − 𝑡2, ⇒ 𝑥
𝑑𝑡

𝑑𝑥
= 6 − 𝑡 − 𝑡2, ⇒

𝑑𝑡

𝑡2 + 𝑡 − 6
= −

𝑑𝑥

𝑥
,⇒ 

∫
𝑑𝑡

𝑡2 + 𝑡 − 6
= −∫

𝑑𝑥

𝑥
. 

The trinomial in the denominator of the left side can be factored as follows: 𝑡2 + 𝑡 −

6 = (𝑡 + 3)(𝑡 − 2), so we may use partial decomposition to simplify the integrand: 

1

𝑡2 + 𝑡 − 6
=

1

(𝑡 + 3)(𝑡 − 2)
=

𝐴

𝑡 + 3
+

𝐵

𝑡 − 2
,⇒ 𝐴(𝑡 − 2) + 𝐵(𝑡 + 3) = 1,

⇒ 𝐴𝑡 − 2𝐴 + 𝐵𝑡 + 3𝐵 = 1,⇒ (𝐴 + 𝐵)𝑡 + 3𝐵 − 2𝐴 = 1 



⇒ {
𝐴 + 𝐵 = 0

3𝐵 − 2𝐴 = 1
,⇒ {

𝐴 = −𝐵
5𝐵 = 1

,⇒ {
𝐴 = −

1

5

𝐵 =
1

5

. 

As a result, we have  

∫
𝑑𝑡

(𝑡 + 3)(𝑡 − 2)
= −∫

𝑑𝑥

𝑥
,⇒ −

1

5
∫

𝑑𝑡

𝑡 + 3
+
1

5
∫

𝑑𝑡

𝑡 − 2
= −∫

𝑑𝑥

𝑥
,

⇒
1

5
ln|𝑡 + 3| −

1

5
ln|𝑡 − 2| = ln|𝑥| + ln𝐶1(𝐶1 > 0) ,⇒ 

1

5
ln|

𝑡 + 3

𝑡 − 2
| = ln(𝐶1|𝑥|),⇒ ln|

𝑡 + 3

𝑡 − 2
| = ln(𝐶1

5|𝑥|5),⇒ |
𝑡 + 3

𝑡 − 2
| = 𝐶1

5|𝑥|5, ⇒
𝑡 + 3

𝑡 − 2
= ±𝐶1

5𝑥5. 

Rename the constant: 𝐶 = ±𝐶1
5, so the solution for the function 𝑡(𝑥) will have the 

form: 

𝑡 + 3

𝑡 − 2
= 𝐶𝑥5. 

Remember that 𝑡 =
𝑧

𝑥
. Therefore, 

𝑧
𝑥
+ 3

𝑧
𝑥
− 2

= 𝐶𝑥5,⇒
𝑧 + 3𝑥

𝑧 − 2𝑥
= 𝐶𝑥5. 

Returning to the variable𝑦, which is related to 𝑧 by the relationship 𝑧 =
1

𝑦
, we get 

1
𝑦
+ 3𝑥

1
𝑦
− 2𝑥

= 𝐶𝑥5, ⇒
1 + 3𝑥𝑦

1 − 2𝑥𝑦
= 𝐶𝑥5. 

The last expression is the general solution of the Riccati equation in the implicit form. 

Here the constant 𝐶 is any real number. Indeed, substituting 𝐶 = 0, we see that this 

value also satisfies the differential equation: 

𝐶 = 0,⇒ 1 + 3𝑥𝑦 = 0,⇒ 𝑦 = −
1

3𝑥
,⇒ 𝑦′ =

1

3𝑥2
. 

Hence, 

1

3𝑥2
+ 6(−

1

3𝑥
)2 =

1

𝑥2
, ⇒

1

3𝑥2
+ 6 ⋅

1

9𝑥2
=

1

𝑥2
, ⇒

1

3𝑥2
+

2

3𝑥2
=

1

𝑥2
, ⇒

1

𝑥2
≡

1

𝑥2
. 

 

 



6. Exact Differential Equations 

 Definition. A differential equation of type 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 

is called an exact differential equation if there exists a function of two variables 𝑢(𝑥, 𝑦) 

with continuous partial derivatives such that  

𝑑𝑢(𝑥, 𝑦) = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦. 

The general solution of an exact equation is given by 

𝑢(𝑥, 𝑦) = 𝐶, 

where 𝐶 is an arbitrary constant. 

 Test for Exactness 

Let functions 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) have continuous partial derivatives in a certain 

domain 𝐷. The differential equation 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 is an exact equation 

if and only if  

∂𝑄

∂𝑥
=
∂𝑃

∂𝑦
. 

 Algorithm for Solving an Exact Differential Equation 

1. First it’s necessary to make sure that the differential equation is exact using the test 

for exactness;  

2. Then we write the system of two differential equations that define the function 

𝑢(𝑥, 𝑦):  

{

∂𝑢

∂𝑥
= 𝑃(𝑥, 𝑦)

∂𝑢

∂𝑦
= 𝑄(𝑥, 𝑦)

. 

3. Integrate the first equation over the variable 𝑥. Instead of the constant 𝐶, we write 

an unknown function of 𝑦: 

𝑢(𝑥, 𝑦) = ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝜑(𝑦). 

4. Differentiating with respect to 𝑦, we substitute the function 𝑢(𝑥, 𝑦) into the second 

equation: 

∂𝑢

∂𝑦
 = 

∂

∂𝑦
[∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝜑(𝑦)] = 𝑄(𝑥, 𝑦). 

From here we get expression for the derivative of the unknown function 𝜑(𝑦): 



𝜑′(𝑦) = 𝑄(𝑥, 𝑦) −
∂

∂𝑦
(∫ 𝑃(𝑥, 𝑦)𝑑𝑥). 

5. By integrating the last expression, we find the function 𝜑(𝑦) and, hence, the function 

𝑢(𝑥, 𝑦): 

𝑢(𝑥, 𝑦) = ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝜑(𝑦). 

6. The general solution of the exact differential equation is given by 

𝑢(𝑥, 𝑦) = 𝐶, 

where 𝐶 is an arbitrary constant. 

Note: In Step 3, we can integrate the second equation over the variable 𝑦 instead of 

integrating the first equation over 𝑥. After integration we need to find the unknown 

function 𝜓(𝑥). 

 

 Example 1. Find the solution of the differential equation 2𝑥𝑦𝑑𝑥 +

(𝑥2 + 3𝑦2)𝑑𝑦 = 0 

1. The given equation is exact because the partial derivatives are the same:  

∂𝑄

∂𝑥
=

∂

∂𝑥
(𝑥2 + 3𝑦2) = 2𝑥,

∂𝑃

∂𝑦
=

∂

∂𝑦
(2𝑥𝑦) = 2𝑥. 

2. We have the following system of differential equations to find the function 𝑢(𝑥, 𝑦): 

{

∂𝑢

∂𝑥
= 2𝑥𝑦

∂𝑢

∂𝑦
= 𝑥2 + 3𝑦2

. 

3. By integrating the first equation with respect to 𝑥, we obtain 

𝑢(𝑥, 𝑦) = ∫ 2𝑥𝑦𝑑𝑥 = 𝑥2𝑦 + 𝜑(𝑦). 

4. Substituting this expression for 𝑢(𝑥, 𝑦) into the second equation gives us: 

∂𝑢

∂𝑦
=

∂

∂𝑦
[𝑥2𝑦 + 𝜑(𝑦)] = 𝑥2 + 3𝑦2, ⇒ 𝑥2 + 𝜑′(𝑦) = 𝑥2 + 3𝑦2, ⇒ 𝜑′(𝑦) = 3𝑦2. 

5. By integrating the last equation, we find the unknown function 𝜑(𝑦): 

𝜑(𝑦) = ∫ 3𝑦2𝑑𝑦 = 𝑦3, 

so that the general solution of the exact differential equation is given by 

𝑥2𝑦 + 𝑦3 = 𝐶, 

where 𝐶 is an arbitrary constant. 



 

 Example 2. Solve the differential equation 
1

𝑦2
−

2

𝑥
=

2𝑥𝑦′

𝑦3
 with the initial 

condition 𝑦(1) = 1. 

Check the equation for exactness by converting it into standard form: 

1

𝑦2
−
2

𝑥
=
2𝑥

𝑦3
𝑑𝑦

𝑑𝑥
,⇒ (

1

𝑦2
−
2

𝑥
)𝑑𝑥 =

2𝑥

𝑦3
𝑑𝑦,⇒ (

1

𝑦2
−
2

𝑥
)𝑑𝑥 −

2𝑥

𝑦3
𝑑𝑦 = 0. 

The partial derivatives are 

∂𝑄

∂𝑥
=

∂

∂𝑥
(−

2𝑥

𝑦3
) = −

2

𝑦3
,
∂𝑃

∂𝑦
=

∂

∂𝑦
(
1

𝑦2
−
2

𝑥
) = −

2

𝑦3
. 

Hence, the given equation is exact. Therefore, we can write the following system of 

equations to determine the function 𝑢(𝑥, 𝑦) 

{

∂𝑢

∂𝑥
=

1

𝑦2
−
2

𝑥
∂𝑢

∂𝑦
= −

2𝑥

𝑦3

. 

In the given case, it is more convenient to integrate the second equation with respect 

to the variable 𝑦: 

𝑢(𝑥, 𝑦) = ∫ (−
2𝑥

𝑦3
)𝑑𝑦 =

𝑥

𝑦2
+ 𝜓(𝑥). 

Now we differentiate this expression with respect to the variable 𝑥 

∂𝑢

∂𝑥
=

∂

∂𝑥
[
𝑥

𝑦2
+ 𝜓(𝑥)] =

1

𝑦2
−
2

𝑥
,⇒

1

𝑦2
+ 𝜓′(𝑥) =

1

𝑦2
−
2

𝑥
,⇒ 𝜓′(𝑥) = −

2

𝑥
,⇒ 

𝜓(𝑥) = −2ln|𝑥| = ln
1

𝑥2
. 

Thus, the general solution of the differential equation in implicit form is given by the 

expression: 

𝑥

𝑦2
+ ln

1

𝑥2
= 𝐶. 

The particular solution can be found using the initial condition 𝑦(1) = 1. By 

substituting the initial values, we find the constant 

1

12
+ ln

1

12
= 𝐶,⇒ 1 + 0 = 𝐶,⇒ 𝐶 = 1. 

Hence, the solution of the given initial value problem is 



1

𝑦2
+ ln

1

𝑥2
= 1. 

 

7. Using an Integrating Factor  

Consider a differential equation of type 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0, 

where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are functions of two variables 𝑥 and 𝑦 continuous in a 

certain region 𝐷. If 

∂𝑄

∂𝑥
≠
∂𝑃

∂𝑦
, 

the equation is not exact. However, we can try to find so-called integrating factor, 

which is a function 𝜇(𝑥, 𝑦) such that the equation becomes exact after multiplication 

by this factor. If so, then the relationship 

∂(𝜇𝑄(𝑥, 𝑦))

∂𝑥
=
∂(𝜇𝑃(𝑥, 𝑦))

∂𝑦
 

is valid. This condition can be written in the form: 

𝑄
∂𝜇

∂𝑥
+ 𝜇

∂𝑄

∂𝑥
= 𝑃

∂𝜇

∂𝑦
+ 𝜇

∂𝑃

∂𝑦
,⇒ 𝑄

∂𝜇

∂𝑥
− 𝑃

∂𝜇

∂𝑦
= 𝜇(

∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
). 

The last expression is the partial differential equation of first order that defines the 

integrating factor 𝜇(𝑥, 𝑦). 

 Unfortunately, there is no general method to find the integrating factor. 

However, one can mention some particular cases for which the partial differential 

equation can be solved and as a result we can construct the integrating factor. 

 Integrating factor depends on the variable 𝑥: 𝜇 = 𝜇(𝑥) 

In this case we have 
∂𝜇

∂𝑦
= 0, so the equation for 𝜇(𝑥, 𝑦) can be written in the form: 

1

𝜇

𝑑𝜇

𝑑𝑥
=
1

𝑄
(
∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
). 

The right side of this equation must be a function of only 𝑥. We can find the function 

𝜇(𝑥) by integrating the last equation. 

 

 Integrating factor depends on the variable 𝑦: 𝜇 = 𝜇(𝑦) 

Similarly, if 
∂𝜇

∂𝑥
= 0, we get the following ordinary differential equation for the 

integrating factor 𝜇(𝑥, 𝑦): 



1

𝜇

𝑑𝜇

𝑑𝑦
= −

1

𝑃
(
∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
), 

where the right side depends only on 𝑦. The function 𝜇(𝑦) can be found by integrating 

the given equation. 

 

 Integrating factor depends on a certain combination of the variables x and 𝑦: 

𝜇 = 𝜇(𝑧(𝑥, 𝑦)). 

The new function 𝑧(𝑥, 𝑦) can be, for example, of the following type: 

𝑧 =
𝑥

𝑦
, 𝑧 = 𝑥𝑦, 𝑧 = 𝑥2 + 𝑦2, 𝑧 = 𝑥 + 𝑦, 

and so on. 

Here it is important that the integrating factor 𝜇(𝑥, 𝑦) becomes a function of one 

variable 𝑧: 𝜇(𝑥, 𝑦) = 𝜇(𝑧) and can be found from the differential equation: 

1

𝜇

𝑑𝜇

𝑑𝑧
=

∂𝑃
∂𝑦

−
∂𝑄
∂𝑥

𝑄
∂𝑧
∂𝑥

− 𝑃
∂𝑧
∂𝑦

. 

We assume that the right side of the equation depends only on 𝑧  and the denominator 

is not zero. 

 

 Example 1. Solve the differential equation (1 + 𝑦2)𝑑𝑥 + 𝑥𝑦𝑑𝑦 = 0. 

First we test this differential equation for exactness: 

∂𝑄

∂𝑥
=

∂

∂𝑥
(𝑥𝑦) = 𝑦,

∂𝑃

∂𝑦
=

∂

∂𝑦
(1 + 𝑦2) = 2𝑦. 

As one can see, this equation is not exact. We try to find an integrating factor to convert 

the equation into exact. Calculate the function 

∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
= 2𝑦 − 𝑦 = 𝑦. 

One can notice that the expression 

1

𝑄
(
∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
) =

1

𝑥𝑦
⋅ 𝑦 =

1

𝑥
 

depends only on the variable 𝑥. Hence, the integrating factor will also depend only on 

𝑥: 𝜇 = 𝜇(𝑥). We can get it from the equation 



1

𝜇

𝑑𝜇

𝑑𝑥
=
1

𝑥
. 

Separating variables and integrating, we obtain: 

∫
𝑑𝜇

𝜇
= ∫

𝑑𝑥

𝑥
,⇒ ln|𝜇| = ln|𝑥|,⇒ 𝜇 = ±𝑥. 

We choose 𝜇 = 𝑥. Multiplying the original differential equation by 𝜇 = 𝑥, produces 

the exact equation: 

(𝑥 + 𝑥𝑦2)𝑑𝑥 + 𝑥2𝑦𝑑𝑦 = 0. 

Indeed, now we have 

∂𝑄

∂𝑥
=

∂

∂𝑥
(𝑥2𝑦) = 2𝑥𝑦,

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑥 + 𝑥𝑦2) = 2𝑥𝑦. 

Solve the resulting equation. The function 𝑢(𝑥, 𝑦) can be found from the system of 

equations:  

{

∂𝑢

∂𝑥
= 𝑥 + 𝑥𝑦2

∂𝑢

∂𝑦
= 𝑥2𝑦

. 

It follows from the first equation that 

𝑢(𝑥, 𝑦) = ∫ (𝑥 + 𝑥𝑦2)𝑑𝑥 =
𝑥2

2
+
𝑥2𝑦2

2
+ 𝜑(𝑦). 

Substitute this in the second equation to determine 𝜑(𝑦) 

∂𝑢

∂𝑦
=

∂

∂𝑦
[
𝑥2

2
+
𝑥2𝑦2

2
+ 𝜑(𝑦)] = 𝑥2𝑦,⇒ 𝑥2𝑦 + 𝜑′(𝑦) = 𝑥2𝑦,⇒ 𝜑′(𝑦) = 0. 

It follows from here that 𝜑(𝑦) = 𝐶, where 𝐶 is a constant. 

Thus, the general solution of the original differential equation is given by 

𝑥2

2
+
𝑥2𝑦2

2
+ 𝐶 = 0. 

 

 Example 2. Solve the differential equation (𝑥𝑦2 − 2𝑦3)𝑑𝑥 + (3 − 2𝑥𝑦2)𝑑𝑦 = 0 

The given equation is not exact, because 

∂𝑄

∂𝑥
=

∂

∂𝑥
(3 − 2𝑥𝑦2) = −2𝑦2 ≠

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑥𝑦2 − 2𝑦3) = 2𝑥𝑦 − 6𝑦2. 

We try to find the general solution of the equation using an integrating factor. Calculate 



the difference 

∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
= 2𝑥𝑦 − 6𝑦2 − (−2𝑦2) = 2𝑥𝑦 − 4𝑦2. 

Notice that the expression 

1

𝑃
(
∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
) =

2𝑥𝑦 − 4𝑦2

𝑥𝑦2 − 2𝑦3
=
2(𝑥𝑦 − 2𝑦2)

𝑦(𝑥𝑦 − 2𝑦2)
=
2

𝑦
 

depends only on 𝑦. Therefore, the integrating factor 𝜇 is also a function only of the 

variable𝑦. We can find it from the equation 

1

𝜇

𝑑𝜇

𝑑𝑦
= −

1

𝑃
(
∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
) = −

2

𝑦
. 

Integrating, we get: 

∫
𝑑𝜇

𝜇
= −2∫

𝑑𝑦

𝑦
,⇒ ln|𝜇| = −2ln|𝜇|,⇒ 𝜇 = ±

1

𝑦2
. 

By choosing 𝜇 =
1

𝑦2
 as the integrating factor and then multiplying the original 

differential equation by it, we get the exact equation: 

(𝑥 − 2𝑦)𝑑𝑥 + (
3

𝑦2
− 2𝑥)𝑑𝑦 = 0. 

Indeed, we see that 

∂𝑄

∂𝑥
=

∂

∂𝑥
(
3

𝑦2
− 2𝑥) = −2 =

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑥 − 2𝑦) = −2. 

Notice that when we multiplied by the integrating factor we lost the solution 𝑦 = 0. 

This can be proved by direct substitution of the solution 𝑦 = 0 in the original 

differential equation. 

Now we find the function 𝑢(𝑥, 𝑦) from the system of equations: 

{

∂𝑢

∂𝑥
= 𝑥 − 2𝑦

∂𝑢

∂𝑦
=

3

𝑦2
− 2𝑥

. 

It follows from the first equation that 

𝑢(𝑥, 𝑦) = ∫ (𝑥 − 2𝑦)𝑑𝑥 =
𝑥2

2
− 2𝑦𝑥 + 𝜑(𝑦). 

Then we get from the second equation: 



∂𝑢

∂𝑦
=

∂

∂𝑦
[
𝑥2

2
− 2𝑦𝑥 + 𝜑(𝑦)] =

3

𝑦2
− 2𝑥,⇒ −2𝑥 + 𝜑′(𝑦) =

3

𝑦2
− 2𝑥,⇒ 

𝜑′(𝑦) =
3

𝑦2
, ⇒ 𝜑(𝑦) = ∫

3

𝑦2
𝑑𝑦 = −

3

𝑦
. 

Thus, the original differential equation has the following solutions: 

𝑥2

2
− 2𝑦𝑥 −

3

𝑦
= 𝐶, 𝑦 = 0, 

where 𝐶 is an arbitrary real number. 

 

 Example 3. Solve the differential equation 𝑦𝑑𝑥 + (𝑥2 + 𝑦2 − 𝑥)𝑑𝑦 = 0 using 

the integrating factor 𝜇(𝑥, 𝑦) = 𝑥2 + 𝑦2. 

We can make sure that this equation is not exact: 

∂𝑄

∂𝑥
=

∂

∂𝑥
(𝑥2 + 𝑦2 − 𝑥) = 2𝑥 − 1 ≠

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑦) = 1. 

The difference of the partial derivatives is 

∂𝑃

∂𝑦
−
∂𝑄

∂𝑥
= 1 − (2𝑥 − 1) = 2 − 2𝑥. 

Using the integrating factor 𝜇(𝑥, 𝑦) = 𝑧 = 𝑥2 + 𝑦2, we find that 

∂𝑧

∂𝑥
=

∂

∂𝑥
(𝑥2 + 𝑦2) = 2𝑥,

∂𝑧

∂𝑦
=

∂

∂𝑦
(𝑥2 + 𝑦2) = 2𝑦. 

Calculate the following expression: 

𝑄
∂𝑧

∂𝑥
− 𝑃

∂𝑧

∂𝑦
= (𝑥2 + 𝑦2 − 𝑥) ⋅ 2𝑥 − 𝑦 ⋅ 2𝑦 = 2𝑥3 + 2𝑥𝑦2 − 2𝑥2 − 2𝑦2

= 2𝑥(𝑥2 + 𝑦2) − 2(𝑥2 + 𝑦2) = (𝑥2 + 𝑦2)(2𝑥 − 2). 

As a result, we obtain the differential equation for the function 𝜇(𝑧): 

1

𝜇

𝑑𝜇

𝑑𝑧
=

∂𝑃
∂𝑦

−
∂𝑄
∂𝑥

𝑄
∂𝑧
∂𝑥

− 𝑃
∂𝑧
∂𝑦

=
2 − 2𝑥

(𝑥2 + 𝑦2)(2𝑥 − 2)
= −

2𝑥 − 2

𝑧(2𝑥 − 2)
= −

1

𝑧
. 

By integrating we get the function𝜇(𝑧): 

∫
𝑑𝜇

𝜇
= −∫

𝑑𝑧

𝑧
,⇒ ln|𝜇| = −ln|𝑧|,⇒ 𝜇 = ±

1

𝑧
. 

We can choose the integrating factor 𝜇 =
1

𝑧
=

1

𝑥2+𝑦2
. After multiplication by 

1

𝑥2+𝑦2
 the 



original differential equation is converted into exact: 

𝑦

𝑥2 + 𝑦2
𝑑𝑥 +

𝑥2 + 𝑦2 − 𝑥

𝑥2 + 𝑦2
𝑑𝑦 = 0or

𝑦

𝑥2 + 𝑦2
𝑑𝑥 + (1 −

𝑥

𝑥2 + 𝑦2
)𝑑𝑦 = 0. 

The general solution 𝑢(𝑥, 𝑦) = 𝐶 is defined by the following system of equations: 

{

∂𝑢

∂𝑥
=

𝑦

𝑥2 + 𝑦2

∂𝑢

∂𝑦
= 1 −

𝑥

𝑥2 + 𝑦2

. 

Integrating the first equation with respect to 𝑥 produces: 

𝑢(𝑥, 𝑦) = ∫
𝑦

𝑥2 + 𝑦2
𝑑𝑥 = 𝑦∫

𝑑𝑥

𝑥2 + 𝑦2
= 𝑦 ⋅

1

𝑦
arctan

𝑥

𝑦
+ 𝜑(𝑦)

= arctan
𝑥

𝑦
+ 𝜑(𝑦). 

Substituting this in the second equation, we have: 

∂𝑢

∂𝑦
=

∂

∂𝑦
[arctan

𝑥

𝑦
+ 𝜑(𝑦)] = 1 −

𝑥

𝑥2 + 𝑦2
, ⇒

1

1 + (
𝑥
𝑦)

2 ⋅ (−
𝑥

𝑦2
) + 𝜑′(𝑦)

= 1 −
𝑥

𝑥2 + 𝑦2
, ⇒ −

𝑦2𝑥

(𝑥2 + 𝑦2)𝑦2
+ 𝜑′(𝑦) = 1 −

𝑥

𝑥2 + 𝑦2
, ⇒ 

𝜑′(𝑦) = 1,⇒ 𝜑(𝑦) = 𝑦. 

Thus, the general solution of differential equation in implicit form is defined by the 

formula: 

arctan
𝑥

𝑦
+ 𝑦 = 𝐶, 

where 𝐶 is a constant. 

  




