4. Bernoulli Equations

Bernoulli equation is one of the well-known nonlinear differential equations of the first order. It is written as

$$
y^{\prime}+a(x) y=b(x) y^{m}
$$

where $a(x)$ and $b(x)$ are continuous functions.

Example 1. Solve the differential equation $y^{\prime}+\frac{y}{x}=y^{2}$.
As it can be seen, this differential equation is a Bernoulli equation. To solve it, we make the substitution

$$
z=y^{1-m}=\frac{1}{y} .
$$

Differentiating, we find:

$$
z^{\prime}=\left(\frac{1}{y}\right)^{\prime}=-\frac{y^{\prime}}{y^{2}} .
$$

Divide the original equation by y^{2} and replace y with z

$$
\frac{y^{\prime}}{y^{2}}+\frac{1}{y x}=1
$$

When dividing by y^{2} we have lost the solution $\mathrm{y}=0$.
In terms of z the differential equation is written in the form:

$$
-z^{\prime}+\frac{z}{x}=1 \quad \text { or } \quad z^{\prime}-\frac{z}{x}=-1 .
$$

We get the linear equation for the function $z(x)$, so we can solve it using the integrating factor technique:

$$
u(x)=e^{\int\left(-\frac{1}{x}\right) d x}=e^{-\int \frac{d x}{x}}=e^{-\ln |x|}=e^{\ln \frac{1}{|x|}}=\frac{1}{|x|} .
$$

We can make sure that the function $\frac{1}{x}$ is the integrating factor. Indeed:

$$
z^{\prime} \cdot \frac{1}{x}-\frac{z}{x} \cdot \frac{1}{x}=z^{\prime} \cdot \frac{1}{x}-\frac{z}{x^{2}}=\left(z \cdot \frac{1}{x}\right)^{\prime} .
$$

We see that the left side of the equation becomes the derivative of the product $z(x) u(x)$ after multiplying by $\frac{1}{x}$.
Then the general solution of the linear equation for $z(x)$ is given by

$$
z=\frac{\int u(x) f(x) d x+C}{u(x)}=\frac{\int \frac{1}{x} \cdot(-1) d x+C}{\frac{1}{x}}=\frac{-\ln |x|+C}{\frac{1}{x}}=x(C-\ln |x|) .
$$

Taking into account that $y=\frac{1}{z^{\prime}}$, we can write the answer:

$$
y=\frac{1}{x(C-\ln |x|)^{\prime}}
$$

or in the implicit form:

$$
y x(C-\ln |x|)=1 .
$$

Thus, the final answer is

$$
y x(C-\ln |x|)=1, y=0 .
$$

Example 2. Solve the differential equation $y^{\prime}+y \cot x=y^{4} \sin x$
This is a Bernoulli equation with the parameter $m=4$. Therefore, we make the substitution

$$
z=y^{1-m}=y^{-3} .
$$

The derivative is given by

$$
z^{\prime}=\left(y^{-3}\right)^{\prime}=-3 y^{-4} y^{\prime}=-\frac{3 y^{\prime}}{y^{4}}
$$

Multiply both sides of the original equation by (-3) and divide by y^{4} :

$$
y^{\prime}+y \cot x=y^{4} \sin x, \Rightarrow-\frac{3 y^{\prime}}{y^{4}}-\frac{3 \cot x}{y^{3}}=-3 \sin x .
$$

Notice that in dividing by y^{4} we have lost the solution $y=0$. (You can check this by direct substitution.)
Rewriting the last equation in terms of z, we get

$$
z^{\prime}-3 \cot x \cdot z=-3 \sin x
$$

This differential equation is linear, so we can solve it using the integrating factor:

$$
\begin{gathered}
u(x)=e^{\int(-3) \cot x d x}=e^{-3 \int \cot x d x}=e^{-3 \int \frac{\cos x d x}{\sin x}}=e^{-3 \int \frac{d(\sin x)}{\sin x}}=e^{-3 \ln |\sin x|} \\
=e^{\ln \frac{1}{|\sin x|^{3}}}=\frac{1}{|\sin x|^{3}} .
\end{gathered}
$$

We can take the function $u(x)=\frac{1}{\sin ^{3} x}$ as the integrating factor. In fact, the left side of the equation becomes the derivative of the product $z(x) u(x)$ after multiplying by $u(x)$

$$
z^{\prime} \cdot \frac{1}{\sin ^{3} x}-3 \cot x \cdot z \cdot \frac{1}{\sin ^{3} z}=z^{\prime} \frac{1}{\sin ^{3} z}-\frac{3 z \cos x}{\sin ^{4} x}=\left(z \frac{1}{\sin ^{3} x}\right)^{\prime} .
$$

Hence, the general solution of the linear differential equation for $z(x)$ can be presented in the form:

$$
\begin{gathered}
z=\frac{\int u(x) f(x) d x+C}{u(x)}=\frac{\int \frac{1}{\sin ^{3} x}(-3 \sin x) d x+C}{\frac{1}{\sin ^{3} x}}=\frac{-3 \int \frac{d x}{\sin ^{2} x}+C}{\frac{1}{\sin ^{3} x}} \\
=(3 \cot x+C) \sin ^{3} x .
\end{gathered}
$$

Since $z=y^{-3}$, we obtain the following solutions of the given Bernoulli equation:

$$
\frac{1}{y^{3}}=(3 \cot x+C) \sin ^{3} x, y=0
$$

Example 4. Find all solutions of the differential equation $y^{\prime}+\frac{2 y}{x}=2 x \sqrt{y}$. This equation is also a Bernoulli equation with the fractional parameter $m=\frac{1}{2}$. It can be reduced to the linear equation by making the replacement $z=y^{1-m}=\sqrt{y}$. The derivative of the new function $z(x)$ is given by

$$
z^{\prime}=(\sqrt{y})^{\prime}=\frac{y^{\prime}}{2 \sqrt{y}}
$$

Divide the original Bernoulli equation by $2 \sqrt{y}$. Like in other examples on this page, the root $y=0$ is also the trivial solution of the differential equation. So we have

$$
y^{\prime}+\frac{2 y}{x}=2 x \sqrt{y}, \Rightarrow \frac{y^{\prime}}{2 \sqrt{y}}+\frac{2 y}{2 x \sqrt{y}}=\frac{2 x \sqrt{y}}{2 \sqrt{y}}, \Rightarrow \frac{y^{\prime}}{2 \sqrt{y}}+\frac{\sqrt{y}}{x}=x .
$$

Replacing y with z, we get

$$
z^{\prime}+\frac{z}{x}=x .
$$

We obtain a simple linear equation for the function $z(x)$. The integrating factor here is

$$
u(x)=e^{\int \frac{1}{\bar{x}} d x}=e^{\ln |x|}=|x| .
$$

We choose the function $u(x)=x$. One can check that the left side of the equation becomes the derivative of the product $z(x) u(x)$ after multiplying by $u(x)$

$$
z^{\prime} \cdot x+\frac{z}{x} \cdot x=z^{\prime} x+z=(z x)^{\prime} .
$$

Then the general solution of the linear differential equation is given by

$$
z=\frac{\int u(x) f(x) d x+C}{u(x)}=\frac{\int x \cdot x d x+C}{x}=\frac{\int x^{2} d x+C}{x}=\frac{\frac{x^{3}}{3}+C}{x}
$$

Returning to the original function $y(x)$, we get the solution in the implicit form:

$$
\sqrt{y}=\frac{\frac{x^{3}}{3}+C}{x} \text { or } x \sqrt{y}=\frac{x^{3}}{3}+C
$$

Thus, the full answer is written as follows:

$$
x \sqrt{y}=\frac{x^{3}}{3}+C, y=0
$$

5. Exact Differential Equations

Definition. A differential equation of type

$$
P(x, y) d x+Q(x, y) d y=0
$$

is called an exact differential equation if there exists a function of two variables $u(x, y)$ with continuous partial derivatives such that

$$
d u(x, y)=P(x, y) d x+Q(x, y) d y
$$

The general solution of an exact equation is given by

$$
u(x, y)=C
$$

where C is an arbitrary constant.

Example 1. Find the solution of the differential equation $\left(6 x^{2}-y+3\right) d x+$ $\left(3 y^{2}-x-2\right) d y=0$
We check this equation for exactness:

$$
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(3 y^{2}-x-2\right)=-1, \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(6 x^{2}-y+3\right)=-1
$$

Hence, the given differential equation is exact. Write the system of equations to determine the function $u(x, y)$:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=P(x, y)=6 x^{2}-y+3 \\
& \frac{\partial u}{\partial y}=Q(x, y)=3 y^{2}-x-2
\end{aligned}
$$

Integrate the first equation with respect to the variable x assuming that y is a constant. This produces:

$$
u(x, y)=\int\left(6 x^{2}-y+3\right) d x=\frac{6 x^{3}}{3}-x y+3 x+\varphi(y)=2 x^{3}-x y+3 x+\varphi(y)
$$

Here we introduced a continuous differentiable function $\varphi(y)$ instead of the constant C.

Plug in the function $u(x, y)$ into the second equation:

$$
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left[2 x^{3}-x y+3 x+\varphi(y)\right]=-x+\varphi^{\prime}(y)=3 y^{2}-x-2
$$

We get equation for the derivative $\varphi^{\prime}(y)$:

$$
\varphi^{\prime}(y)=3 y^{2}-2
$$

Integrating gives the function $\varphi(y)$

$$
\varphi(y)=\int\left(3 y^{2}-2\right) d y=y^{3}-2 y .
$$

So, the function $u(x, y)$ is given by

$$
u(x, y)=2 x^{3}-x y+3 x+y^{3}-2 y .
$$

Hence, the general solution of the equation is defined by the following implicit expression:

$$
2 x^{3}-x y+3 x+y^{3}-2 y=C
$$

where C is an arbitrary constant.

Example 2. Find the solution of the differential equation $e^{y} d x+(2 y+$ $\left.x e^{y}\right) d y=0$
First, we check this equation for exactness:

$$
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(2 y+x e^{y}\right)=e^{y}, \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(e^{y}\right)=e^{y} .
$$

We see that $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ o that this equation is exact. Find the function $u(x, y)$ from the system of equations:

$$
\begin{gathered}
\frac{\partial u}{\partial x}=e^{y} \\
\frac{\partial u}{\partial y}=2 y+x e^{y}
\end{gathered} .
$$

Integrate the first equation with respect to the variable x assuming that y is a constant, it produces:

$$
u(x, y)=\int P(x, y) d x=\int e^{y} d x=x e^{y}+\varphi(y)
$$

Now, by differentiating this expression with respect to y and equating it to $\frac{\partial u}{\partial y}$ we find the derivative $\varphi^{\prime}(y)$:

$$
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left[x e^{y}+\varphi(y)\right]=2 y+x e^{y}, \Rightarrow x e^{y}+\varphi^{\prime}(y)=2 y+x e^{y}, \Rightarrow \varphi^{\prime}(y)=2 y .
$$

As a result, we find $\varphi(y)$ and the entire function $u(x, y)$:

$$
\varphi(y)=\int 2 y d y=y^{2}, \Rightarrow u(x, y)=x e^{y}+\varphi(y)=x e^{y}+y^{2} .
$$

Hence, the general solution of the equation is defined by the following implicit expression:

$$
x e^{y}+y^{2}=C
$$

where C is an arbitrary constant.

Example 3. Find the solution of the differential equation $(2 x y-\sin x) d x+$ $\left(x^{2}-\cos y\right) d y=0$

This differential equation is exact because

$$
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}-\cos y\right)=2 x=\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(2 x y-\sin x)=2 x
$$

We find the function $u(x, y)$ from the system of two equations:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=2 x y-\sin x \\
\frac{\partial u}{\partial y}=x^{2}-\cos y
\end{array}\right.
$$

By integrating the 1 st equation with respect to the variable x, we have

$$
u(x, y)=\int(2 x y-\sin x) d x=x^{2} y+\cos x+\varphi(y)
$$

Plugging in the 2 nd equation, we obtain

$$
\begin{gathered}
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left[x^{2} y+\cos x+\varphi(y)\right]=x^{2}-\cos y, \Rightarrow x^{z}+\varphi^{\prime}(y)=x^{x}-\cos y, \Rightarrow \varphi^{\prime}(y) \\
=-\cos y
\end{gathered}
$$

Hence,

$$
\varphi(y)=\int(-\cos y) d y=-\sin y
$$

Thus, the function $u(x, y)$ is

$$
u(x, y)=x^{2} y+\cos x-\sin y
$$

so that the general solution of the differential equation is given by the implicit formula:

$$
x^{2} y+\cos x-\sin y=C
$$

Example 4. Solve the equation $\left(1+2 x \sqrt{x^{2}-y^{2}}\right) d x-2 y \sqrt{x^{2}-y^{2}} d y=0$ First of all we determine whether this equation is exact:

$$
\begin{aligned}
& \frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(-2 y \sqrt{x^{2}-y^{2}}\right)=-2 y \cdot \frac{2 x}{2 \sqrt{x^{2}-y^{2}}}=-\frac{2 x y}{\sqrt{x^{2}-y^{2}}} \\
& \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left(1+2 x \sqrt{x^{2}-y^{2}}\right)=2 x \cdot \frac{(-2 y)}{2 \sqrt{x^{2}-y^{2}}}=-\frac{2 x y}{\sqrt{x^{2}-y^{2}}}
\end{aligned}
$$

As you can see, $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$. Hence, this equation is exact. Find the function $u(x, y)$ satisfying the system of equations:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=1+2 x \sqrt{x^{2}-y^{2}} \\
\frac{\partial u}{\partial y}=-2 y \sqrt{x^{2}-y^{2}}
\end{array}\right.
$$

Integrating the first equation gives:

$$
\begin{gathered}
u(x, y)=\int\left(1+2 x \sqrt{x^{2}-y^{2}}\right) d x=x+\frac{\left(x^{2}-y^{2}\right)^{\frac{3}{2}}}{\frac{3}{2}}+\varphi(y) \\
=x+\frac{2}{3}\left(x^{2}-y^{2}\right)^{\frac{3}{2}}+\varphi(y)
\end{gathered}
$$

where $\varphi(y)$ is a certain unknown function of y that will be defined later.
We substitute the result into the second equation of the system:

$$
\begin{aligned}
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}[x & \left.+\frac{2}{3}\left(x^{2}-y^{2}\right)^{\frac{3}{2}}+\varphi(y)\right]=-2 y \sqrt{x^{2}-y^{2}}, \Rightarrow-2 y \sqrt{x^{2}-y^{2}}+\varphi^{\prime}(y) \\
& =-2 y \sqrt{x^{2}-y^{2}}, \Rightarrow \varphi^{\prime}(y)=0
\end{aligned}
$$

By integrating the last expression, we find the function $\varphi(y)=C$, where C is a constant.

Thus, the general solution of the given differential equation has the form:

$$
x+\frac{2}{3}\left(x^{2}-y^{2}\right)^{\frac{3}{2}}+C=0
$$

6. Using an Integrating Factor

Consider a differential equation of type

$$
P(x, y) d x+Q(x, y) d y=0
$$

where $P(x, y)$ and $Q(x, y)$ are functions of two variables x and y continuous in a certain region D. If

$$
\frac{\partial Q}{\partial x} \neq \frac{\partial P}{\partial y}
$$

the equation is not exact. However, we can try to find so-called integrating factor, which is a function $\mu(x, y)$ such that the equation becomes exact after multiplication by this factor. If so, then the relationship

$$
\frac{\partial(\mu Q(x, y))}{\partial x}=\frac{\partial(\mu P(x, y))}{\partial y}
$$

is valid. This condition can be written in the form:

$$
Q \frac{\partial \mu}{\partial x}+\mu \frac{\partial Q}{\partial x}=P \frac{\partial \mu}{\partial y}+\mu \frac{\partial P}{\partial y}, \Rightarrow Q \frac{\partial \mu}{\partial x}-P \frac{\partial \mu}{\partial y}=\mu\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)
$$

The last expression is the partial differential equation of first order that defines the integrating factor $\mu(x, y)$.

Example 1. Solve the differential equation $(x-\cos y) d x-\sin y d y=0$ If we test this equation for exactness, we find that

$$
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}(-\sin y)=0, \quad \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(x-\cos y)=\sin y
$$

Hence, this equation is not exact. We try to construct an integrating factor. Notice that

$$
\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}=\sin y
$$

and the expression $\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=\frac{\sin y}{(-\sin y)}=-1$ is constant.
Hence, we can find the integrating factor as a function $\mu(x)$ by solving the following equation:

$$
\frac{1}{\mu} \frac{d \mu}{d x}=-1, \Rightarrow \int \frac{d \mu}{\mu}=-\int d x, \Rightarrow \ln |\mu|=-x, \Rightarrow \mu=e^{ \pm x}
$$

We choose the function $\mu=e^{-x}$ and make sure that the equation becomes exact after multiplication by $\mu=e^{-x}$

$$
e^{-x}(x-\cos y) d x-e^{-x} \sin y d y=0
$$

So,

$$
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(-e^{-x} \sin y\right)=e^{-x} \sin y, \quad \frac{\partial P}{\partial y}=\frac{\partial}{\partial}\left(e^{-x}(x-\cos y)\right)=e^{-x} \sin y
$$

Its general solution can be found from the system of equations:

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial x}=e^{-x}(x-\cos y) \\
\frac{\partial u}{\partial y}=-e^{-x} \sin y
\end{array}\right.
$$

Here it is more convenient to integrate the second equation with respect to y :

$$
u(x, y)=\int\left(-e^{-x} \sin y\right) d y=e^{-x} \cos y+\psi(x)
$$

Substituting this in the first equation, we have

$$
\begin{gathered}
\frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left[e^{-x} \cos y+\psi(x)\right]=e^{-x}(x-\cos y), \Rightarrow-e^{-x} \cos y+\psi^{\prime}(x) \\
=x e^{-x}-e^{-x} \cos y, \Rightarrow \psi^{\prime}(x)=x e^{-x} .
\end{gathered}
$$

Integrating by parts gives:

$$
\begin{gathered}
\psi(x)=\int x e^{-x} d x=\left[\begin{array}{c}
v^{\prime}=e^{-x} \\
u^{\prime}=1
\end{array}\right]=-x e^{-x}-\int\left(-e^{-x}\right) d x=-x e^{-x}+\int e^{-x} d x \\
v=-e^{-x} \\
=-x e^{-x}-e^{-x}
\end{gathered}
$$

Thus, the general solution of the equation is given by

$$
e^{-x} \cos y-x e^{-x}-e^{-x}=C \text { or } e^{-x}(\cos y-x-1)=C,
$$

where C is an arbitrary real number.

Example 2. Solve the differential equation $(x y+1) d x+x^{2} d y=0$
First of all we check this equation for exactness:

$$
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}\right)=2 x \neq \frac{\partial P}{\partial y}=\frac{\partial}{\partial y}(x y+1)=x .
$$

The partial derivatives are not equal to each other. Therefore, this equation is not exact. Calculate the difference of the derivatives:

$$
\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}=x-2 x=-x .
$$

Now we try to use the integrating factor in the form $z=x y$. Here we have

$$
\frac{\partial z}{\partial x}=y, \frac{\partial z}{\partial y}=x .
$$

Then,

$$
Q \frac{\partial z}{\partial x}-P \frac{\partial z}{\partial y}=x^{2} \cdot y-(x y+1) \cdot x=x^{2} y-x^{2} y-x=-x,
$$

and hence we get

$$
\frac{1}{\mu} \frac{d \mu}{d z}=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q \frac{\partial z}{\partial x}-P \frac{\partial z}{\partial y}}=\frac{-x}{-x}=1 .
$$

We see that the integrating factor depends only on z :

$$
\mu(x, y)=\mu(z)=\mu(x y) .
$$

We can find it by integrating the last equation:

$$
\frac{1}{\mu} \frac{d \mu}{d z}=1, \Rightarrow \int \frac{d \mu}{\mu}=\int d z, \Rightarrow \ln |\mu|=z, \Rightarrow \mu=e^{ \pm z}=e^{ \pm x y} .
$$

By choosing the function $\mu=e^{x y}$ we can convert the original differential equation into exact:

$$
(x y+1) e^{x y} d x+x^{2} e^{x y} d y=0 .
$$

Check this using again the test for exactness:

$$
\begin{gathered}
\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left[x^{2} e^{x y}\right]=2 x e^{x y}+x^{2} y e^{x y}, \\
\frac{\partial P}{\partial y}=\frac{\partial}{\partial y}\left[(x y+1) e^{x y}\right]=x e^{x y}+(x y+1) x e^{x y}=x e^{x y}+x^{2} y e^{x y}+x e^{x y} \\
=2 x e^{x y}+x^{2} y e^{x y} .
\end{gathered}
$$

As one can see, now this equation is exact. We find its general solution form the system of equations:

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial x}=(x y+1) e^{x y} \\
\frac{\partial u}{\partial y}=x^{2} e^{x y}
\end{array} .\right.
$$

Integrate the second equation with respect to the variable y (considering x as a constant):

$$
u(x, y)=\int x^{2} e^{x y} d y=x^{2} \int e^{x y} d y=x^{2} \cdot \frac{1}{x} e^{x y}+\psi(x)=x e^{x y}+\psi(x) .
$$

Substitute this in the first equation of the system to get:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left[x e^{x y}+\psi(x)\right]=(x y+1) e^{x y}, \Rightarrow 1 \cdot e^{x y}+x y e^{x y}+\psi^{\prime}(x) \\
& \quad=(x y+1) e^{x y}, \Rightarrow(x y+1) e^{x y}+\psi^{\prime}(x)=(x y+1) e^{x y}, \Rightarrow \psi^{\prime}(x)=0, \\
& \quad \Rightarrow \psi(x)=C .
\end{aligned}
$$

Hence, the general solution of the given differential equation is written in the form:

$$
x e^{x y}+C=0,
$$

where C is an arbitrary real number.

