
6. Higher Order Linear Differential Equations

An nth order differential equation is said to be linear if it can be written in the 

form 

𝑃0(𝑥)𝑦(𝑛) + 𝑃1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑃𝑛(𝑥)𝑦 = 𝐹(𝑥),

where 𝑃0(𝑥), 𝑃1(𝑥),…, 𝑃𝑛(𝑥), 𝐹(𝑥) are Variable Coefficients which are continuous

functions on (𝑎, 𝑏)  and  𝑃0(𝑥)  has no zeros on  (𝑎, 𝑏).

For simplicity, we can abbreviate the left side of Equation  by  𝐿𝑦, that is, 

𝐿𝑦 = 𝑃0𝑦(𝑛) + 𝑃1𝑦(𝑛−1) + ⋯ + 𝑃𝑛𝑦

Here 𝐿(𝐷)(… ) = 𝑃0 ∙ 𝐷(𝑛)(… ) + 𝑃1 ∙ 𝐷(𝑛−1)(… ) + ⋯ + 𝑃𝑛−1 ∙ 𝐷(… ) + 𝑃𝑛(… ) is



called the differential polynomial, where 𝐷 is a differential operator. The simplest 

differential operator 𝐷 acting on a function 𝑦, “returns” the first derivative of this 

function: 𝐷𝑦(𝑥) = 𝑦′(𝑥).

So, 𝐿(𝐷) is a generalization of the operation of differentiation, multiplication by the 

coefficients 𝑃𝑖(𝑥) and addition acting on a function 𝑦. In other words, the operator 𝐿

is an algebraic polynomial, in which the differential operator plays the role of a 

variable. 

The operator L is linear, and therefore has the following properties: 

1. 𝐿[𝑦1(𝑥) + 𝑦2(𝑥) + ⋯ + 𝑦𝑛(𝑥)] =  𝐿[𝑦1(𝑥)] + 𝐿[𝑦2(𝑥)] + ⋯ + 𝐿[𝑦𝑛(𝑥)],

2. 𝐿[𝐶𝑦(𝑥)] =  𝐶𝐿[𝑦(𝑥)]

Therefore, we can write a linear nonhomogeneous differential equation in the 

form: 

𝐿𝑦 = 𝐹(𝑥) 

For convenience, we may also consider linear nonhomogeneous differential 

equations written in a normal form: 

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥),

where 𝑎𝑖 = 𝑃𝑖/𝑃0, 𝑖 = 1,2, … , 𝑛 and 𝑓(𝑥) = 𝐹(𝑥)/𝑃0.

Theorem. Suppose  𝐿𝑦 = 𝐹  is normal on  (𝑎, 𝑏), let  𝑥0  be a point in  (𝑎, 𝑏),

and let  𝑘0 ,  𝑘1 , …,  𝑘𝑛−1 be arbitrary real numbers.  Then the initial value problem

𝐿𝑦 = 𝐹, 𝑦(𝑥0) = 𝑘0, 𝑦′(𝑥0) = 𝑘1, … , 𝑦(𝑛−1)(𝑥0) = 𝑘𝑛−1

has a unique solution on (𝑎, 𝑏). 

6.1 Higher Order Linear Homogeneous Differential Equations 

Linear differential equations with a zero right hand part 𝑓(𝑥) = 0 

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 0

are called as a linear homogeneous differential equation.  

Since 𝑦 ≡ 0 is obviously a solution of  𝐿𝑦 = 0 , we call it the trivial solution. Any 

other solution is nontrivial.  

It’s easy to show that if  𝑦1,𝑦2, …, 𝑦𝑛 are solutions of  𝐿𝑦 = 0  on  (𝑎, 𝑏), then

any their linear combination is a solution as well, that is 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛

where 𝐶1,𝐶2, …, 𝐶𝑛 are constants.



 We say that {𝑦1,𝑦2, …, 𝑦𝑛} is a fundamental set of solutions of  𝐿𝑦 = 0 on (𝑎, 𝑏) 

if every solution of 𝐿𝑦 = 0 on (𝑎, 𝑏) can be written as a linear combination of {𝑦1,𝑦2, 

…, 𝑦𝑛}.  

 In this case we say that 𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛  is the general solution of  

𝐿𝑦 = 0 on  (𝑎, 𝑏). 

 It can be shown that if the equation 𝐿𝑦 = 0  exists on (𝑎, 𝑏) then it has infinitely 

many fundamental sets of solutions on (𝑎, 𝑏). The next definition will help to identify 

fundamental sets of solutions of 𝐿𝑦 = 0 . 

 Definition. We say that {𝑦1,𝑦2, …, 𝑦𝑛} is linearly independent on (𝑎, 𝑏) if the 

only constants  𝐶1,𝐶2, …, 𝐶𝑛 such that 

𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) + ⋯ + 𝐶𝑛𝑦𝑛(𝑥) = 0,   𝑎 < 𝑥 < 𝑏, 

are 𝐶1=𝐶2= …= 𝐶𝑛=0. If this equality holds for some set of constants 𝐶1,𝐶2, …, 𝐶𝑛 

that are not all zero, then {𝑦1,𝑦2, …, 𝑦𝑛} is linearly dependent on (𝑎, 𝑏).  

 

 Theorem. If  𝐿𝑦 = 0 exists on  (𝑎, 𝑏), then a set {𝑦1,𝑦2, …, 𝑦𝑛}  of n solutions of 

𝐿𝑦 = 0  on (𝑎, 𝑏) is a fundamental set if and only if it is linearly independent on (𝑎, 𝑏). 

 

 To test functions for linear independence it is convenient to use the Wronskian. It 

allows testing n solutions {𝑦1,𝑦2, …, 𝑦𝑛} of any  nth order equation 𝐿𝑦 = 0 for linear 

independence on an interval (𝑎, 𝑏) on which the equation exists. Thus, if  𝐶1,𝐶2, …, 

𝐶𝑛 are constants such that  

𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) + ⋯ + 𝐶𝑛𝑦𝑛(𝑥) = 0,   𝑎 < 𝑥 < 𝑏, 

then differentiating  𝑛 − 1  times leads to the  𝑛 × 𝑛  system of equations 

𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) + ⋯ +𝑐𝑛𝑦𝑛(𝑥) = 0

𝑐1𝑦1
′ (𝑥) + 𝑐2𝑦2

′ (𝑥) + ⋯ +𝑐𝑛𝑦𝑛
′ (𝑥) = 0

⋮ ⋱ ⋮

𝑐1𝑦1
(𝑛−1)

(𝑥) + 𝑐2𝑦2
(𝑛−1)

(𝑥) + ⋯ +𝑐𝑛𝑦𝑛
(𝑛−1)

(𝑥) = 0

 

for 𝐶1,𝐶2, …, 𝐶𝑛. For a fixed 𝑥 , the determinant of this system is 

𝑊(𝑥) = ||

𝑦1(𝑥) 𝑦2(𝑥) ⋯ 𝑦𝑛(𝑥)

𝑦1
′ (𝑥) 𝑦2

′ (𝑥) ⋯ 𝑦𝑛
′ (𝑥)

⋮ ⋮ ⋱ ⋮

𝑦1
(𝑛−1)

(𝑥) 𝑦2
(𝑛−1)

(𝑥) ⋯ 𝑦𝑛
(𝑛−1)

(𝑥)

|| 

This determinant is called the Wronskian of {𝑦1,𝑦2, …, 𝑦𝑛}.  

 If 𝑊(𝑥) ≠ 0 for some 𝑥 in (𝑎, 𝑏) then the system of equations has only the trivial 

solution 𝐶1=𝐶2= …= 𝐶𝑛 = 0, and the Theorem implies that 



𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛 

is the general solution of  𝐿𝑦 = 0  on  (𝑎, 𝑏). Otherwise, if 𝑊(𝑥) = 0 then the 

functions {𝑦1,𝑦2, …, 𝑦𝑛} are linearly dependent on the interval (𝑎, 𝑏). 

 Since the fundamental system of solutions uniquely defines a linear homogeneous 

differential equation. In particular, the fundamental system {𝑦1,𝑦2,𝑦3} defines a third-

order equation, which can be expressed through determinant as follows: 

|

𝑦1 𝑦2 𝑦3 𝑦

𝑦1
′ 𝑦2

′ 𝑦3
′ 𝑦′

𝑦1
′′ 𝑦2

′′ 𝑦3
′′ 𝑦′′

𝑦1
′′′ 𝑦2

′′′ 𝑦3
′′′ 𝑦′′′

| = 0. 

 Analogously, for the differential equation of the nth order one can write: 

|

𝑦1 𝑦2 ⋯ 𝑦𝑛 𝑦

𝑦1
′ 𝑦2

′ ⋯ 𝑦𝑛
′ 𝑦′

⋯ ⋯ ⋯ ⋯ ⋯

𝑦1
(𝑛)

𝑦2
(𝑛)

⋯ 𝑦𝑛
(𝑛)

𝑦(𝑛)

| = 0. 

 

 Example 1. Let 𝑦1 = 𝑥2, 𝑦2 = 𝑥3 and 𝑦3 =
1

𝑥
 be the solutions of 𝑥3𝑦‴ − 𝑥2𝑦″ −

2𝑥𝑦′ + 6𝑦 = 0. Calculate the Wronskian of {𝑦1,𝑦2,𝑦3}? 

If 𝑥 ≠ 0, then 

𝑊(𝑥) =
|

|
𝑥2 𝑥3

1

𝑥

2𝑥 3𝑥2 −
1

𝑥2

2 6𝑥
2

𝑥3

|

|
= 2𝑥3

|

|
1 𝑥

1

𝑥3

2 3𝑥 −
1

𝑥3

1 3𝑥
1

𝑥3

|

|
 

Adding the second row of the last determinant to the first and third rows yields 

𝑊(𝑥) = 2𝑥3 |

3 4𝑥 0

2 3𝑥 −
1

𝑥3

3 6𝑥 0

| = 2𝑥3 (
1

𝑥3
) |

3 4𝑥
3 6𝑥

| = 12𝑥 

Therefore  𝑊(𝑥) ≠ 0  on  (−∞, 0)  and  (0, +∞). 

 Example 2. Show that the functions 𝑥, sin 𝑥, cos 𝑥 are linearly independent. 

We find the Wronskian matrix 𝑊(𝑥) for this system of functions: 



𝑊(𝑥) = |
𝑥 sin 𝑥 cos 𝑥
1 cos 𝑥 −sin 𝑥
0 −sin 𝑥 −cos 𝑥

| = 𝑥 |
cos 𝑥 −sin 𝑥

−sin 𝑥 −cos 𝑥
| − 1 ⋅ |

sin 𝑥 cos 𝑥
−sin 𝑥 −cos 𝑥

|

= 𝑥(−cos2𝑥 − sin2𝑥) − 1 ⋅ (−sin 𝑥cos 𝑥 + sin 𝑥cos 𝑥) = −𝑥 ≠ 0.

Since the Wronskian is not identically zero, it follows that the given system of 

functions is linearly independent. 

Example 3. Make a differential equation, which is determined by the fundamental 

system of functions 1,𝑥2,𝑒𝑥.

This equation is written in terms of the determinant as follows: 

||

1 𝑥2 𝑒𝑥 𝑦

0 2𝑥 𝑒𝑥 𝑦′

0 2 𝑒𝑥 𝑦′′

0 0 𝑒𝑥 𝑦′′′

|| = 0, ⇒ 1 ⋅ |

2𝑥 𝑒𝑥 𝑦′

2 𝑒𝑥 𝑦′′

0 𝑒𝑥 𝑦′′′
| = 0,

⇒ 2𝑥(𝑒𝑥𝑦′′′ − 𝑒𝑥𝑦′′) − 2(𝑒𝑥𝑦′′′ − 𝑒𝑥𝑦′) = 0,

⇒ 2𝑥𝑒𝑥𝑦′′′ − 2𝑥𝑒𝑥𝑦′′′ − 2𝑒𝑥𝑦′′′ + 2𝑒𝑥𝑦′ = 0,

⇒ 2𝑒𝑥(𝑥𝑦′′′ − 𝑥𝑦′′ − 𝑦′′′ + 𝑦′) = 0,

⇒ (𝑥 − 1)𝑦′′′ − 𝑥𝑦′′ + 𝑦′ = 0.

Suppose that the functions 𝑦1,𝑦2, …, 𝑦𝑛  form a fundamental system of solutions

for a differential equations of nth order. Suppose that the point 𝑥0 belongs to the

interval (𝑎, 𝑏).  Then the Wronskian is determined by Liouville’s formula: 

𝑊(𝑥) = 𝑊(𝑥0)𝑒
− ∫ 𝑎1(𝑡)𝑑𝑡

𝑥

𝑥0 , 

where 𝑎1 is the coefficient of the derivative 𝑦(𝑛−1) in the linear normal differential

equation. For the general form of the linear differential equation, Liouville’s formula 

takes the form: 

𝑊(𝑥) = 𝑊(𝑥0)𝑒
− ∫

𝑃1(𝑡)
𝑃0(𝑡)

𝑑𝑡
𝑥

𝑥0 , 𝑃0(𝑡) ≠ 0, 𝑡 ∈ (𝑎, 𝑏).

Note: The order of a linear homogeneous equation 

𝐿𝑦(𝑥) = 𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 0
can be reduced by one by the substitution 𝑦′ = 𝑦𝑧. Unfortunately, usually such a 
substitution does not simplify the solution, because the new equation in the variable 𝑧 

becomes nonlinear.  

Note: If a particular solution 𝑦1 is known, then the order of the differential equation



 The next theorem generalizes the features of the solution. 

 Theorem. Suppose 𝐿𝑦 = 0 exists on (𝑎, 𝑏) and let 𝑦1,𝑦2, …, 𝑦𝑛 be n solutions of 

𝐿𝑦 = 0 on (𝑎, 𝑏). Then the following statements are equivalent; that is, they are either 

all true or all false: 

a. The general solution of 𝐿𝑦 = 0 on (𝑎, 𝑏) is 𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + ⋯ + 𝐶𝑛𝑦𝑛. 

b. {𝑦1,𝑦2, …, 𝑦𝑛} is a fundamental set of solutions of 𝐿𝑦 = 0 on (𝑎, 𝑏). 

c. {𝑦1,𝑦2, …, 𝑦𝑛} is linearly independent on (𝑎, 𝑏). 

d. The Wronskian of {𝑦1,𝑦2, …, 𝑦𝑛} is nonzero at some point in (𝑎, 𝑏). 

e. The Wronskian of {𝑦1,𝑦2, …, 𝑦𝑛} is nonzero at all points in (𝑎, 𝑏). 

 

 6.2 Higher Order Linear Homogeneous Differential Equations with Constant 

Coefficients 

 In this section we will be investigating homogeneous higher order linear 

differential equations with constant coefficients. Those equations allow relatively 

simple finding a fundamental set of solutions. If we know those solutions, then any 

linear combination of these solutions give us the general solution. 

 The linear homogeneous differential equation of the nth order with constant 

coefficients can be written as 

𝑦(𝑛)(𝑥) + 𝑎1𝑦(𝑛−1)(𝑥) + ⋯ + 𝑎𝑛−1𝑦′(𝑥) + 𝑎𝑛𝑦(𝑥) = 0, 

𝑎1, 𝑎2, …, 𝑎𝑛 are constants which may be real or complex. 

Using the linear differential operator 𝐿(𝐷), this equation can be represented as 

𝐿(𝐷)𝑦(𝑥) = 0, 

where 𝐿(𝐷) = 𝐷𝑛 + 𝑎1𝐷𝑛−1 + ⋯ + 𝑎𝑛−1𝐷 + 𝑎𝑛. 

 Since all the coefficients are constants, the solutions are probably going to be 

functions with derivatives that are constant multiples of themselves. We need all the 

terms to cancel out, and if taking a derivative introduces a term that is not a constant 

multiple of the original function, it is difficult to see how that term cancels out. 

Exponential functions have derivatives that are constant multiples of the original 

function, so let’s see what happens when we try a solution of the form 𝑦(𝑥) = 𝑒𝜆𝑥 , 

where λ (the lowercase Greek letter lambda) is some constant. 

Hence, if 𝑦(𝑥) = 𝑒𝜆𝑥 than 𝑦′(𝑥) = 𝜆𝑒𝜆𝑥, 𝑦′′(𝑥) = 𝜆2𝑒𝜆𝑥, …, 𝑦(𝑛)(𝑥) = 𝜆𝑛𝑒𝜆𝑥. 

Substituting these expressions into the equation, we get 

𝜆𝑛𝑒𝜆𝑥 + 𝑎1𝜆𝑛−1𝑒𝜆𝑥 + ⋯ + 𝑎𝑛−1𝜆𝑒𝜆𝑥 + 𝑎𝑛𝑒𝜆𝑥 = 0  

𝑒𝜆𝑥 ∙ (𝜆𝑛 + 𝑎1𝜆𝑛−1 + ⋯ + 𝑎𝑛−1𝜆 + 𝑎𝑛) = 0  

Since, 𝑒𝜆𝑥 does not equal to zero, we get 



𝜆𝑛 + 𝑎1𝜆𝑛−1 + ⋯ + 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0 

This algebraic equation  

𝐿(𝜆) = 𝜆𝑛 + 𝑎1𝜆𝑛−1 + ⋯ + 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0 

is called the characteristic equation of the differential equation. 

According to the fundamental theorem of algebra, a polynomial of degree n has exactly 

n roots, counting multiplicity. In this case the roots can be both real and complex (even 

if all the coefficients of 𝑎1, 𝑎2, …, 𝑎𝑛  are real). 

 Let us consider in more detail the different cases of the roots of the characteristic 

equation and the corresponding formulas for the general solution of differential 

equations. 

 Case 1.  All Roots of the Characteristic Equation are Real and Distinct 

We assume that the characteristic equation 𝐿(𝜆) = 0 has n roots 𝜆1, 𝜆2, … , 𝜆𝑛, which 

are Real and Distinct. In this case the partial solutions are: 

𝑦1 = 𝑒𝜆1𝑥, 𝑦2 = 𝑒𝜆2𝑥, … , 𝑦𝑛 = 𝑒𝜆𝑛𝑥 

Hence, the general solution is written in a simple form: 

𝑦(𝑥) = 𝐶1𝑒𝜆1𝑥 + 𝐶2𝑒𝜆2𝑥 + ⋯ + 𝐶𝑛𝑒𝜆𝑛𝑥 , 

where 𝐶1, 𝐶2, … , 𝐶𝑛 are constants depending on initial conditions. 

 

 Case 2. The Roots of the Characteristic Equation are Real and Multiple 

We assume that the characteristic equation 𝐿(𝜆) = 0 has m roots 𝜆1, 𝜆2, … , 𝜆𝑚, which 

are Real and Multiple (repeated real roots), the multiplicity of which, respectively, is 

equal to 𝑘1, 𝑘2, … , 𝑘𝑚. It is clear that the following condition has to hold:  

𝑘1 + 𝑘2 + ⋯ + 𝑘𝑚 = 𝑛. 

In this case, we know 𝑒𝜆1𝑥 is a solution but it is only one solution and we need 𝑘1 

linearly independent solutions. Let’s try 𝑥(𝑖)𝑒𝜆1𝑥, 𝑖 = 1,2, … , 𝑘1 − 1 as the next 

solutions related to the 𝑘1-times repeated root 𝜆1. Similarly, for all the other roots.  

So, for repeated roots we just add in an 𝑥 for each of the solutions past the first one 

until we have a total of 𝑘1  solutions. In general, it needs to compute the Wronskian to 

verify that these are in fact a set of linearly independent solutions. 

Then the general solution of the homogeneous differential equations with constant 

coefficients has the form 

𝑦(𝑥) = 𝐶1𝑒𝜆1𝑥 + 𝐶2𝑥𝑒𝜆1𝑥 + ⋯ + 𝐶𝑘1
𝑥𝑘1−1𝑒𝜆1𝑥 + ⋯ + 𝐶𝑛−𝑘𝑚+1𝑒𝜆𝑚𝑥

+ 𝐶𝑛−𝑘𝑚+2𝑥𝑒𝜆𝑚𝑥 + ⋯ + 𝐶𝑛𝑥𝑘𝑚−1𝑒𝜆𝑚𝑥 . 



 Case 3. The Roots of the Characteristic Equation are Complex and Distinct 

If the coefficients of the differential equation are real numbers, the complex roots of 

the characteristic equation will be presented in the form of pairs of numbers: 

𝜆1,2 = 𝛼 ± 𝑖𝛽, 𝜆3,4 = 𝛾 ± 𝑖𝛿, … 

In this case the complex-valued partial solutions are written as  

𝑦1 = 𝑒𝜆1𝑥 = 𝑒(𝛼+𝑖𝛽)𝑥 = 𝑒𝛼𝑥𝑒𝑖𝛽𝑥, 𝑦2 = 𝑒𝜆2𝑥 = 𝑒(𝛼−𝑖𝛽)𝑥 = 𝑒𝛼𝑥𝑒−𝑖𝛽𝑥, … 

In doing so, the Euler’s formula tells us that 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖sin 𝜃 

Then, 

𝑦1 = 𝑒𝛼𝑥(cos 𝛽𝑥 + 𝑖sin 𝛽𝑥), 𝑦2 = 𝑒𝛼𝑥(cos 𝛽𝑥 − 𝑖sin 𝛽𝑥), … 

By combining the first two solutions for the complex conjugate roots 𝜆1,2 we can 

rewrite their partial solutions in the real-valued forms as follows:  

𝑦̃1 =
1

2
(𝑦1 + 𝑦2) = 𝑒𝛼𝑥cos 𝛽𝑥, 𝑦̃2 =

1

2𝑖
(𝑦1 − 𝑦2) = 𝑒𝛼𝑥sin 𝛽𝑥 and 𝑦̃3 = 𝑒𝛾𝑥cos 𝛿𝑥, 

𝑦̃4 = 𝑒𝛾𝑥 sin 𝛿𝑥, … 

As a result, the general solution has a form: 

𝑦(𝑥) = 𝑒𝛼𝑥(𝐶1cos 𝛽𝑥 + 𝐶2sin 𝛽𝑥) + 𝑒𝛾𝑥(𝐶3cos 𝛿𝑥 + 𝐶4sin 𝛿𝑥) + ⋯ 

 

 Case 4.  The Roots of the Characteristic Equation are Complex and Multiple 

Now let’s suppose that each pair of complex conjugate roots 𝛼 ± 𝑖𝛽 has a multiplicity 

of 𝑘 (i.e. they occur 𝑘 times in the list of roots). In this case we can use the work from 

the repeated roots (case 2) above to get the following set of 2𝑘 complex-valued 

particular solutions, 𝑥(𝑖)𝑒(𝛼±𝑖𝛽 )𝑥, 𝑖 = 1,2, … , 𝑘 − 1 or splitting each one into its real 

and imaginary parts we can arrive at the following set of 2𝑘 real-valued solutions: 

𝑒𝛼𝑥cos 𝛽𝑥, 𝑒𝛼𝑥sin 𝛽𝑥, 𝑒𝛼𝑥𝑥cos 𝛽𝑥, 𝑒𝛼𝑥𝑥sin 𝛽𝑥, … , 𝑒𝛼𝑥𝑥𝑘−1cos 𝛽𝑥, 𝑒𝛼𝑥𝑥𝑘−1sin 𝛽𝑥. 

Then the part of the general solution of the differential equation corresponding to a 

given pair of complex conjugate roots is constructed as follows: 

𝑦(𝑥) = 𝑒𝛼𝑥(𝐶1cos 𝛽𝑥 + 𝐶2sin 𝛽𝑥) + 𝑥𝑒𝛼𝑥(𝐶3cos 𝛽𝑥 + 𝐶4sin 𝛽𝑥) + ⋯

+ 𝑥𝑘−1𝑒𝛼𝑥(𝐶2𝑘−1cos 𝛽𝑥 + 𝐶2𝑘sin 𝛽𝑥). 

 In general, when the characteristic equation has both real and complex roots of 

arbitrary multiplicity, the general solution is constructed as the sum of the above 

solutions of the form 1−4. 

 Before we work a couple of examples here we should point out that the 

characteristic polynomial is now going to be 2nd and higher order degree polynomials 



and finding the roots of these by hand is often a very difficult and time consuming 

process and in many cases if the roots are not rational (i.e. in the form 
𝑝

𝑞
) it can be 

almost impossible to find them all by hand. In practice, for determining all the rational 

roots of a polynomial use some form of computation aid such as Maple or Mathematica 

to find all the roots with the Finding Zeroes of Polynomials procedure. 

 

 Example 1. Solve the differential equation 𝑦′′′ + 2𝑦′′ − 𝑦′ − 2𝑦 = 0. 

Write the corresponding characteristic equation: 

𝜆3 + 2𝜆2 − 𝜆 − 2 = 0. 

Solving it, we find the roots: 

𝜆2(𝜆 + 2) − (𝜆 + 2) = 0, ⇒ (𝜆 + 2)(𝜆2 − 1) = 0, ⇒ (𝜆 + 2)(𝜆 − 1)(𝜆 + 1) = 0,

⇒ 𝜆1 = −2, 𝜆2 = 1, 𝜆3 = −1. 

It is seen that all three roots are real. Therefore, the general solution of the differential 

equations can be written as 

𝑦(𝑥) = 𝐶1𝑒−2𝑥 + 𝐶2𝑒𝑥 + 𝐶3𝑒−𝑥, 

where 𝐶1, 𝐶2, 𝐶3 are arbitrary constants. 

 

 Example 2. Solve the differential equation 𝑦′′′ − 7𝑦′′ + 11𝑦′ − 5𝑦 = 0. 

The corresponding characteristic equation is 

𝜆3 − 7𝜆2 + 11𝜆 − 5 = 0. 

It is easy to see that one of the roots is the number 𝜆 = 1. Then, factoring the term 

(𝜆 − 1) from the equation, we obtain 

𝜆3 − 𝜆2 − 6𝜆2 + 6𝜆 + 5𝜆 − 5 = 0, ⇒ 𝜆2(𝜆 − 1) − 6𝜆(𝜆 − 1) + 5(𝜆 − 1) = 0,

⇒ (𝜆 − 1) ⋅ (𝜆2 − 6𝜆 + 5) = 0, ⇒ (𝜆 − 1) ⋅ (𝜆 − 1) ⋅ (𝜆 − 5) = 0,

⇒ (𝜆 − 1)2(𝜆 − 5) = 0. 

Thus, the equation has two roots 𝜆1 = 1, 𝜆2 = 5, the first of which has multiplicity 2. 

Then the general solution of differential equations can be written as follows: 

𝑦(𝑥) = (𝐶1 + 𝐶2𝑥)𝑒𝑥 + 𝐶3𝑒5𝑥, 

where 𝐶1, 𝐶2, 𝐶3 are arbitrary constants. 

 

 Example 3. Solve the differential equation 𝑦𝐼𝑉 − 𝑦′′′ + 2𝑦′ = 0. 

Write the characteristic equation: 



𝜆4 − 𝜆3 + 2𝜆 = 0. 

Factorize the left side and find the roots: 

𝜆(𝜆3 − 𝜆2 + 2) = 0. 

It is easy to see that 𝜆 = 0 is a root. Also, one of the roots of the cubic polynomial is 

the number 𝜆 = −1. Then, by dividing 𝜆3 − 𝜆2 + 2 by 𝜆 + 1 we get 

𝜆3 − 𝜆2 + 2

𝜆 + 1
= 𝜆2 − 2𝜆 + 2. 

As a result, the characteristic equation takes the following form: 

𝜆(𝜆 + 1) ⋅ (𝜆2 − 2𝜆 + 2) = 0. 

We find the roots of the quadratic equation: 

𝜆2 − 2𝜆 + 2 = 0, ⇒ 𝐷 = 4 − 8 = −4, ⇒ 𝜆 =
2 ± √−4

2
=

2 ± 2𝑖

2
= 1 ± 𝑖. 

Thus, the characteristic equation has four distinct roots, two of which are complex: 

𝜆1 = 0, 𝜆2 = −1, 𝜆3,4 = 1 ± 𝑖. 

The general solution of the differential equation can be represented as 

𝑦(𝑥) = 𝐶1 + 𝐶2𝑒−𝑥 + 𝑒𝑥(𝐶3cos 𝑥 + 𝐶4sin 𝑥), 

where 𝐶1, … , 𝐶4 are arbitrary constants. 

 

 Example 4. Solve the differential equation 𝑦𝑉 + 18𝑦′′′ + 81𝑦′ = 0. 

The characteristic equation can be written as 

𝜆5 + 18𝜆3 + 81𝜆 = 0. 

Factorize the left side and calculate the roots: 

𝜆(𝜆4 + 18𝜆2 + 81) = 0, ⇒ 𝜆(𝜆2 + 9)2 = 0. 

As it can be seen, the equation has the following roots: 

𝜆1 = 0, 𝜆2,3 = ±3𝑖, 

and imaginary roots have multiplicity 2. In accordance with the rules set out above, we 

write the general solution in the form 

𝑦(𝑥) = 𝐶1 + (𝐶2 + 𝐶3𝑥)cos 3𝑥 + (𝐶4 + 𝐶5𝑥)sin 3𝑥, 

where 𝐶1, … , 𝐶5 are arbitrary constants. 

 

 Example 5. Solve the differential equation 𝑦𝐼𝑉 − 4𝑦′′′ + 5𝑦′′ − 4𝑦′ + 4𝑦 = 0. 



Calculate the roots of the characteristic equation 

𝜆4 − 4𝜆3 + 5𝜆2 − 4𝜆 + 4 = 0.

Factorize the left side: 

𝜆4 − 2𝜆3 − 2𝜆3 + 4𝜆2 + 𝜆2 − 2𝜆 − 2𝜆 + 4 = 0,

⇒ (𝜆4 − 2𝜆3) − (2𝜆3 − 4𝜆2) + (𝜆2 − 2𝜆) − (2𝜆 − 4) = 0,

⇒ 𝜆3(𝜆 − 2) − 2𝜆2(𝜆 − 2) + 𝜆(𝜆 − 2) − 2(𝜆 − 2) = 0,

⇒ (𝜆 − 2) ⋅ (𝜆3 − 2𝜆2 + 𝜆 − 2) = 0, ⇒ (𝜆 − 2) ⋅ [𝜆2(𝜆 − 2) + 𝜆 − 2]

= 0, ⇒ (𝜆 − 2) ⋅ (𝜆 − 2) ⋅ (𝜆2 + 1) = 0, ⇒ (𝜆 − 2)2(𝜆2 + 1) = 0.

We see that the roots of the equation are equal 

𝜆1,2 = 2, 𝜆3,4 = ±𝑖.

The first root is of multiplicity 2. The general solution of the differential equation is 

given by 

𝑦(𝑥) = (𝐶1 + 𝐶2𝑥)𝑒2𝑥 + 𝐶3cos 𝑥 + 𝐶4sin 𝑥,

where 𝐶1, … , 𝐶4 are arbitrary constants.




