## 3. Linear Differential Equations

A differential equation of type

$$
y^{\prime}+a(x) y=f(x)
$$

where $a(x)$ and $f(x)$ are continuous functions of $x$, is called a linear nonhomogeneous differential equation of the first order.

Example 1. Solve the differential equation $y^{\prime}-2 y=x$.
A. First we solve this problem using an integrating factor. The given equation is already written in the standard form. Therefore,

$$
a(x)=-2 .
$$

Then the integrating factor is

$$
u(x)=\exp \left(\int a(x) d x\right)=\exp \left(\int(-2) d x\right)=\left\{\int(-2) d x=-2 x\right\}=e^{-2 x}
$$

The general solution of the original differential equation has the form:

$$
y=\frac{\int u(x) f(x) d x+C}{u(x)}=\frac{\int e^{-2 x} x d x+C}{e^{-2 x}} .
$$

We calculate the last integral with help of integration by parts.

$$
\left.\begin{array}{c}
\int \underbrace{e^{-2 x}}_{q^{\prime}}{\underset{p}{x}}_{d} d x=\left[\begin{array}{c}
\int q^{\prime} p d x=q p-\int q^{\prime} p d x \\
p=x, p^{\prime}=1
\end{array}\right. \\
q^{\prime}=e^{-2 x}, \Rightarrow q=\int e^{-2 x} d x=-\frac{1}{2} e^{-2 x}
\end{array}\right]=0 . \begin{gathered}
x \\
=-\frac{x}{2} e^{-2 x}-\int 1 \cdot\left(-\frac{1}{2} e^{-2 x}\right) d x=-\frac{x}{2} e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x=-\frac{x}{2} e^{-2 x}-\frac{1}{4} e^{-2 x} \\
=-\frac{1}{4} e^{-2 x}(1+2 x) .
\end{gathered}
$$

Then,

$$
y=\frac{-\frac{1}{4} e^{-2 x}(1+2 x)+C}{e^{-2 x}}=-\frac{1}{4}(1+2 x)+C e^{2 x} .
$$

B. Second, we construct the solution by the method of variation of a constant. Consider the corresponding homogeneous equation:

$$
y^{\prime}-2 y=0
$$

and find its general solution.

$$
\begin{gathered}
\frac{d y}{d x}=2 y, \Rightarrow \frac{d y}{y}=2 d x, \Rightarrow \int \frac{d y}{y}=2 \int d x, \Rightarrow \\
\ln |y|=2 x+C, \Rightarrow|y|=e^{2 x+C}=e^{2 x} e^{C}=C_{1} e^{2 x}, \Rightarrow \\
y= \pm C_{1} e^{2 x}=C e^{2 x},
\end{gathered}
$$

where $C$ again denotes any real number. Notice that at $C=0$, we get $y=0$ that is also a solution of the homogeneous equation.
Next we suppose that $C$ is a function of $x$ and substitute the solution $y=C(x) e^{2 x}$ into the initial nonhomogeneous equation. We can write

$$
y^{\prime}=\left[C(x) e^{2 x}\right]^{\prime}=C^{\prime}(x) e^{2 x}+C(x) \cdot 2 e^{2 x}
$$

Hence,

$$
C^{\prime}(x) e^{2 x}+\underline{2 C}(x) e^{2 x}-\underline{2 C}(x) e^{2 x}=x, \Rightarrow C^{\prime}(x)=e^{-2 x} x, \Rightarrow C(x)=\int e^{-2 x} x d x .
$$

This integral was already found above in section $A$, so we obtain

$$
C(x)=-\frac{1}{4} e^{-2 x}(1+2 x)+C .
$$

As a result, the general solution of the nonhomogeneous differential equation is given by

$$
y=C(x) e^{2 x}=\left[-\frac{1}{4} e^{-2 x}(1+2 x)+C\right] e^{2 x}=-\frac{1}{4}(1+2 x)+C e^{2 x} .
$$

As one can see, both methods give the same answer.

Example 2. Solve the differential equation $x^{2} y^{\prime}+x y+2=0$.
We solve this problem using the method of variation of a constant. For convenience, we write this equation in the standard form:

$$
y^{\prime}+\frac{y}{x}=-\frac{2}{x^{2}} .
$$

Herein, we divided both sides by $x^{2}$. Obviously, that $x=0$ is not the solution of the equation.
Consider the homogeneous equation:

$$
\begin{aligned}
& y^{\prime}+\frac{y}{x}=0, \Rightarrow \frac{d y}{d x}=-\frac{y}{x}, \Rightarrow \frac{d y}{y}=-\frac{d x}{x}, \Rightarrow \int \frac{d y}{y}=-\int \frac{d x}{x}, \Rightarrow \\
& \ln |y|=-\ln |x|+\ln C_{1}\left(C_{1}>0\right), \Rightarrow \ln |y|=\ln \frac{C_{1}}{|x|}, \Rightarrow y=\frac{C_{1}}{|x|} .
\end{aligned}
$$

After easy transformations we find the answer $y=\frac{C}{x}$ where $C$ is any real number. The last expression includes the case $y=0$, which is also a solution of the homogeneous equation.

Now we replace the constant $C$ with the function $C(x)$ and substitute the solution $y=$ $\frac{C(x)}{x}$ into the initial nonhomogeneous differential equation. As

$$
y^{\prime}=\left[\frac{C(x)}{x}\right]^{\prime}=\frac{C^{\prime}(x) \cdot x-C(x)}{x^{2}},
$$

we obtain

$$
\begin{gathered}
\frac{C^{\prime}(x) \cdot x-C(x)}{x^{2}}+\frac{C(x)}{x^{2}}=-\frac{2}{x^{2}}, \Rightarrow \frac{C^{\prime}(x)}{x}-\frac{C(x)}{x^{2}}+\frac{C(x)}{x^{2}}=-\frac{2}{x^{2}}, \Rightarrow C^{\prime}(x)=-\frac{2}{x}, \\
\Rightarrow C(x)=-\int \frac{2}{x} d x=-2 \ln |x|+C .
\end{gathered}
$$

Thus, the general solution of the initial equation is given by

$$
y=\frac{C(x)}{x}=-\frac{2 \ln |x|}{x}+\frac{C}{x} .
$$

Example 3. Solve the initial value problem $y^{\prime}-y \tan x=\sin x, y(0)=1$.
First of all we calculate the integrating factor, which is written as

$$
u(x)=e^{\int(-\tan x) d x}=e^{-\int \tan x d x} .
$$

In doing so, we need to find

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\int \frac{d(\cos x)}{\cos x}=-\ln |\cos x| .
$$

Hence, the integrating factor is given by

$$
u(x)=e^{-\int \tan x d x}=e^{\ln |\cos x|}=|\cos x| .
$$

We can take the function $u(x)=\cos x$ as the integrating factor. Make sure that the left side of the equation is the derivative of the product $y(x) u(x)$ :

$$
\begin{aligned}
& \left(y^{\prime}-y \tan x\right) \cos x=y^{\prime} \cos x-y \tan x \cos x=y^{\prime} \cos x-y \sin x=(y \cos x)^{\prime} \\
& =[y(x) u(x)]^{\prime} .
\end{aligned}
$$

Then the general solution of the equation is written in the form:

$$
\begin{gathered}
y(x)=\frac{1}{u(x)} \cdot\left[\int u(x) \sin x d x+C\right]=\frac{1}{\cos x} \cdot\left[\int \cos x \sin x d x+C\right] \\
=\frac{1}{2 \cos x} \int \sin 2 x d x+\frac{C}{\cos x}=\frac{C}{\cos x}-\frac{\cos 2 x}{4 \cos x} .
\end{gathered}
$$

Next, we determine the value of $C$, which satisfies the initial condition $y(0)=1$

$$
y(0)=\frac{C}{\cos 0}-\frac{\cos 0}{4 \cos 0}=C-\frac{1}{4}=1,
$$

So,

$$
C=\frac{5}{4} .
$$

Hence, the solution for the initial value problem is given by

$$
y(x)=\frac{5}{4 \cos x}-\frac{\cos 2 x}{4 \cos x}=\frac{5-\cos 2 x}{4 \cos x}
$$

Example 4. Solve the initial value problem $y^{\prime}+\frac{3}{x} y=\frac{2}{x^{2}}, y(1)=2$.
Determine the integrating factor:

$$
u(x)=e^{\int \frac{3}{x} d x}=e^{3 \int \frac{d x}{x}}=e^{3 \ln |x|}=e^{\ln |x|^{3}}=|x|^{3}
$$

We can take the function $u(x)=x^{3}$ as the integrating factor. One can check that the left side of the equation is the derivative of the product $y(x) u(x)$, i.e.

$$
\left(y^{\prime}+\frac{3}{x} y\right) x^{3}=y^{\prime} x^{3}+\frac{3}{x} y x^{3}=y^{\prime} x^{3}+3 y x^{2}=\left(y x^{3}\right)^{\prime}
$$

The general solution of the differential equation is written as

$$
y=\frac{\int u(x) f(x) d x+C}{u(x)}=\frac{\int x^{3} \cdot \frac{2}{x^{2}} d x+C}{x^{3}}=\frac{\int 2 x d x+C}{x^{3}}=\frac{x^{2}+C}{x^{3}}=\frac{1}{x}+\frac{C}{x^{3}}
$$

Now we can find the constant $C$ using the initial condition $y(1)=2$. Substituting the general solution into this condition gives:

$$
y(1)=\frac{1}{1}+\frac{C}{1^{3}}=2, \Rightarrow C=1
$$

Thus, the solution of the IVP is given by

$$
y=\frac{1}{x}+\frac{1}{x^{3}} .
$$

Example 5. Solve the differential equation $y=\left(2 y^{4}+2 x\right) y^{\prime}$.
One can see that this equation is not linear with respect to the function $y(x)$ However, we can try to find the solution for the inverse function $x(y)$. We write the given equation in terms of differentials and make some transformations:

$$
\begin{gathered}
y=\left(2 y^{4}+2 x\right) \frac{d y}{d x}, \Rightarrow y d x=2 y^{4} d y+2 x d y, \Rightarrow \\
y \frac{d x}{d y}=2 y^{4}+2 x, \Rightarrow \frac{d x}{d y}-\frac{2}{y} x=2 y^{3} .
\end{gathered}
$$

Now we see that we have a linear differential equation with respect to the function $x(y)$. We can solve it with help of the integrating factor:

$$
u(y)=e^{\int\left(-\frac{2}{y}\right) d y}=e^{-2 \int \frac{d y}{y}}=e^{-2 \ln |y|}=e^{\ln \frac{1}{|y|^{2}}}=e^{\ln \frac{1}{y^{2}}}=\frac{1}{y^{2}}
$$

Then the general solution as the inverse function $x(y)$ is expressed in the form

$$
x(y)=\frac{\int u(y) f(y) d y+C}{u(y)}=\frac{\int \frac{1}{y^{2}} \cdot 2 y^{3} d y+C}{\frac{1}{y^{2}}}=\frac{\int 2 y d y+C}{\frac{1}{y^{2}}}=y^{2}\left(y^{2}+C\right) .
$$

