
5. Higher Order Ordinary Differential Equations  

5.1 Prelude to Higher Order Differential Equations 

In the previous classes we looked at first order differential equations. We turn 

now to ODEs of order two and higher. In the first three sections we examine some of 

the underlying theory of higher order differential equations. Then, just as we did in the 

last chapter we will look at some special cases of higher order differential equations 

that we can solve. Unlike the previous chapter however, we are going to have to be 

even more restrictive as to the kinds of differential equations that we’ll look at. This 

will be required in order for us to actually be able to solve them.  

Definition. The differential equation of the nth order in the general case has the 

form: 

  𝐹(𝑥; 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥), … , 𝑦(𝑛)(𝑥)) = 0, (1) 

where 𝐹 is a continuous function of the specified arguments: an unknown function of 

one real or complex variable 𝑥, its derivatives. 

Note: Recall that the order of a differential equation is the highest derivative that 

appears in the equation. 

 In some cases, it is possible to solve the nth order differential equation (1) for 

the highest derivative such that  

  𝑦(𝑛)(𝑥) = 𝑓(𝑥; 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥), … , 𝑦(𝑛−1)(𝑥)) (2) 

Definition. A solution to a differential equation is a function 𝑦 = 𝑓(𝑥) that 

satisfies the differential equation when 𝑓(𝑥) and its derivatives are substituted into the 

equation. 

If we try to solve the differential equation, and if everything goes well, then you 

will end up with a formula for the general solution1: 

  𝑦(𝑥) = 𝑦(𝑥; 𝐶1, 𝐶2, … , 𝐶𝑛) (3) 

which contains a number of constants 𝐶1, 𝐶2, … , 𝐶𝑛 (the number of them corresponds 

to the order of differential equation).  

Theorem (The Existence and Uniqueness Theorem) Suppose 𝑥0 is a given 

“initial point” 𝑥 =  𝑥0, and suppose 𝑎0, 𝑎1, ... , 𝑎𝑛−1 are given constants. Then there 

                                                 

1  If we can show that there actually aren’t any other solutions than the ones we 

found (i.e. your formula captures all solutions to the differential equation), then that 

solution is the general solution. 

 



is exactly one solution to the differential equation (2) which satisfies the initial 

conditions: 

  𝑦(𝑥0) = 𝑎0, 𝑦′(𝑥0) = 𝑎1, 𝑦′′(𝑥0) = 𝑎2, … , 𝑦(𝑛−1)(𝑥0) = 𝑎𝑛−1 (4) 

Note that for an nth order equation we can prescribe exactly n initial values. 

 One way to test if a solution is the general solution is to see if it is possible to 

choose the constants 𝐶1, 𝐶2, … , 𝐶𝑛 so that the solution satisfies the initial conditions 

(4). This means that we can compute the derivatives 𝑦′(𝑥), 𝑦′′(𝑥), … , 𝑦(𝑛−1)(𝑥) of the 

solution and then check them and the solution itself if we can solve the equations: 

  𝑦(𝑥0; 𝐶1, 𝐶2, … , 𝐶𝑛) = 𝑎0,  

  𝑦′(𝑥0; 𝐶1, 𝐶2, … , 𝐶𝑛) = 𝑎1,  

  𝑦′′(𝑥0; 𝐶1, 𝐶2, … , 𝐶𝑛) = 𝑎2,  

  … ,  

  𝑦(𝑛−1)(𝑥0; 𝐶1, 𝐶2, … , 𝐶𝑛) = 𝑎𝑛−1 

for the constants 𝐶1, 𝐶2, … , 𝐶𝑛.  

Note that we have n equations with n unknowns here. We’ll do this for linear equations 

below. 

5.2 Cases of Reduction of Order 

 The order of the equation of nth order can be reduced if it does not contain some 

of the arguments, or has a certain symmetry. Below we consider in detail some cases 

of reducing the order with respect to the differential equations of arbitrary order n. 

 Case 1.  Equation of Type 𝐹(𝑥, 𝑦(𝑛)) = 0 

If the differential equation does not contain the original function and its derivatives, 

one can say the differential equation can be solved in quadratures, i.e. its general 

solution is expressed through one or more integrals. 

This equation can be transformed into an explicit form for the derivative 𝑦(𝑛), i.e. 

expressed as 

𝑦(𝑛)(𝑥) = 𝑓(𝑥) 

The original function 𝑦(𝑥) can be found by n-fold integration, i.e. We integrate this 

equation n times consecutively in the range from 𝑥0 to 𝑥. As a result, we obtain the 

following expressions for the derivatives and the function 𝑦(𝑥). 

 Example 1. Find the general solution of the differential equation 𝑦′′′ = 𝑒2𝑥 which 

satisfies the initial conditions: 𝑦(0) = 1, 𝑦′(0) = −1, 𝑦′′(0) = 0 

Since the right hand side of the third order differential equation is a function of the 



independent variable 𝑥 only, the original function 𝑦(𝑥) can be found by 3-fold 

integration as follows: 

𝑦′′(𝑥) = ∫ 𝑒2𝑥 𝑑𝑥 =
1

2
𝑒2𝑥 + 𝐶1 

Then, 

𝑦′(𝑥) =
1

2
∫ 𝑒2𝑥 𝑑𝑥 + ∫ 𝐶1 𝑑𝑥 =

1

4
𝑒2𝑥 + 𝐶1𝑥 + 𝐶2 

Finally, the general solution is presented in the form: 

𝑦(𝑥) =
1

4
∫ 𝑒2𝑥 𝑑𝑥 + ∫ 𝐶1𝑥 𝑑𝑥 + ∫ 𝐶2 𝑑𝑥 =

1

8
𝑒2𝑥 + 𝐶1

𝑥2

2
+ 𝐶2𝑥 + 𝐶3 

Given the initial conditions we can find the constants as follows: 

𝑦′′(0) =
1

2
𝑒2∙0 + 𝐶1 = 0  𝐶1 = −

1

2
 

𝑦′(0) =
1

4
𝑒2∙0 + 𝐶1 ∙ 0 + 𝐶2 = −1  𝐶2 = −1 −

1

4
= −

5

4
 

𝑦(0) =
1

8
𝑒2∙0 + 𝐶1

02

2
+ 𝐶2 ∙ 0 + 𝐶3 = 1  𝐶3 = 1 −

1

8
=

7

8
 

So, a particular solution at the given initial conditions has a form: 

𝑦(𝑥) =
1

8
𝑒2𝑥 −

𝑥2

4
−

5

4
𝑥 +

7

8
 

 

 Case 2.  Equation of Type 𝐹(𝑥; 𝑦(𝑘)(𝑥), 𝑦(𝑘+1)(𝑥), … , 𝑦(𝑛)(𝑥)) = 0 

If the differential equation does not contain the original function and its 𝑘 − 1 first 

derivatives, then by replacing  

𝑦(𝑘) = 𝑝(𝑥) 

the order of this equation is reduced by 𝑘  units. As a result, the original equation takes 

the form 

𝐹(𝑥, 𝑝, 𝑝′, … 𝑝(𝑛−𝑘)) = 0. 

From this equation (if possible) we can determine the function 𝑝(𝑥). The original 

function 𝑦(𝑥) can be found by k-fold integration of the replacement, i.e. is solved by 

the method set out in paragraph 1 above. 

 Note: If the differential equation does not contain only the original function 𝑦(𝑥), 

that is has the form  

𝐹(𝑥, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0, 

then its order can be reduced by one by the substitution 𝑦′ = 𝑝(𝑥). 



 Example 2. Find the general solution of the differential equation 𝑦′′′ +
2

𝑥
𝑦′′ = 0. 

This equation does not contain the function 𝑦 and its first derivative 𝑦′. So we make 

the change of variable 

𝑦′′ = 𝑝(𝑥). 

We obtain the first-order equation with separable variables: 

𝑝′ +
2

𝑥
𝑝 = 0. 

Integrating, we find the solution: 

𝑑𝑝

𝑑𝑥
= −

2

𝑥
𝑝, ⇒

𝑑𝑝

𝑝
= −

2

𝑥
𝑑𝑥, ⇒ ∫

𝑑𝑝

𝑝
= −2∫

𝑑𝑥

𝑥
, ⇒ 

ln |𝑝| = −2ln |𝑥| + ln 𝐶1, ⇒ 𝑝 =
𝐶1

𝑥2
. 

Returning to the original variable 𝑦, we obtain another differential equation: 

𝑦′′ =
𝐶1

𝑥2
. 

Integrating twice, we find the general solution of the original equation: 

𝑦′ = −
𝐶1

𝑥
+ 𝐶2, 𝑦 = −𝐶1ln |𝑥| + 𝐶2𝑥 + 𝐶3. 

 Example 3. Find a particular solution of the equation 𝑦𝐼𝑉 − 𝑦′′′ = 1 with initial 

conditions: 𝑥0 = 0, 𝑦0 = 𝑦0
′ = 𝑦0

′′ = 𝑦0
′′′ = 0.  

This equation is of type 2. We introduce an intermediate variable 𝑧 = 𝑦′′′. As a result 

we get a linear  first order equation: 

𝑧′ − 𝑧 = 1. 

Its general solution is given by the function 

𝑧 = 𝐶1𝑒𝑥 − 1. 

Hence, we have  

𝑦′′′ = 𝐶1𝑒𝑥 − 1, 

that is the equation is converted to type 1. It can be solved by successive integration: 

𝑦′′ = 𝐶1𝑒𝑥 − 𝑥 + 𝐶2,  𝑦′ = 𝐶1𝑒𝑥 −
𝑥2

2
+ 𝐶2𝑥 + 𝐶3,  𝑦 = 𝐶1𝑒𝑥 −

𝑥3

6
+

𝐶2𝑥2

2
+

𝐶3𝑥 + 𝐶4. 

The coefficients 𝐶𝑖  are determined from the initial conditions: 



{

0 = 𝐶1 − 1
0 = 𝐶1 + 𝐶2

0 = 𝐶1 + 𝐶3

0 = 𝐶1 + 𝐶4

, ⇒ {

𝐶1 = 1
𝐶2 = −1
𝐶3 = −1
𝐶4 = −1

. 

Thus, a particular solution for the given initial conditions is expressed by the formula 

𝑦(𝑥) = 𝑒𝑥 −
𝑥3

6
−

𝑥2

2
− 𝑥 − 1. 

 Example 4. Find the general solution of the equation 5(𝑦′′′)2 − 3𝑦′′𝑦𝐼𝑉 = 0. 

This equation does not contain the function 𝑦 and its first derivative 𝑦′. We make the 

following change: 

𝑦′′ = 𝑝(𝑥). 

As a result, we obtain the second-order equation: 

5(𝑝′)2 − 3𝑝𝑝′′ = 0. 

Since this equation does not contain the independent variable 𝑥, then we put 𝑝′ = 𝑧(𝑝). 

Hence, 

𝑝′′ =
𝑑

𝑑𝑥
(𝑝′) =

𝑑

𝑑𝑝
(𝑝′)

𝑑𝑝

𝑑𝑥
=

𝑑𝑧

𝑑𝑝
⋅ 𝑧 = 𝑧𝑧′. 

Then the equation can be written as 

5𝑧2 − 3𝑝𝑧𝑧′ = 0, ⇒ 𝑧(5𝑧 − 3𝑝𝑧′) = 0. 

There are two solutions: One solution to this equation is given by  

𝑧 = 0, ⇒ 𝑝′ = 0, ⇒ 𝑝 = 𝐶1, ⇒ 𝑦′′ = 𝐶1, ⇒ 𝑦′ = 𝐶1𝑥 + 𝐶2, ⇒ 𝑦 = 𝐶1𝑥2 + 𝐶2𝑥 + 𝐶3. 

It is evident that this solution describes a set of parabolas with arbitrary coefficients 

𝐶1, 𝐶2, 𝐶3. 

Now we find the second solution of the differential equation: 

5𝑧 − 3𝑝𝑧′ = 0, ⇒ 3𝑝𝑧′ = 5𝑧, ⇒
𝑑𝑧

𝑧
=

5

3

𝑑𝑝

𝑝
, ⇒ ∫

𝑑𝑧

𝑧
=

5

3
∫

𝑑𝑝

𝑝
, ⇒ 

ln |𝑧| =
5

3
ln |𝑝| + ln 𝐶4, ⇒ 𝑧 = 𝐶4𝑝

5
3, ⇒ 𝑝′ = 𝐶4𝑝

5
3. 

The resulting first-order equation is easily integrated: 

∫ 𝑝−
5
3𝑑𝑝 = 𝐶4∫ 𝑑𝑥, ⇒ −

3𝑝−
2
3

2
= 𝐶4𝑥 + 𝐶5. 

Renaming the constants 𝐶4, 𝐶5, the solution can be written as 

𝑝 = −(𝐶4𝑥 + 𝐶5)−
3
2. 



Thus, to determine the second solution, we have the following equation: 

𝑦′′ = −(𝐶4𝑥 + 𝐶5)−
3
2. 

Integrating twice, we find: 

𝑦′ = 2(𝐶4𝑥 + 𝐶5)−
1
2 + 𝐶6, ⇒ 𝑦 = (𝐶4𝑥 + 𝐶5)

1
2 + 𝐶6𝑥 + 𝐶7, ⇒ 

𝑦 = √𝐶4𝑥 + 𝐶5 + 𝐶6𝑥 + 𝐶7. 

Thus, the general solution of the original equation has two families of functions: 

𝑦1 = 𝐶1𝑥2 + 𝐶2𝑥 + 𝐶3, 

𝑦2 = √𝐶4𝑥 + 𝐶5 + 𝐶6𝑥 + 𝐶7, 

where 𝐶1, 𝐶2, … , 𝐶7 are arbitrary numbers. 

 

 Case 3.  Equation of Type 𝐹(𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0 

Here the left side does not contain the independent variable 𝑥. The order of the equation 

can be reduced by the substitution 𝑦 = 𝑝(𝑦). The derivatives are defined through the 

new variables 𝑦 and 𝑝 as follows: 

 𝑦′ =
𝑑𝑦

𝑑𝑥
= 𝑝, 

 𝑦′′ =
𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) =

𝑑𝑝

𝑑𝑥
=

𝑑𝑝

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝑝

𝑑𝑝

𝑑𝑦
, 

 𝑦′′′ =
𝑑3𝑦

𝑑𝑥3
=

𝑑

𝑑𝑥
(𝑝

𝑑𝑝

𝑑𝑦
) =

𝑑

𝑑𝑦
(𝑝

𝑑𝑝

𝑑𝑦
)

𝑑𝑦

𝑑𝑥
= [𝑝

𝑑2𝑝

𝑑𝑦2
+ (

𝑑𝑝

𝑑𝑦
)2]𝑝 = 𝑝2 𝑑2𝑝

𝑑𝑦2
+ 𝑝(

𝑑𝑝

𝑑𝑦
)2, 

 … 

It is seen that substitution of the derivatives into the original equation gives a new 

differential equation of the (𝑛 − 1)th order. Solving this equation, we can determine 

the function 𝑝(𝑦) and then find 𝑦(𝑥). 

 Example 5. Find the general solution of the equation 𝑦𝑦′′ − (𝑦′)2 − 4𝑦𝑦′ = 0. 

This equation does not contain explicitly the variable 𝑥. We make the following 

substitutions: 

𝑦′ = 𝑝(𝑦), 𝑦′′ = 𝑝
𝑑𝑝

𝑑𝑦
 

As a result, we obtain the first-order equation: 

𝑦𝑝
𝑑𝑝

𝑑𝑦
− 𝑝2 − 4𝑦𝑝 = 0   𝑝 (𝑦

𝑑𝑝

𝑑𝑦
− 𝑝 − 4𝑦 = 0) = 0  



{

𝑝 = 0

𝑦
𝑑𝑝

𝑑𝑦
− 𝑝 − 4𝑦 = 0

 {

𝑦′ = 0
𝑑𝑝

𝑑𝑦
= 4 +

𝑝

𝑦
,   𝑦 ≠ 0

There are two solutions: one solution to this equation is given by 𝑦 = 𝐶1, which may

include a case of zero-solution. The second equation is a first-order homogeneous 

equation. Then, substituting 𝑝 = 𝑢(𝑦)𝑦 and 
𝑑𝑝

𝑑𝑦
=

𝑑𝑢

𝑑𝑦
𝑦 + 𝑢 into the equation, we obtain 

𝑑𝑢

𝑑𝑦
𝑦 + 𝑢 = 4 +

𝑢(𝑦)𝑦

𝑦
  

𝑑𝑢

𝑑𝑦
𝑦 = 4    𝑑𝑢 = 4

𝑑𝑦

𝑦
  

∫ 𝑑𝑢 = 4 ∫
𝑑𝑦

𝑦
 𝑢 = 4 ln|𝐶2𝑦|

Then the equation can be rewritten as 

𝑝

𝑦
= 4 ln|𝐶2𝑦|    

𝑑𝑦

𝑑𝑥
= 4𝑦 ln|𝐶2𝑦|    

𝑑𝑦

𝑦 ln|𝐶2𝑦|
= 4𝑑𝑥   

∫
𝑑𝑦

= 4 ∫ 𝑑𝑥     ln ln|𝐶2𝑦| = 4𝑥 + 𝐶3𝑦 ln|𝐶2𝑦|

Thus, the general solution of the original equation has two families of functions: 

𝑦 = 𝐶1,

ln ln|𝐶2𝑦| = 4𝑥 + 𝐶3,

where 𝐶1, 𝐶2, 𝐶3 are arbitrary numbers.

Case 4.  Homogeneous Equation 𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0
The equation 𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0 is called homogeneous with respect to the 
arguments 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛) if the following identity holds:

𝐹(𝑥, 𝑘𝑦, 𝑘𝑦′, 𝑘𝑦′′, … , 𝑘𝑦(𝑛)) ≡ 𝑘𝑚𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)).

The order of this equation can be reduced by one using the substitution 

𝑦 = 𝑒∫ 𝑧𝑑𝑥,

where 𝑧(𝑥) is a new unknown function. After 𝑧(𝑥) is determined, we can find the 

original function 𝑦(𝑥) by integration using the formula 

𝑦(𝑥) = 𝐶1𝑒∫ 𝑧𝑑𝑥,

where 𝐶1 is an arbitrary number.


