
 

4. Bernoulli Equations 

 Bernoulli equation is one of the well-known nonlinear differential equations of 

the first order. It is written as 

  𝑦′ + 𝑎(𝑥)𝑦 = 𝑏(𝑥)𝑦𝑚, 

where 𝑎(𝑥) and  𝑏(𝑥) are continuous functions. 

 

 Example 1. Solve the differential equation 𝑦′ +
𝑦

𝑥
= 𝑦2. 

As it can be seen, this differential equation is a Bernoulli equation. To solve it, we 

make the substitution 

𝑧 = 𝑦1−𝑚 =
1

𝑦
. 

Differentiating, we find: 

𝑧′ = (
1

𝑦
)
′

= −
𝑦′

𝑦2
. 

Divide the original equation by 𝑦2 and replace 𝑦 with 𝑧  

𝑦′

𝑦2
+

1

𝑦𝑥
= 1. 

When dividing by 𝑦2 we have lost the solution y = 0.  

In terms of 𝑧 the differential equation is written in the form: 

−𝑧′ +
𝑧

𝑥
= 1or𝑧′ −

𝑧

𝑥
= −1. 

We get the linear equation for the function 𝑧(𝑥), so we can solve it using the 

integrating factor technique: 

𝑢(𝑥) = 𝑒∫ (−
1
𝑥
)𝑑𝑥 = 𝑒−∫

𝑑𝑥
𝑥 = 𝑒−ln|𝑥| = 𝑒

ln
1
|𝑥| =

1

|𝑥|
. 

We can make sure that the function 
1

𝑥
 is the integrating factor. Indeed: 

𝑧′ ⋅
1

𝑥
−

𝑧

𝑥
⋅
1

𝑥
= 𝑧′ ⋅

1

𝑥
−

𝑧

𝑥2
= (𝑧 ⋅

1

𝑥
)
′

. 

We see that the left side of the equation becomes the derivative of the product 

𝑧(𝑥)𝑢(𝑥) after multiplying by 
1

𝑥
. 

Then the general solution of the linear equation for 𝑧(𝑥) is given by 



𝑧 =
∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 + 𝐶

𝑢(𝑥)
=

∫
1
𝑥

⋅ (−1)𝑑𝑥 + 𝐶

1
𝑥

=
−ln|𝑥| + 𝐶

1
𝑥

= 𝑥(𝐶 − ln|𝑥|). 

Taking into account that 𝑦 =
1

𝑧
, we can write the answer:  

𝑦 =
1

𝑥(𝐶 − ln|𝑥|)
, 

or in the implicit form:  

𝑦𝑥(𝐶 − ln|𝑥|) = 1. 

Thus, the final answer is 

𝑦𝑥(𝐶 − ln|𝑥|) = 1, 𝑦 = 0. 

 

 Example 2. Solve the differential equation 𝑦′ + 𝑦cot𝑥 = 𝑦4sin𝑥 

This is a Bernoulli equation with the parameter 𝑚 = 4. Therefore, we make the 

substitution 

𝑧 = 𝑦1−𝑚 = 𝑦−3. 

The derivative is given by 

𝑧′ = (𝑦−3)′ = −3𝑦−4𝑦′ = −
3𝑦′

𝑦4
 

Multiply both sides of the original equation by (−3) and divide by 𝑦4: 

𝑦′ + 𝑦cot𝑥 = 𝑦4sin𝑥,⇒ −
3𝑦′

𝑦4
−

3cot𝑥

𝑦3
= −3sin𝑥. 

Notice that in dividing by 𝑦4 we have lost the solution 𝑦 = 0. (You can check this by 

direct substitution.) 

Rewriting the last equation in terms of 𝑧, we get 

𝑧′ − 3cot𝑥 ⋅ 𝑧 = −3sin𝑥. 

This differential equation is linear, so we can solve it using the integrating factor: 

𝑢(𝑥) = 𝑒∫ (−3)cot𝑥𝑑𝑥 = 𝑒−3∫ cot𝑥𝑑𝑥 = 𝑒−3∫
cos𝑥𝑑𝑥
sin 𝑥 = 𝑒−3∫

𝑑(sin 𝑥)
sin𝑥 = 𝑒−3ln| sin 𝑥| 

= 𝑒
ln

1
| sin 𝑥|3 =

1

| sin 𝑥 |3
. 

We can take the function 𝑢(𝑥) =
1

sin3𝑥
 as the integrating factor. In fact, the left side of 

the equation becomes the derivative of the product 𝑧(𝑥)𝑢(𝑥) after multiplying by 𝑢(𝑥) 



𝑧′ ⋅
1

sin3𝑥
− 3cot𝑥 ⋅ 𝑧 ⋅

1

sin3𝑧
= 𝑧′

1

sin3𝑧
−

3𝑧cos𝑥

sin4𝑥
= (𝑧

1

sin3𝑥
)
′

. 

Hence, the general solution of the linear differential equation for 𝑧(𝑥) can be presented 

in the form:  

𝑧 =
∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 + 𝐶

𝑢(𝑥)
=

∫
1

sin3𝑥
(−3sin𝑥)𝑑𝑥 + 𝐶

1
sin3𝑥

=
−3∫

𝑑𝑥
sin2𝑥

+ 𝐶

1
sin3𝑥

= (3cot𝑥 + 𝐶)sin3𝑥. 

Since 𝑧 = 𝑦−3, we obtain the following solutions of the given Bernoulli equation: 

1

𝑦3
= (3cot𝑥 + 𝐶)sin3𝑥, 𝑦 = 0. 

 

 Example 4. Find all solutions of the differential equation 𝑦′ +
2𝑦

𝑥
= 2𝑥√𝑦. 

This equation is also a Bernoulli equation with the fractional parameter 𝑚 =
1

2
. It can 

be reduced to the linear equation by making the replacement 𝑧 = 𝑦1−𝑚 = √𝑦. The 

derivative of the new function 𝑧(𝑥) is given by 

𝑧′ = (√𝑦)′ =
𝑦′

2√𝑦
 

Divide the original Bernoulli equation by 2√𝑦. Like in other examples on this page, 

the root 𝑦 = 0 is also the trivial solution of the differential equation. So we have 

𝑦′ +
2𝑦

𝑥
= 2𝑥√𝑦,⇒

𝑦′

2√𝑦
+

2𝑦

2𝑥√𝑦
=

2𝑥√𝑦

2√𝑦
,⇒

𝑦′

2√𝑦
+

√𝑦

𝑥
= 𝑥. 

Replacing 𝑦 with 𝑧, we get 

𝑧′ +
𝑧

𝑥
= 𝑥. 

We obtain a simple linear equation for the function 𝑧(𝑥). The integrating factor here 

is 

𝑢(𝑥) = 𝑒∫
1
𝑥
𝑑𝑥 = 𝑒ln |𝑥| = |𝑥|. 

We choose the function 𝑢(𝑥) = 𝑥. One can check that the left side of the equation 

becomes the derivative of the product 𝑧(𝑥)𝑢(𝑥) after multiplying by 𝑢(𝑥) 

𝑧′ ⋅ 𝑥 +
𝑧

𝑥
⋅ 𝑥 = 𝑧′𝑥 + 𝑧 = (𝑧𝑥)′. 



Then the general solution of the linear differential equation is given by 

𝑧 =
∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥 + 𝐶

𝑢(𝑥)
=

∫ 𝑥 ⋅ 𝑥𝑑𝑥 + 𝐶

𝑥
=

∫ 𝑥2𝑑𝑥 + 𝐶

𝑥
=

𝑥3

3
+ 𝐶

𝑥
. 

Returning to the original function 𝑦(𝑥), we get the solution in the implicit form: 

√𝑦 =

𝑥3

3
+ 𝐶

𝑥
or𝑥√𝑦 =

𝑥3

3
+ 𝐶. 

Thus, the full answer is written as follows: 

𝑥√𝑦 =
𝑥3

3
+ 𝐶, 𝑦 = 0. 

  



 

5. Exact Differential Equations 

 Definition. A differential equation of type 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 

is called an exact differential equation if there exists a function of two variables 𝑢(𝑥, 𝑦) 

with continuous partial derivatives such that  

𝑑𝑢(𝑥, 𝑦) = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦. 

The general solution of an exact equation is given by 

𝑢(𝑥, 𝑦) = 𝐶, 

where 𝐶 is an arbitrary constant. 

 

 Example 1. Find the solution of the differential equation (6𝑥2 − 𝑦 + 3)𝑑𝑥 +

(3𝑦2 − 𝑥 − 2)𝑑𝑦 = 0 

We check this equation for exactness: 

∂𝑄

∂𝑥
=

∂

∂𝑥
(3𝑦2 − 𝑥 − 2) = −1,

∂𝑃

∂𝑦
=

∂

∂𝑦
(6𝑥2 − 𝑦 + 3) = −1. 

Hence, the given differential equation is exact. Write the system of equations to 

determine the function 𝑢(𝑥, 𝑦): 

{

∂𝑢

∂𝑥
= 𝑃(𝑥, 𝑦) = 6𝑥2 − 𝑦 + 3

∂𝑢

∂𝑦
= 𝑄(𝑥, 𝑦) = 3𝑦2 − 𝑥 − 2

 

Integrate the first equation with respect to the variable 𝑥 assuming that 𝑦 is a constant. 

This produces: 

𝑢(𝑥, 𝑦) = ∫ (6𝑥2 − 𝑦 + 3)𝑑𝑥 =
6𝑥3

3
− 𝑥𝑦 + 3𝑥 + 𝜑(𝑦) = 2𝑥3 − 𝑥𝑦 + 3𝑥 + 𝜑(𝑦). 

Here we introduced a continuous differentiable function 𝜑(𝑦) instead of the constant 

𝐶. 

Plug in the function 𝑢(𝑥, 𝑦) into the second equation: 

∂𝑢

∂𝑦
 = 

∂

∂𝑦
[2𝑥3 − 𝑥𝑦 + 3𝑥 + 𝜑(𝑦)] = −𝑥 + 𝜑′(𝑦) = 3𝑦2 − 𝑥 − 2. 

We get equation for the derivative 𝜑′(𝑦): 

𝜑′(𝑦) = 3𝑦2 − 2. 



Integrating gives the function 𝜑(𝑦) 

𝜑(𝑦) = ∫ (3𝑦2 − 2)𝑑𝑦 = 𝑦3 − 2𝑦. 

So, the function 𝑢(𝑥, 𝑦) is given by 

𝑢(𝑥, 𝑦) = 2𝑥3 − 𝑥𝑦 + 3𝑥 + 𝑦3 − 2𝑦. 

Hence, the general solution of the equation is defined by the following implicit 

expression: 

2𝑥3 − 𝑥𝑦 + 3𝑥 + 𝑦3 − 2𝑦 = 𝐶, 

where 𝐶 is an arbitrary constant. 

 

 Example 2. Find the solution of the differential equation 𝑒𝑦𝑑𝑥 + (2𝑦 +

𝑥𝑒𝑦)𝑑𝑦 = 0 

First, we check this equation for exactness: 

∂𝑄

∂𝑥
=

∂

∂𝑥
(2𝑦 + 𝑥𝑒𝑦) = 𝑒𝑦 ,

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑒𝑦) = 𝑒𝑦 . 

We see that 
∂𝑄

∂𝑥
=

∂𝑃

∂𝑦
 o that this equation is exact. Find the function 𝑢(𝑥, 𝑦) from the 

system of equations: 

{

∂𝑢

∂𝑥
= 𝑒𝑦

∂𝑢

∂𝑦
= 2𝑦 + 𝑥𝑒𝑦

. 

Integrate the first equation with respect to the variable 𝑥 assuming that 𝑦 is a constant, 

it produces: 

𝑢(𝑥, 𝑦) = ∫ 𝑃(𝑥, 𝑦)𝑑𝑥 = ∫ 𝑒𝑦𝑑𝑥 = 𝑥𝑒𝑦 + 𝜑(𝑦). 

Now, by differentiating this expression with respect to 𝑦 and equating it to 
∂𝑢

∂𝑦
 we find 

the derivative 𝜑′(𝑦): 

∂𝑢

∂𝑦
=

∂

∂𝑦
[𝑥𝑒𝑦 + 𝜑(𝑦)] = 2𝑦 + 𝑥𝑒𝑦 , ⇒ 𝑥𝑒𝑦 + 𝜑′(𝑦) = 2𝑦 + 𝑥𝑒𝑦 ,⇒ 𝜑′(𝑦) = 2𝑦. 

As a result, we find 𝜑(𝑦) and the entire function 𝑢(𝑥, 𝑦): 

𝜑(𝑦) = ∫ 2𝑦𝑑𝑦 = 𝑦2, ⇒ 𝑢(𝑥, 𝑦) = 𝑥𝑒𝑦 + 𝜑(𝑦) = 𝑥𝑒𝑦 + 𝑦2. 

Hence, the general solution of the equation is defined by the following implicit 

expression: 

𝑥𝑒𝑦 + 𝑦2 = 𝐶. 



where 𝐶 is an arbitrary constant. 

 

 Example 3. Find the solution of the differential equation (2𝑥𝑦 − sin 𝑥)𝑑𝑥 +

(𝑥2 − cos 𝑦)𝑑𝑦 = 0 

This differential equation is exact because 

∂𝑄

∂𝑥
=

∂

∂𝑥
(𝑥2 − cos𝑦) = 2𝑥 =

∂𝑃

∂𝑦
=

∂

∂𝑦
(2𝑥𝑦 − sin𝑥) = 2𝑥. 

We find the function 𝑢(𝑥, 𝑦) from the system of two equations: 

{

∂𝑢

∂𝑥
= 2𝑥𝑦 − sin𝑥

∂𝑢

∂𝑦
= 𝑥2 − cos𝑦

. 

By integrating the 1st equation with respect to the variable 𝑥, we have 

𝑢(𝑥, 𝑦) = ∫ (2𝑥𝑦 − sin𝑥)𝑑𝑥 = 𝑥2𝑦 + cos𝑥 + 𝜑(𝑦). 

Plugging in the 2nd equation, we obtain 

∂𝑢

∂𝑦
=

∂

∂𝑦
[𝑥2𝑦 + cos𝑥 + 𝜑(𝑦)] = 𝑥2 − cos𝑦,⇒ 𝑥2 + 𝜑′(𝑦) = 𝑥2 − cos𝑦,⇒ 𝜑′(𝑦)

= −cos𝑦. 

Hence, 

𝜑(𝑦) = ∫ (−cos𝑦)𝑑𝑦 = −sin𝑦. 

Thus, the function 𝑢(𝑥, 𝑦) is 

𝑢(𝑥, 𝑦) = 𝑥2𝑦 + cos𝑥 − sin𝑦, 

so that the general solution of the differential equation is given by the implicit formula: 

𝑥2𝑦 + cos𝑥 − sin𝑦 = 𝐶. 

 

 Example 4. Solve the equation (1 + 2𝑥√𝑥2 − 𝑦2)𝑑𝑥 − 2𝑦√𝑥2 − 𝑦2𝑑𝑦 = 0 

First of all we determine whether this equation is exact: 

∂𝑄

∂𝑥
=

∂

∂𝑥
(−2𝑦√𝑥2 − 𝑦2) = −2𝑦 ⋅

2𝑥

2√𝑥2 − 𝑦2
= −

2𝑥𝑦

√𝑥2 − 𝑦2
, 

∂𝑃

∂𝑦
=

∂

∂𝑦
(1 + 2𝑥√𝑥2 − 𝑦2) = 2𝑥 ⋅

(−2𝑦)

2√𝑥2 − 𝑦2
= −

2𝑥𝑦

√𝑥2 − 𝑦2
. 



As you can see, 
∂𝑄

∂𝑥
=

∂𝑃

∂𝑦
. Hence, this equation is exact. Find the function 𝑢(𝑥, 𝑦) 

satisfying the system of equations: 

{

∂𝑢

∂𝑥
= 1 + 2𝑥√𝑥2 − 𝑦2

∂𝑢

∂𝑦
= −2𝑦√𝑥2 − 𝑦2

. 

Integrating the first equation gives: 

𝑢(𝑥, 𝑦) = ∫ (1 + 2𝑥√𝑥2 − 𝑦2)𝑑𝑥 = 𝑥 +
(𝑥2 − 𝑦2)

3
2

3
2

+ 𝜑(𝑦)

= 𝑥 +
2

3
(𝑥2 − 𝑦2)

3
2 + 𝜑(𝑦), 

where 𝜑(𝑦) is a certain unknown function of 𝑦 that will be defined later. 

We substitute the result into the second equation of the system: 

∂𝑢

∂𝑦
=

∂

∂𝑦
[𝑥 +

2

3
(𝑥2 − 𝑦2)

3
2 + 𝜑(𝑦)] = −2𝑦√𝑥2 − 𝑦2, ⇒ −2𝑦√𝑥2 − 𝑦2 + 𝜑′(𝑦)

= −2𝑦√𝑥2 − 𝑦2, ⇒ 𝜑′(𝑦) = 0. 

By integrating the last expression, we find the function 𝜑(𝑦) = 𝐶, where 𝐶 is a 

constant. 

Thus, the general solution of the given differential equation has the form: 

𝑥 +
2

3
(𝑥2 − 𝑦2)

3
2 + 𝐶 = 0. 

 

6. Using an Integrating Factor 

 Consider a differential equation of type 

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0, 

where 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are functions of two variables 𝑥 and 𝑦 continuous in a 

certain region 𝐷. If 

∂𝑄

∂𝑥
≠

∂𝑃

∂𝑦
, 

the equation is not exact. However, we can try to find so-called integrating factor, 

which is a function 𝜇(𝑥, 𝑦) such that the equation becomes exact after multiplication 

by this factor. If so, then the relationship 



∂(𝜇𝑄(𝑥, 𝑦))

∂𝑥
=

∂(𝜇𝑃(𝑥, 𝑦))

∂𝑦
 

is valid. This condition can be written in the form: 

𝑄
∂𝜇

∂𝑥
+ 𝜇

∂𝑄

∂𝑥
= 𝑃

∂𝜇

∂𝑦
+ 𝜇

∂𝑃

∂𝑦
,⇒ 𝑄

∂𝜇

∂𝑥
− 𝑃

∂𝜇

∂𝑦
= 𝜇(

∂𝑃

∂𝑦
−

∂𝑄

∂𝑥
). 

The last expression is the partial differential equation of first order that defines the 

integrating factor 𝜇(𝑥, 𝑦). 

 

 Example 1. Solve the differential equation (𝑥 − cos 𝑦)𝑑𝑥 − sin 𝑦𝑑𝑦 = 0 

If we test this equation for exactness, we find that 

∂𝑄

∂𝑥
=

∂

∂𝑥
(− sin 𝑦) = 0,

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑥 − cos𝑦) = sin𝑦. 

Hence, this equation is not exact. We try to construct an integrating factor. Notice that  

∂𝑃

∂𝑦
−

∂𝑄

∂𝑥
= sin𝑦, 

and the expression 
1

𝑄
(
∂𝑃

∂𝑦
−

∂𝑄

∂𝑥
) =

sin𝑦

(−sin𝑦)
= −1 is constant. 

Hence, we can find the integrating factor as a function 𝜇(𝑥) by solving the following 

equation: 

1

𝜇

𝑑𝜇

𝑑𝑥
= −1,⇒ ∫

𝑑𝜇

𝜇
= −∫ 𝑑𝑥,⇒ ln|𝜇| = −𝑥,⇒ 𝜇 = 𝑒±𝑥. 

We choose the function 𝜇 = 𝑒−𝑥 and make sure that the equation becomes exact after 

multiplication by 𝜇 = 𝑒−𝑥 

𝑒−𝑥(𝑥 − cos𝑦)𝑑𝑥 − 𝑒−𝑥sin𝑦𝑑𝑦 = 0 

So, 

∂𝑄

∂𝑥
=

∂

∂𝑥
(−𝑒−𝑥 sin 𝑦) = 𝑒−𝑥 sin 𝑦 ,

∂𝑃

∂𝑦
=

∂

∂
(𝑒−𝑥(𝑥 − cos𝑦)) = 𝑒−𝑥sin𝑦. 

Its general solution can be found from the system of equations: 

{

∂𝑢

∂𝑥
= 𝑒−𝑥(𝑥 − cos𝑦)

∂𝑢

∂𝑦
= −𝑒−𝑥sin𝑦

. 

Here it is more convenient to integrate the second equation with respect to 𝑦: 

𝑢(𝑥, 𝑦) = ∫ (−𝑒−𝑥sin𝑦)𝑑𝑦 = 𝑒−𝑥cos𝑦 + 𝜓(𝑥). 



Substituting this in the first equation, we have 

∂𝑢

∂𝑥
=

∂

∂𝑥
[𝑒−𝑥cos𝑦 + 𝜓(𝑥)] = 𝑒−𝑥(𝑥 − cos𝑦),⇒ −𝑒−𝑥cos𝑦 + 𝜓′(𝑥)

= 𝑥𝑒−𝑥 − 𝑒−𝑥cos𝑦,⇒ 𝜓′(𝑥) = 𝑥𝑒−𝑥. 

Integrating by parts gives: 

𝜓(𝑥) = ∫ 𝑥𝑒−𝑥𝑑𝑥 = [

𝑢 = 𝑥
𝑣′ = 𝑒−𝑥

𝑢′ = 1
𝑣 = −𝑒−𝑥

] = −𝑥𝑒−𝑥 − ∫ (−𝑒−𝑥)𝑑𝑥 = −𝑥𝑒−𝑥 + ∫ 𝑒−𝑥𝑑𝑥

= −𝑥𝑒−𝑥 − 𝑒−𝑥. 

Thus, the general solution of the equation is given by 

𝑒−𝑥 cos 𝑦 − 𝑥𝑒−𝑥 − 𝑒−𝑥 = 𝐶or𝑒−𝑥(cos𝑦 − 𝑥 − 1) = 𝐶, 

where 𝐶 is an arbitrary real number. 

 

 Example 2. Solve the differential equation (𝑥𝑦 + 1)𝑑𝑥 + 𝑥2𝑑𝑦 = 0 

First of all we check this equation for exactness: 

∂𝑄

∂𝑥
=

∂

∂𝑥
(𝑥2) = 2𝑥 ≠

∂𝑃

∂𝑦
=

∂

∂𝑦
(𝑥𝑦 + 1) = 𝑥. 

The partial derivatives are not equal to each other. Therefore, this equation is not exact. 

Calculate the difference of the derivatives: 

∂𝑃

∂𝑦
−

∂𝑄

∂𝑥
= 𝑥 − 2𝑥 = −𝑥. 

Now we try to use the integrating factor in the form 𝑧 = 𝑥𝑦. Here we have 

∂𝑧

∂𝑥
= 𝑦,

∂𝑧

∂𝑦
= 𝑥. 

Then, 

𝑄
∂𝑧

∂𝑥
− 𝑃

∂𝑧

∂𝑦
= 𝑥2 ⋅ 𝑦 − (𝑥𝑦 + 1) ⋅ 𝑥 = 𝑥2𝑦 − 𝑥2𝑦 − 𝑥 = −𝑥, 

and hence we get 

1

𝜇

𝑑𝜇

𝑑𝑧
=

∂𝑃
∂𝑦

−
∂𝑄
∂𝑥

𝑄
∂𝑧
∂𝑥

− 𝑃
∂𝑧
∂𝑦

=
−𝑥

−𝑥
= 1. 

We see that the integrating factor depends only on 𝑧:  

𝜇(𝑥, 𝑦) = 𝜇(𝑧) = 𝜇(𝑥𝑦). 



We can find it by integrating the last equation: 

1

𝜇

𝑑𝜇

𝑑𝑧
= 1,⇒ ∫

𝑑𝜇

𝜇
= ∫ 𝑑𝑧,⇒ ln|𝜇| = 𝑧,⇒ 𝜇 = 𝑒±𝑧 = 𝑒±𝑥𝑦 . 

By choosing the function 𝜇 = 𝑒𝑥𝑦 we can convert the original differential equation 

into exact: 

(𝑥𝑦 + 1)𝑒𝑥𝑦𝑑𝑥 + 𝑥2𝑒𝑥𝑦𝑑𝑦 = 0. 

Check this using again the test for exactness: 

∂𝑄

∂𝑥
=

∂

∂𝑥
[𝑥2𝑒𝑥𝑦] = 2𝑥𝑒𝑥𝑦 + 𝑥2𝑦𝑒𝑥𝑦 , 

∂𝑃

∂𝑦
=

∂

∂𝑦
[(𝑥𝑦 + 1)𝑒𝑥𝑦] = 𝑥𝑒𝑥𝑦 + (𝑥𝑦 + 1)𝑥𝑒𝑥𝑦 = 𝑥𝑒𝑥𝑦 + 𝑥2𝑦𝑒𝑥𝑦 + 𝑥𝑒𝑥𝑦

= 2𝑥𝑒𝑥𝑦 + 𝑥2𝑦𝑒𝑥𝑦 . 

As one can see, now this equation is exact. We find its general solution form the system 

of equations: 

{

∂𝑢

∂𝑥
= (𝑥𝑦 + 1)𝑒𝑥𝑦

∂𝑢

∂𝑦
= 𝑥2𝑒𝑥𝑦

. 

Integrate the second equation with respect to the variable y (considering x as a 

constant): 

𝑢(𝑥, 𝑦) = ∫ 𝑥2𝑒𝑥𝑦𝑑𝑦 = 𝑥2∫ 𝑒𝑥𝑦𝑑𝑦 = 𝑥2 ⋅
1

𝑥
𝑒𝑥𝑦 + 𝜓(𝑥) = 𝑥𝑒𝑥𝑦 + 𝜓(𝑥). 

Substitute this in the first equation of the system to get: 

∂𝑢

∂𝑥
=

∂

∂𝑥
[𝑥𝑒𝑥𝑦 + 𝜓(𝑥)] = (𝑥𝑦 + 1)𝑒𝑥𝑦 , ⇒ 1 ⋅ 𝑒𝑥𝑦 + 𝑥𝑦𝑒𝑥𝑦 + 𝜓′(𝑥)

= (𝑥𝑦 + 1)𝑒𝑥𝑦, ⇒ (𝑥𝑦 + 1)𝑒𝑥𝑦 + 𝜓′(𝑥) = (𝑥𝑦 + 1)𝑒𝑥𝑦 ,⇒ 𝜓′(𝑥) = 0,

⇒ 𝜓(𝑥) = 𝐶. 

Hence, the general solution of the given differential equation is written in the form: 

𝑥𝑒𝑥𝑦 + 𝐶 = 0, 

where 𝐶 is an arbitrary real number. 

  




