
First Order ODEs 

1. Separable Equations

A separable differential equation is any equation that can be written in the form: 

𝑦′ = 𝑓(𝑥)𝑔(𝑦).

Example 1. Solve the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑦(𝑦 + 2). 

In the given case 𝑓(𝑥) = 1 and 𝑔(𝑦) = 𝑦(𝑦 + 2). We divide the equation by 𝑔(𝑦) and 

move 𝑑𝑥 to the right side: 

𝑑𝑦

𝑦(𝑦 + 2)
= 𝑑𝑥. 

One can notice that after dividing we can lose solutions when becomes zero, i.e. 

𝑦(𝑦 + 2) = 0,  𝑦 = 0 and 𝑦 = −2 are the constant solutions of the Equation.  

Next, we integrate the expression we got above: 

∫
𝑑𝑦

𝑦(𝑦 + 2)
= ∫ 𝑑𝑥 

Here, we can calculate the left integral by using the decomposition of the integrand: 

1

𝑦(𝑦 + 2)
=

1

2
∙
𝑦 + 2 − 𝑦

𝑦(𝑦 + 2)
=

1

2
(
1

𝑦
−

1

𝑦 + 2
) 

Hence, 

1

2
∫ (

1

𝑦
−

1

𝑦 + 2
)𝑑𝑦 = ∫ 𝑑𝑥,⇒ 

1

2
(∫

𝑑𝑦

𝑦
− ∫

𝑑𝑦

𝑦 + 2
) = ∫ 𝑑𝑥,⇒ 

1

2
(ln|𝑦| − ln|𝑦 + 2|) = 𝑥 + 𝐶,⇒

1

2
ln |

𝑦

𝑦 + 2
| = 𝑥 + 𝐶,⇒ ln⁡|

𝑦

𝑦 + 2
| = 2𝑥 + 2𝐶. 

We can rename the constant: 2𝐶 = 𝐶1. Thus, the final solution of the equation is

written in the form 

ln⁡|
𝑦

𝑦 + 2
| = 2𝑥 + 𝐶1, 𝑦 = 0, 𝑦 = −2.

Here the general solution is expressed in implicit form. In the given case we can 

transform the expression to obtain the answer as an explicit function 𝑦 = 𝑓(𝑥, 𝐶1),
where 𝐶1  is a constant. However, it is possible to do not for all differential equations.

Example 2. Solve the differential equation (𝑥2 + 4)𝑦′ = 2𝑥𝑦.

We can rewrite this equation in the following way: 



(𝑥2 + 4)𝑑𝑦 = 2𝑥𝑦𝑑𝑥. 

Divide both sides by (𝑥2 + 4)𝑦 to get  

𝑑𝑦

𝑦
=

2𝑥𝑑𝑥

(𝑥2 + 4)
. 

Obviously, that 𝑥2 + 4 ≠ 0 for all real 𝑥. Check if 𝑦 = 0 is a solution of the equation. 

Substituting 𝑦 = 0 and 𝑑𝑦 = 0⁡into the differential equation,  

(𝑥2 + 4) ∙ 0 = 2𝑥 ∙ 0 ∙ 𝑑𝑥. 

0 = 0 

we see that the function 𝑦 = 0 is one of the solutions of the equation. 

Now we can integrate both the sides: 

∫
𝑑𝑦

𝑦
= ∫

2𝑥𝑑𝑥

(𝑥2 + 4)
+ 𝐶,⇒ ln |𝑦| = ∫

𝑑(𝑥2)

𝑥2 + 4
+ 𝐶. 

Notice that 𝑑(𝑥2) = 𝑑(𝑥2 + 4). Hence, 

ln⁡|𝑦| = ∫
𝑑(𝑥2 + 4)

𝑥2 + 4
+ 𝐶,⇒ ln⁡|𝑦| = ln⁡(𝑥2 + 4) + 𝐶. 

We can represent the constant 𝐶 as ln⁡𝐶1, where 𝐶1 > 0. Then  

ln|𝑦| = ln(𝑥2 + 4) + ln 𝐶1 , ⇒ ln|𝑦| = ln(𝐶1(𝑥
2 + 4)) ,⇒ 

|𝑦| = 𝐶1(𝑥
2 + 4),⇒ 𝑦 = ±𝐶1(𝑥

2 + 4). 

Thus, the given differential equation has the following solutions: 

𝑦 = ±𝐶1(𝑥
2 + 4), 𝑦 = 0,where𝐶1 > 0. 

This answer can be simplified. Indeed, if using an arbitrary constant 𝐶, which takes 

values from −∞ to ∞, the solution can be written in the form: 

𝑦 = 𝐶(𝑥2 + 4). 

When 𝐶 = 0, it becomes 𝑦 = 0.  

 

 Example 3. Find all solutions of the differential equation 𝑦′ = −𝑥𝑒𝑦 . 

We transform this equation in following way: 

𝑑𝑦

𝑑𝑥
= −𝑥𝑒𝑦 ,⇒

𝑑𝑦

𝑒𝑦
= −𝑥𝑑𝑥,⇒ 𝑒−𝑦𝑑𝑦 = −𝑥𝑑𝑥. 

Obviously, that division by 𝑒𝑦 does not cause the loss of solutions as 𝑒𝑦 > 0. After 

integrating we have 

∫ 𝑒−𝑦𝑑𝑦 = ∫ (−𝑥)𝑑𝑥 + 𝐶,⇒ −𝑒−𝑦 = −
𝑥2

2
+ 𝐶 ⇒ or𝑒−𝑦 =

𝑥2

2
+ 𝐶. 

This answer can be expressed in the explicit form: 



−𝑦 = ln(
𝑥2

2
+ 𝐶) ⁡⁡or⁡⁡⁡𝑦 = − ln (

𝑥2

2
+ 𝐶) 

We assume in the latter expression that 𝐶 > 0 in order to satisfy the domain of the 

logarithmic function. 

 

 Example 4. Solve the differential equation 𝑦′cot2𝑥 + tan𝑦 = 0. 

We write this equation as follows: 

𝑑𝑦

𝑑𝑥
cot2𝑥 = −tan⁡𝑦,⇒ cot2𝑥𝑑𝑦 = −tan⁡𝑦𝑑𝑥. 

Divide both sides of the equation by tan⁡𝑦cot2𝑥: 

cot2𝑥𝑑𝑦

tan⁡𝑦cot2𝑥
= −

tan⁡𝑦𝑑𝑥

tan⁡𝑦cot2𝑥
,⇒

𝑑𝑦

tan𝑦
= −

𝑑𝑥

cot2𝑥
. 

Check for possible missed solutions when dividing. There might be the following two 

roots: 

tan⁡𝑦cot2𝑥 = 0. 

1)⁡⁡tan⁡𝑦 = 0,⇒ 𝑦 =
𝜋

2
+ 𝜋𝑛, 𝑛 ∈ 𝑍, 𝑑𝑦 = 0  

Substituting this into the initial equations, we see that 𝑦 =
𝜋

2
+ 𝜋𝑛, 𝑛 ∈ 𝑍 is a solution. 

The second possible solution is given by 

2)⁡cot2𝑥 = 0.  

Here we get the answer 𝑥 = 𝜋𝑛, 𝑛 ∈ 𝑍, 𝑑𝑥 = 0, which does not satisfy the initial 

differential equation. 

Now we can integrate the given equation and find its general solution: 

∫
𝑑𝑦

tan𝑦
= −∫

𝑑𝑥

cot2𝑥
+ 𝐶,⇒ ∫

𝑑𝑦

sin 𝑦
cos 𝑦

= −∫
𝑑𝑥

cos2𝑥
sin2𝑥

+ 𝐶,⇒ 

∫
cos⁡𝑦𝑑𝑦

sin 𝑦
= −∫

sin2𝑥𝑑𝑥

cos2𝑥
+ 𝐶,⇒ ∫

𝑑(sin 𝑦)

sin 𝑦
= −∫

1 − cos2𝑥

cos2𝑥
𝑑𝑥 + 𝐶,⇒ 

ln | sin 𝑦 | = −∫ (
1

cos2𝑥
− 1)𝑑𝑥 + 𝐶,⇒ ln | sin 𝑦 | = −(tan⁡𝑥 − 𝑥) + 𝐶,⇒ 

ln | sin 𝑦 | = −tan⁡𝑥 + 𝑥 + 𝐶. 

The final answer is given by 

ln|sin 𝑦| + tan 𝑥 − 𝑥 = 𝐶, 

𝑦 =
𝜋

2
+ 𝜋𝑛, 𝑛 ∈ 𝑍. 

 



 Example 5. Solve the equation 𝑦(1 + 𝑥𝑦)𝑑𝑥 = 𝑥(1 − 𝑥𝑦)𝑑𝑦. 

The product 𝑥𝑦 in each side does not allow separating the variables. Therefore, we make 

the replacement: 

𝑥𝑦 = 𝑡⁡⁡or⁡⁡𝑦 =
𝑡

𝑥
. 

The relationship for differentials is given by 

𝑑𝑦 =
𝑥𝑑𝑡 − 𝑡𝑑𝑥

𝑥2
. 

Substituting this into the equation, we can write: 

𝑡

𝑥
(1 + 𝑡)𝑑𝑥 = 𝑥(1 − 𝑡)

𝑥𝑑𝑡 − 𝑡𝑑𝑥

𝑥2
. 

By multiplying both sides by 𝑥  and then canceling the corresponding fractions in the 

left and right side, we get 

𝑡(1 + 𝑡)𝑑𝑥 = (1 − 𝑡)(𝑥𝑑𝑡 − 𝑡𝑑𝑥). 

Take into account that 𝑥 = 0 is a solution of the equation, which can be verified by 

direct substitution.  

Simplify the latter expression: 

𝑡𝑑𝑥 + 𝑡2𝑑𝑥 = 𝑥𝑑𝑡 − 𝑡𝑑𝑥 − 𝑥𝑡𝑑𝑡 + 𝑡2𝑑𝑥,⇒ 2𝑡𝑑𝑡 = 𝑥(1 − 𝑡)𝑑𝑡. 

Now the variables 𝑥  and 𝑡  are separated: 

2𝑑𝑥

𝑥
=

(1 − 𝑡)𝑑𝑡

𝑡
or2

𝑑𝑥

𝑥
= (

1

𝑡
− 1)𝑑𝑡. 

After integrating we have 

2∫
𝑑𝑥

𝑥
= ∫ (

1

𝑡
− 1)𝑑𝑡 + 𝐶,⇒ 2ln⁡|𝑥| = ln⁡|𝑡| − 𝑡 + 𝐶,⇒ ln 𝑥2 = ln⁡|𝑡| − 𝑡 + 𝐶. 

By making the reverse substitution 𝑡 = 𝑥𝑦, we find the general solution of the 

equation: 

ln⁡𝑥2 = ln⁡|𝑥𝑦| − 𝑥𝑦 + 𝐶,⇒ ln⁡|
𝑥𝑦

𝑥2
| − 𝑥𝑦 + 𝐶 = 0,⇒ ln⁡|

𝑦

𝑥
| − 𝑥𝑦 + 𝐶 = 0. 

The complete answer is written in the form: 

ln⁡|
𝑦

𝑥
| − 𝑥𝑦 + 𝐶 = 0, 𝑥 = 0. 

 

 Example 6. Find a particular solution of the differential equation 𝑥(𝑦 + 2)𝑦′ =
ln⁡𝑥 + 1 provided by the condition 𝑦(1) = −1, other words find a solution of the 

initial-value problem.  

We divide both sides of the equation by 𝑥 



𝑥(𝑦 + 2)
𝑑𝑦

𝑑𝑥
= ln⁡𝑥 + 1,⇒ (𝑦 + 2)𝑑𝑦 =

(ln⁡𝑥 + 1)𝑑𝑥

𝑥
. 

We suppose that 𝑥 ≠ 0, because the domain of the given equation is 𝑥 > 0. 

 Integrating this equation yields: 

∫ (𝑦 + 2)𝑑𝑦 = ∫
(ln⁡𝑥 + 1)𝑑𝑥

𝑥
+ 𝐶. 

The integral in the right side is calculated as follows: 

∫
(ln⁡𝑥 + 1)𝑑𝑥

𝑥
= ∫ (ln⁡𝑥 + 1)𝑑(ln 𝑥) = ∫ (ln⁡𝑥 + 1)𝑑(ln⁡𝑥 + 1) =

(ln⁡𝑥 + 1)2

2
. 

Hence, the general solution in the implicit form is given by 

1

2
𝑦2 + 2𝑦 =

(ln⁡𝑥 + 1)2

2
+ 𝐶,⇒ 𝑦2 + 4𝑦 = (ln⁡𝑥 + 1)2 + 𝐶1, 

where 𝐶1 = 2𝐶 is an integration constant. Next, we find the values of 𝐶1 to satisfy the 

initial condition 𝑦(1) = −1: 

(−1)2 + 4(−1) = (ln⁡1 + 1)2 + 𝐶1, ⇒ 𝐶1 = −4. 

Thus, the particular solution satisfying the initial condition is written in the following 

way: 

𝑦2 + 4𝑦 = (ln⁡𝑥 + 1)2 − 4. 

 

 Example 7. Find a particular solution of the equation (1 + 𝑒𝑥)𝑦′ = 𝑒𝑥 satisfying 

the initial condition 𝑦(0) = 0. 

We write this equation in the following way: 

(1 + 𝑒𝑥)𝑑𝑦 = 𝑒𝑥𝑑𝑥. 

Divide both sides by 1 + 𝑒𝑥: 

𝑑𝑦 =
𝑒𝑥

1 + 𝑒𝑥
𝑑𝑥. 

Since 1 + 𝑒𝑥 > 0, then we did not miss solutions of the original equation. Integrating 

this equation yields:  

∫ 𝑑𝑦 = ∫
𝑒𝑥

1 + 𝑒𝑥
𝑑𝑥 + 𝐶,⇒ 𝑦 = ∫

𝑑(𝑒𝑥)

1 + 𝑒𝑥
+ 𝐶,⇒ 

𝑦 = ∫
𝑑(𝑒𝑥 + 1)

1 + 𝑒𝑥
+ 𝐶,⇒ 𝑦 = ln⁡(𝑒𝑥 + 1) + 𝐶. 

Determine the constant 𝐶 from the initial condition 𝑦(0) = 0 

0 = ln⁡(𝑒0 + 1) + 𝐶,⇒ 0 = ln⁡2 + 𝐶,⇒ 𝐶 = −ln⁡2. 

So the final answer is   𝑦 = ln⁡(𝑒𝑥 + 1) − ln⁡2 = ln⁡
𝑒𝑥+1

2
. 



2. 2. Homogeneous Equations 

 A homogeneous differential equation is any equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) if the right 

side satisfies the condition: 

𝑓(𝑡𝑥, 𝑡𝑦) = 𝑓(𝑥, 𝑦) 

for all 𝑡. 

 

 Example 1. Solve the differential equation (2𝑥 + 𝑦)𝑑𝑥 − 𝑥𝑑𝑦 = 0. 

It is easy to see that the polynomials (2𝑥 + 𝑦) and 𝑥 at 𝑑𝑥 and 𝑑𝑦 are homogeneous 

functions of the first order. Therefore, the original differential equation is also 

homogeneous. 

 Suppose that 𝑦 = 𝑢𝑥, where 𝑢  is a new function depending on 𝑥. Then 

𝑑𝑦 = 𝑑(𝑢𝑥) = 𝑢𝑑𝑥 + 𝑥𝑑𝑢. 

Substituting this into the differential equation, we obtain 

(2𝑥 + 𝑢𝑥)𝑑𝑥 − 𝑥(𝑢𝑑𝑥 + 𝑥𝑑𝑢) = 0. 

Hence, 

2𝑥𝑑𝑥 + 𝑢𝑥𝑑𝑥 − 𝑥𝑢𝑑𝑥 − 𝑥2𝑑𝑢 = 0. 

Dividing both sides by 𝑥  yields: 

𝑥𝑑𝑢 = 2𝑑𝑥⁡⁡⁡or⁡⁡⁡⁡𝑑𝑢 = 2
𝑑𝑥

𝑥
. 

When dividing by 𝑥, we could lose the solution 𝑥 = 0. The direct substitution shows 

that 𝑥 = 0 is indeed a solution of the given differential equation. 

Integrate the latter expression to obtain: 

∫ 𝑑𝑢 = 2∫
𝑑𝑥

𝑥
⁡⁡or⁡⁡⁡𝑢 = 2ln⁡|𝑥| + 𝐶, 

where 𝐶 is a constant of integration. 

Returning to the old variable 𝑦, we can write: 

𝑦 = 𝑢𝑥 = 𝑥(2ln⁡|𝑥| + 𝐶). 

Thus, the equation has two solutions: 

𝑦 = 𝑥(2ln⁡|𝑥| + 𝐶), 𝑥 = 0. 

 

 Example 2. Solve the differential equation 𝑥𝑦′ = 𝑦ln⁡
𝑦

𝑥
. 

We notice that the root 𝑥 = 0 does not belong to the domain of the differential 

equation.  

Rewrite the equation in the form: 



𝑦′ =
𝑦

𝑥
ln⁡

𝑦

𝑥
= 𝑓 (

𝑦

𝑥
). 

As you can see, this equation is homogeneous. 

Make the substitution 𝑦 = 𝑢𝑥, where 𝑢  is a new function depending on 𝑥. Hence,  

𝑦′ = (𝑢𝑥)′ = 𝑢′𝑥 + 𝑢. 

Substituting this into the differential equation gives: 

𝑥(𝑢′𝑥 + 𝑢) = 𝑢𝑥ln⁡
𝑢𝑥

𝑥
. 

Dividing by 𝑥 ≠ 0 to get: 

𝑢′𝑥 + 𝑢 = 𝑢ln⁡𝑢,⇒
𝑑𝑢

𝑑𝑥
𝑥 = 𝑢ln⁡𝑢 − 𝑢,⇒

𝑑𝑢

𝑑𝑥
𝑥 = 𝑢(ln⁡𝑢 − 1). 

We obtain the separable equation: 

𝑑𝑢

𝑢(ln⁡𝑢 − 1)
=

𝑑𝑥

𝑥
. 

The next step is to integrate the left and the right side of the equation: 

∫
𝑑𝑢

𝑢(ln⁡𝑢 − 1)
= ∫

𝑑𝑥

𝑥
,⇒ ∫

𝑑(ln𝑢)

ln⁡𝑢 − 1
= ∫

𝑑𝑥

𝑥
,⇒ ∫

𝑑(ln⁡𝑢 − 1)

ln⁡𝑢 − 1
= ∫

𝑑𝑥

𝑥
. 

Hence, 

ln |ln⁡𝑢 − 1| = ln⁡|𝑥| + 𝐶. 

Here the constant 𝐶  can be written as ln⁡𝐶1 , where 𝐶1 > 0. Then 

ln|ln 𝑢 − 1| = ln|𝑥| + ln𝐶1 , ⇒ ln|ln 𝑢 − 1| = ln|𝐶1𝑥| ,⇒ ln𝑢 − 1 = ±𝐶1𝑥 ⇒ 

ln 𝑢 = 1 ± 𝐶1𝑥⁡⁡or⁡⁡⁡𝑢 = 𝑒1±𝐶1𝑥 . 

Thus, we have got two solutions: 

𝑢 = 𝑒1+𝐶1𝑥 ⁡⁡⁡and⁡⁡⁡⁡⁡𝑢 = 𝑒1−𝐶1𝑥. 

If 𝐶1 = 0, the answer is 𝑦 = 𝑥𝑒 and we can make sure that it is also a solution to the 

equation. Indeed, substituting 

𝑦 = 𝑥𝑒, 𝑦′ = 𝑒 

into the differential equation, we obtain: 

𝑥𝑒 = 𝑥𝑒ln⁡
𝑥𝑒

𝑥
,⇒ 𝑥𝑒 = 𝑥𝑒ln⁡𝑒,⇒ 𝑥𝑒 = 𝑥𝑒. 

Then all the solutions can be represented by one formula: 

𝑦 = 𝑥𝑒1+𝐶𝑥 , 

where 𝐶 is an arbitrary real number. 

 

 Example 3. Solve the differential equation (𝑥𝑦 + 𝑦2)𝑦′ = 𝑦2. 



Here we deal with a homogeneous equation. In fact, we can rewrite it in the form: 

𝑦′ =
𝑦2

𝑥𝑦 + 𝑦2
=

𝑦2

𝑥2

𝑥𝑦
𝑥2 +

𝑦2

𝑥2

=
(
𝑦
𝑥)

2

𝑦
𝑥

+ (
𝑦
𝑥)

2 = 𝑓 (
𝑦

𝑥
). 

Make the substitution 𝑦 = 𝑢𝑥. Then 𝑦′ = (𝑢𝑥)′ = 𝑢′𝑥 + 𝑢. Substituting 𝑦  and 𝑦′  into 

the original equation, we have: 

(𝑥𝑢𝑥 + 𝑢2𝑥2)(𝑢′𝑥 + 𝑢) = 𝑢2𝑥2,⇒ 

𝑢𝑥2(𝑢 + 1)(𝑢′𝑥 + 𝑢) = 𝑢2𝑥2. 

Divide both sides by 𝑢𝑥2. We notice that 𝑥 = 0 is not the solution of the equation. 

However, one can check that 𝑢 = 0 or 𝑦 = 0 is one of the solutions of the differential 

equation. 

As a result, we have a separable equation: 

(𝑢 + 1)(𝑢′𝑥 + 𝑢) = 𝑢,⇒ 𝑢′𝑥(𝑢 + 1) + 𝑢2 + 𝑢 = 𝑢,⇒ 

𝑢′𝑥(𝑢 + 1) = −𝑢2, ⇒ (
1

𝑢
+

1

𝑢2
) 𝑑𝑢 = −

𝑑𝑥

𝑥
. 

Integrating the left and the right side of the equation, we find a general solution as 

follows: 

∫ (
1

𝑢
+

1

𝑢2
) 𝑑𝑢 = −∫

𝑑𝑥

𝑥
,⇒ ln⁡|𝑢| −

1

𝑢
= −ln⁡|𝑥| + 𝐶. 

Taking into account that 𝑢 =
𝑦

𝑥
, we can write the last expression in the form 

ln |
𝑦

𝑥
| −

1
𝑦
𝑥

= − ln|𝑥| + 𝐶,⇒ ln|𝑦| − ln|𝑥| −
𝑥

𝑦
= − ln|𝑥| + 𝐶,⇒ 

𝑦ln⁡|𝑦| = 𝐶𝑦 + 𝑥. 

The given expression can be represented as an explicit inverse function 𝑥(𝑦): 

𝑥 = 𝑦ln⁡|𝑦| − 𝐶𝑦. 

Since 𝐶  is an arbitrary real number, we can replace the “minus” sign before the 

constant to the “plus” sign. Then  

𝑥 = 𝑦 ln|𝑦| + 𝐶𝑦.⁡⁡⁡⁡ 

Thus, the given differential equation has the solutions: 

𝑥 = 𝑦ln⁡|𝑦| + 𝐶𝑦, 𝑦 = 0. 

 

 Example 4. Solve the differential equation 𝑦′ =
𝑦

𝑥
−

𝑥

𝑦
. 

As it follows from the right side of the equation, 𝑥 ≠ 0 and 𝑦 ≠ 0. We can make the 

substitution 𝑦 = 𝑢𝑥 and 𝑦′ = 𝑢′𝑥 + 𝑢. This yields: 



𝑢′𝑥 + 𝑢 =
𝑢𝑥

𝑥
−

𝑥

𝑢𝑥
,⇒ 𝑢′𝑥 + 𝑢 = 𝑢 −

1

𝑢
,⇒

𝑑𝑢

𝑑𝑥
𝑥 = −

1

𝑢
,⇒ 𝑢𝑑𝑢 = −

𝑑𝑥

𝑥
. 

Integrating this separable equation, we obtain: 

∫ 𝑢𝑑𝑢 = −∫
𝑑𝑥

𝑥
,⇒

𝑢2

2
= −ln⁡|𝑥| + 𝐶,⇒ 𝑢2 = 2𝐶 − 2ln⁡|𝑥|. 

Let the constant 2𝐶 be denoted by just 𝐶. Hence, 

𝑢2 = 𝐶 − 2 ln|𝑥| ⁡⁡or⁡⁡⁡⁡𝑢 = ±√𝐶 − 2ln⁡|𝑥|. 

Thus, the general solution is written in the form 

𝑦 = 𝑢𝑥 = ±𝑥√𝐶 − 2ln⁡|𝑥|. 

 

 Example 5. Solve the differential equation (𝑥3 + 𝑥𝑦2)𝑦′ 

It is easy to see that the given equation is homogeneous. Therefore, we can use the 

substitution 𝑦 = 𝑢𝑥 and 𝑦′ = 𝑢′𝑥 + 𝑢. As a result, the equation is converted into the 

separable differential equation: 

(𝑥3 + 𝑥(𝑢𝑥)2)(𝑢′𝑥 + 𝑢) = (𝑢𝑥)3, ⇒ 

(𝑥3 + 𝑥3𝑢2)(𝑢′𝑥 + 𝑢) = 𝑢3𝑥3, ⇒ 

𝑥3(1 + 𝑢2)(𝑢′𝑥 + 𝑢) = 𝑢3𝑥3. 

Divide both sides by 𝑥3: (we notice that 𝑥 = 0 is not the solution of the equation) 

(1 + 𝑢2)(𝑢′𝑥 + 𝑢) = 𝑢3, ⇒ (1 + 𝑢2)𝑢′𝑥 + 𝑢 + 𝑢3 = 𝑢3, ⇒ 

(1 + 𝑢2)𝑢′𝑥 = −𝑢,⇒
(1 + 𝑢2)𝑑𝑢

𝑢
= −

𝑑𝑥

𝑥
,⇒ 

(
1

𝑢
+ 𝑢)𝑑𝑢 = −

𝑑𝑥

𝑥
. 

Now we can integrate the last equation: 

∫ (
1

𝑢
+ 𝑢)𝑑𝑢 = −∫

𝑑𝑥

𝑥
,⇒ ln⁡|𝑢| +

𝑢2

2
= −ln⁡|𝑥| + 𝐶. 

Since 𝑢 =
𝑦

𝑥
, the solution can be written in the form: 

ln |
𝑦

𝑥
| +

𝑦2

2𝑥2
= − ln|𝑥| + 𝐶,⇒ ln|𝑦| − ln|𝑥| +

𝑦2

2𝑥2
= − ln|𝑥| + 𝐶,⇒ 

ln⁡|𝑦| = 𝐶 −
𝑦2

2𝑥2
. 

It follows from here that 

𝑦 = 𝑒
𝐶−

𝑦2

2𝑥2 = 𝑒𝐶𝑒
−

𝑦2

2𝑥2 . 



We can denote 𝑒𝐶 = 𝐶1,⁡𝐶1 > 0 Then the solution in the implicit form is given by the 

equation 

𝑦 = 𝐶1𝑒
−

𝑦2

2𝑥2 , 

where the constant 𝐶1 > 0.  

 

 Example 6. Solve the differential equation 𝑦′ =
2𝑥+1

3𝑦+𝑥+2
. 

Here the numerator and denominator are the equations of intersecting straight lines. 

This differential equation can be converted into homogeneous after transformation of 

coordinates. Let the new and the old coordinates be connected by the relations 

 

𝑥 = 𝑋 + 𝛼, 𝑦 = 𝑌 + 𝛽. 

We determine the constants 𝛼 and 𝛽 later. By substituting these relations into the 

equation, we get 

𝑦′ =
𝑑𝑦

𝑑𝑥
=

𝑑(𝑌 + 𝛽)

𝑑(𝑋 + 𝛼)
=

𝑑𝑌

𝑑𝑋
 

The differential equation in the new coordinates becomes 

𝑑𝑌

𝑑𝑋
=

2(𝑋 + 𝛼) + 1

3(𝑌 + 𝛽) + 𝑋 + 𝛼 + 2
=

2𝑋 + 2𝛼 + 1

3𝑌 + 𝑋 + 𝛼 + 3𝛽 + 2
. 

This equation will be homogeneous if we choose the constants 𝛼 and 𝛽 such that 

{
2𝛼 + 1 = 0

𝛼 + 3𝛽 + 2 = 0
. 

𝑋 

𝑌 



Solving the last system, we find {
𝛼 = −

1

2

𝛽 = −
1

2

 

At these values, the differential equation is written in the following way: 

𝑑𝑌

𝑑𝑋
=

2𝑋

3𝑌 + 𝑋
. 

This equation is homogeneous, so we can make the replacement 𝑌 = 𝑢𝑋, where 𝑢 is a 

function of 𝑋 . Hence, 𝑑𝑌 = 𝑋𝑑𝑢 + 𝑢𝑑𝑋. As a result, we have 

𝑋𝑑𝑢 + 𝑢𝑑𝑋

𝑑𝑋
=

2𝑋

3𝑌 + 𝑋
,⇒ 𝑋

𝑑𝑢

𝑑𝑋
+ 𝑢 =

2

3𝑢 + 1
. 

We divided the numerator and denominator in the right side by 𝑋. We can check that 

𝑋 = 0 or 𝑥 = 𝑋 + 𝛼 = −
1

2
 is not the solution of the differential equation. 

Some easy transformations give 

𝑋
𝑑𝑢

𝑑𝑋
=

2

3𝑢 + 1
− 𝑢,⇒ 𝑋

𝑑𝑢

𝑑𝑋
=

2 − 3𝑢2 − 𝑢

3𝑢 + 1
. 

We can factor the quadratic function in the numerator of the right side into the product 

of monomials: 

2 − 3𝑢2 − 𝑢 = 0,⇒ 𝐷 = 1 − 4 ⋅ (−3) ⋅ 2 = 25,⇒ 

𝑢1,2 =
1 ± √25

−6
=

1 ± 5

−6
= −1⁡and⁡

2

3
. 

Hence, 

2 − 3𝑢2 − 𝑢 = −3(𝑢 + 1)(𝑢 −
2

3
) = (𝑢 + 1)(2 − 3𝑢). 

Then, 

𝑋
𝑑𝑢

𝑑𝑋
=

(𝑢 + 1)(2 − 3𝑢)

3𝑢 + 1
. 

By separating the variables, we can write: 

3𝑢 + 1

(𝑢 + 1)(2 − 3𝑢)
𝑑𝑢 =

𝑑𝑋

𝑋
. 

Integrate the given equation: 

∫
3𝑢 + 1

(𝑢 + 1)(2 − 3𝑢)
𝑑𝑢 = ∫

𝑑𝑋

𝑋
. 

Now we should transform the integrand in the left side. We use the method of uncertain 

coefficients (partial fraction decomposition) to represent the integrand as the sum of 

the right rational fractions: 



3𝑢 + 1

(𝑢 + 1)(2 − 3𝑢)
=

𝐴

𝑢 + 1
+

𝐵

2 − 3𝑢
,⇒ 

3𝑢 + 1 = 𝐴(2 − 3𝑢) + 𝐵(𝑢 + 1),⇒ 3𝑢 + 1 = 2𝐴 − 3𝐴𝑢 + 𝐵𝑢 + 𝐵,⇒ 

3𝑢 + 1 = (𝐵 − 3𝐴)𝑢 + 2𝐴 + 𝐵. 

Hence, 

{
𝐵 − 3𝐴 = 3
2𝐴 + 𝐵 = 1

,⇒ {
𝐴 = −

2

5

𝐵 =
9

5

⁡. 

As a result, the differential equation is written as follows: 

−
2

5
∫

𝑑𝑢

𝑢 + 1
+

9

5
∫

𝑑𝑢

2 − 3𝑢
= ∫

𝑑𝑋

𝑋
. 

Upon integrating both sides, we get 

−
2

5
ln⁡|𝑢 + 1| +

9

5
⋅ (−

1

3
)ln⁡|2 − 3𝑢| = ln⁡|𝑋| + ln⁡𝐶, 

⇒ −
2

5
ln⁡|𝑢 + 1| −

3

5
ln⁡|2 − 3𝑢| = ln⁡|𝑋| + ln⁡𝐶, 

where the constant 𝐶 is a positive real number. 

Re-write the solution in terms of the variables 𝑋 and 𝑌: 

−
2

5
ln⁡|

𝑌

𝑋
+ 1| −

3

5
ln⁡|2 − 3

𝑌

𝑋
| = ln⁡|𝑋| + ln⁡𝐶, 

⇒ −
2

5
ln⁡|

𝑌 + 𝑋

𝑋
| −

3

5
ln⁡|

2𝑋 − 3𝑌

𝑋
| = ln⁡|𝑋| + ln⁡𝐶, 

⇒ −
2

5
ln⁡|𝑌 + 𝑋| +

2

5
ln⁡|𝑋| −

3

5
ln⁡|2𝑋 − 3𝑌| +

3

5
ln⁡|𝑋| = ln⁡|𝑋| + ln⁡𝐶, 

⇒ 2ln⁡|𝑌 + 𝑋| + 3ln⁡|2𝑋 − 3𝑌| = −5ln⁡𝐶. 

Further, it is convenient to denote −5ln⁡𝐶 = ln⁡𝐶1, where 𝐶1 is an arbitrary positive 

number. Thus, we can write the solution in the form: 

2ln⁡|𝑌 + 𝑋| + 3ln⁡|2𝑋 − 3𝑌| = ln⁡𝐶1. 

Now we return to the initial variables 𝑥, 𝑦. As 

𝑋 = 𝑥 − 𝛼 = 𝑥 +
1

2
, 𝑌 = 𝑦 − 𝛽 = 𝑦 +

1

2
, 

we obtain 

2ln⁡|𝑦 +
1

2
+ 𝑥 +

1

2
| + 3ln⁡|2(𝑥 +

1

2
) − 3(𝑦 +

1

2
)| = ln⁡𝐶1, 



⇒ 2ln⁡|𝑥 + 𝑦 + 1| + 3ln⁡|2𝑥 − 3𝑦 −
1

2
| = ln⁡𝐶1,

⇒ 2ln⁡|𝑥 + 𝑦 + 1| + 3ln⁡|
4𝑥 − 6𝑦 − 1

2
| = ln⁡𝐶1,

⇒ 2ln⁡|𝑥 + 𝑦 + 1| + 3ln⁡|4𝑥 − 6𝑦 − 1| − 3ln⁡2 = ln⁡𝐶1,

⇒ ln⁡|(𝑥 + 𝑦 + 1)2 ⋅ (4𝑥 − 6𝑦 − 1)3| = ln⁡𝐶1 + 3ln⁡2.

The right side can be written again in simpler form: 

ln 𝐶1 + 3 ln 2 = ln𝐶2 ⁡(𝐶2 > 0).

Then the final general solution of the original differential equation in the implicit form 

is given by 

(𝑥 + 𝑦 + 1)2 ⋅ (4𝑥 − 6𝑦 − 1)3 = ±𝐶2 = 𝐶3.

where 𝐶3 is any nonzero number.

Example 7. Find the general solution of the differential equation 𝑦′ =
𝑥−𝑦+3

𝑥−𝑦
. 

We can notice that the equations of the lines in the numerator and denominator 

correspond to the parallel straight lines. Therefore we make the following change of 

variables: 

𝑧 = 𝑥 − 𝑦,⇒ 𝑦 = 𝑥 − 𝑧, 𝑦′ = 1 − 𝑧′.

As a result, the differential equation becomes 

1 − 𝑧′ =
𝑧 + 3

𝑧
,⇒ 1 − 𝑧′ = 1 +

3

𝑧
,⇒ 𝑧′ = −

3

𝑧
.

We get the simple separable equation. By solving it, we find the answer: 

𝑑𝑧

𝑑𝑥
= −

3

𝑧
,⇒ 𝑧𝑑𝑧 = −3𝑑𝑥,⇒ 

∫ 𝑧𝑑𝑧 = −3∫ 𝑑𝑥,⇒ 

𝑧2

2
= −3𝑥 + 𝐶,⇒ (𝑥 − 𝑦)2 = 2𝐶 − 6𝑥.

We can derive the explicit function 𝑦(𝑥) from the last expression: 

𝑥 − 𝑦 = ±√2𝐶 − 6𝑥. 

Thus, 

𝑦 = 𝑥 ± √𝐶 − 6𝑥. 




