
 

3. Higher Order Linear Nonhomogeneous Differential Equations  

To complete the course, we must also consider the higher order linear 

nonhomogeneous differential equations. An 𝑛-th order nonhomogeneous differential 

equation of this type can be written as 

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥), 

where the coefficients 𝑎1(𝑥), …, 𝑎𝑛(𝑥) and the right hand side 𝑓(𝑥) are continuous 

functions on some interval [𝑎, 𝑏]. 

With the help of a linear differential operator 𝐿  this equation can be written in compact 

form: 

𝐿𝑦(𝑥) = 𝑓(𝑥), 

where 𝐿 includes the operations of differentiation, multiplication by the coefficients 

𝑎𝑖(𝑥), and addition. 

As it is known, the general solution 𝑦(𝑥) of a nonhomogeneous differential equation 

is the sum of the general solution 𝑦0(𝑥) of the corresponding homogeneous equation 

and a particular solution 𝑦1(𝑥) of the nonhomogeneous equation: 

𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥). 

We focus our attention on constructing solutions of the nonhomogeneous equations. 

The method of variation of constants also known as the Lagrange method is commonly 

used for this purpose. With this method, we can obtain the general solution of the 

nonhomogeneous equation, if the general solution of the homogeneous equation is 

known. 

 Method of Variation of Constants 

Suppose we want to solve an 𝑛-th order nonhomogeneous differential equation. We 

will assume that the general solution of the associated homogeneous equation is found 

and expressed by the formula 

𝑦0(𝑥) = 𝐶1𝑌1(𝑥) + 𝐶2𝑌2(𝑥) + ⋯ + 𝐶𝑛𝑌𝑛(𝑥), 

containing 𝑛 arbitrary constants 𝐶1, …, 𝐶𝑛.  

The idea of this method is to replace the constants 𝐶1, …, 𝐶𝑛 with continuously 

differentiable functions 𝐶1(𝑥), …, 𝐶𝑛(𝑥), which are chosen so that the solution 

𝑦(𝑥) = 𝐶1(𝑥)𝑌1(𝑥) + 𝐶2(𝑥)𝑌2(𝑥) + ⋯ + 𝐶𝑛(𝑥)𝑌𝑛(𝑥) = ∑ 𝐶𝑖(𝑥)𝑌𝑖(𝑥)

𝑛

𝑖=1

 

satisfies the nonhomogeneous differential equation. 



The first derivatives of the functions 𝐶𝑖(𝑥) are determined from the system of 𝑛 

equations of the form 

{

𝐶1
′(𝑥)𝑌1(𝑥) + 𝐶2

′(𝑥)𝑌2(𝑥) + ⋯ + 𝐶𝑛
′ (𝑥)𝑌𝑛(𝑥) = 0

𝐶1
′(𝑥)𝑌1

′(𝑥) + 𝐶2
′(𝑥)𝑌2

′(𝑥) + ⋯ + 𝐶𝑛
′ (𝑥)𝑌𝑛

′(𝑥) = 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝐶1
′(𝑥)𝑌1

(𝑛−1)
(𝑥) + 𝐶2

′(𝑥)𝑌2
(𝑛−1)

(𝑥) + ⋯ + 𝐶𝑛
′ (𝑥)𝑌𝑛

(𝑛−1)
(𝑥) = 𝑓(𝑥)

 

Note that the main determinant of this system is the Wronskian 𝑊(𝑥) constructed on 

the basis of the fundamental system of solutions 𝑌1, …, 𝑌𝑛. As the solutions 𝑌1, …, 𝑌𝑛 

re linearly independent, the Wronskian is not zero. 

The unknown derivatives 𝐶𝑖′(𝑥) are calculated by Cramer’s rule: 

𝐶𝑖
′(𝑥) =

𝑊𝑖(𝑥)

𝑊(𝑥)
, 𝑖 = 1,2, … , 𝑛, 

where the determinant 𝑊𝑖(𝑥) is obtained from the Wronskian 𝑊(𝑥) by replacing the 

𝑖 th column with the column [0,0, … , 𝑓(𝑥)] on the right side. 

Further, the expressions for 𝐶𝑖(𝑥) can be found by integration:  

𝐶𝑖(𝑥) = ∫
𝑊𝑖(𝑥)

𝑊(𝑥)
𝑑𝑥 + 𝐴𝑖 , 𝑖 = 1,2, … , 𝑛. 

Here 𝐴𝑖 denote constants of integration.  

As a result, the general solution of the nonhomogeneous equation can be written as 

𝑦(𝑥) = ∑ 𝐶𝑖(𝑥)𝑌𝑖(𝑥)

𝑛

𝑖=1

= ∑(∫
𝑊𝑖(𝑥)

𝑊(𝑥)
𝑑𝑥 + 𝐴𝑖)𝑌𝑖(𝑥)

𝑛

𝑖=1

= ∑ 𝐴𝑖𝑌𝑖(𝑥)

𝑛

𝑖=1

+ ∑(∫
𝑊𝑖(𝑥)

𝑊(𝑥)
𝑑𝑥)𝑌𝑖(𝑥)

𝑛

𝑖=1

= 𝑦0(𝑥) + 𝑦1(𝑥). 

In the last expression, the first sum corresponds to the general solution 𝑦0(𝑥) of the 

homogeneous equation (with arbitrary numbers 𝐴𝑖), and the second sum describes a 

particular solution 𝑦1(𝑥) of the nonhomogeneous equation. 

 

 Example 1. Find the general solution of the differential equation 𝑦″ − 2𝑦′ + 𝑦 =
𝑒𝑡

𝑡2 

The complementary homogeneous equation is 

𝑦″ − 2𝑦′ + 𝑦 = 0 



The general solution of this equation takes a form: 

𝑦0(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥 

Since 𝑦1 = 𝑒𝑥 and 𝑦2 = 𝑥𝑒𝑥 we can calculate the derivatives 𝑦1′(𝑥) = 𝑒𝑥 and 

𝑦2′(𝑥) = 𝑒𝑥 + 𝑥𝑒𝑥. Then, we have a system of equations 

𝐶1
′(𝑥)𝑒𝑥 + 𝐶2

′(𝑥)𝑥𝑒𝑥 = 0

𝐶1
′(𝑥)𝑒𝑥 + 𝐶2

′(𝑥)(𝑒𝑥 + 𝑥𝑒𝑥) =
𝑒𝑥

𝑥2
.
 

Applying Cramer’s rule we have 

𝐶1
′(𝑥) =

0             𝑥𝑒𝑥

𝑒𝑥

𝑥2     𝑒𝑥 + 𝑥𝑒𝑥

𝑒𝑥             𝑥𝑒𝑥

𝑒𝑥     𝑒𝑥 + 𝑥𝑒𝑥

=
0 − 𝑥𝑒𝑥(

𝑒𝑥

𝑥2)

𝑒𝑥(𝑒𝑥 + 𝑥𝑒𝑥) − 𝑒𝑥𝑥𝑒𝑥
=

−
𝑒2𝑥

𝑥
𝑒2𝑥

= −
1

𝑥
 

and 

𝐶2
′(𝑥) =

𝑒𝑥     0

𝑒𝑥    
𝑒𝑡

𝑡2

𝑒𝑥           𝑥𝑒𝑥

𝑒𝑥    𝑒𝑥 + 𝑥𝑒𝑥

=
𝑒𝑥(

𝑒𝑥

𝑥2)

𝑒2𝑥
=

1

𝑥2
 

Integrating, we get 

𝐶1(𝑥) = − ln|𝑥| + 𝐶1, 𝐶2(𝑥) = −
1

𝑥
+ 𝐶2 

Then we have 

𝑦(𝑥) = (− ln|𝑥| + 𝐶1)𝑒𝑥 + (−
1

𝑥
+ 𝐶2) 𝑥𝑒𝑥 = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥 − 𝑒𝑥 ln|𝑥| − 𝑒𝑥 

where 

𝑦1(𝑥) = −𝑒𝑥 ln|𝑥| − 𝑒𝑥 

 

 Example 2. Find the general solution of the differential equation (𝑥2 − 2)𝑦′′′ −

2𝑥𝑦′′ − (𝑥2 − 2)𝑦′ + 2𝑥𝑦 = 2𝑥 −
4

𝑦
. 

First we find the general solution of the homogeneous equation 

(𝑥2 − 2)𝑦′′′ − 2𝑥𝑦′′ − (𝑥2 − 2)𝑦′ + 2𝑥𝑦 = 0. 

We use the symmetry of the equation and introduce the new variable 

𝑣 = 𝑦′′ − 𝑦. 

Then the equation becomes: 



(𝑥2 − 2)𝑣′ − 2𝑥𝑣 = 0. 

The resulting equation can be easily solved by separation of variables: 

(𝑥2 − 2)
𝑑𝑣

𝑑𝑥
= 2𝑥𝑣, ⇒

𝑑𝑣

𝑣
=

2𝑥𝑑𝑥

𝑥2 − 2
, ⇒ ∫

𝑑𝑣

𝑣
= ∫

2𝑥𝑑𝑥

𝑥2 − 2
, ⇒ ∫

𝑑𝑣

𝑣
= ∫

𝑑(𝑥2 − 2)

𝑥2 − 2
,

⇒ ln |𝑣| = ln |𝑥2 − 2| + ln 𝐵1(𝐵1 > 0), ⇒ ln |𝑣| = ln (𝐵1|𝑥2 − 2|),

⇒ |𝑣| = 𝐵1|𝑥2 − 2|, ⇒ 𝑣 = 𝐵2(𝑥2 − 2), 

We now find the function 𝑦(𝑥): 

𝑦′′ − 𝑦 = 𝑣, ⇒ 𝑦′′ − 𝑦 = 𝐵2(𝑥2 − 2). 

We have obtained a nonhomogeneous equation of order 2. The solution of the 

corresponding homogeneous equation is given by 

𝑦′′ − 𝑦 = 0, ⇒ 𝜆2 − 1 = 0, ⇒ 𝜆1,2 = ±1, ⇒ 𝑦0(𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑒−𝑥 . 

Given that the right side 𝐵2(𝑥2 − 2) is a quadratic polynomial, we seek a particular 

solution in the form 

𝑦1 = 𝐷𝑥2 + 𝐸𝑥 + 𝐹. 

We substitute this function and its derivatives 

𝑦1
′ = 2𝐷𝑥 + 𝐸, 𝑦1

′′ = 2𝐷 

in our nonhomogeneous equation and find the coefficients 𝐷, 𝐸, 𝐹: 

2𝐷 − (𝐷𝑥2 + 𝐸𝑥 + 𝐹) = 𝐵2𝑥2 − 2𝐵2, ⇒ 2𝐷 − 𝐷𝑥2 − 𝐸𝑥 − 𝐹 = 𝐵2𝑥2 − 2𝐵2. 

Consequently, 

{
−𝐷 = 𝐵2

−𝐸 = 0
2𝐷 − 𝐹 = −2𝐵2

, ⇒ {
𝐷 = −𝐵2

𝐸 = 0
𝐹 = 0

. 

Thus, the particular solution 𝑦1 is given by 

𝑦1 = −𝐵2𝑥2. 

Replacing the arbitrary number 𝐵2 with 𝐶3, we finally obtain the general solution of 

the homogeneous equation: 

𝑦0(𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑒−𝑥 + 𝐶3𝑥2. 

Here, the functions 𝑌1 = 𝑒𝑥 , 𝑌2 = 𝑒−𝑥 , 𝑌3 = 𝑥2 form a fundamental system of 

solutions. 

Now we find the solution of the nonhomogeneous equation using the method of 

variation of constants. The general solution is represented as 

𝑦(𝑥) = 𝐶1(𝑥)𝑒𝑥 + 𝐶2(𝑥)𝑒−𝑥 + 𝐶3(𝑥)𝑥2, 

where the derivatives of the unknown functions 𝐶1(𝑥), 𝐶2(𝑥), 𝐶3(𝑥) satisfy the system 



of equations 

{

𝐶1
′𝑒𝑥 + 𝐶2

′𝑒−𝑥 + 𝐶3
′𝑥2 = 0

𝐶1
′𝑒𝑥 − 𝐶2

′𝑒−𝑥 + 2𝐶3
′𝑥 = 0

𝐶1
′𝑒𝑥 + 𝐶2

′𝑒−𝑥 + 2𝐶3
′ = 2𝑥 −

4

𝑥

 

Calculate the determinants of this system: 

𝑊 = |
𝑒𝑥 𝑒−𝑥 𝑥2

𝑒𝑥 −𝑒−𝑥 2𝑥
𝑒𝑥 𝑒−𝑥 2

| = 𝑒𝑥𝑒−𝑥|
1 1 𝑥2

1 −1 2𝑥
1 1 2

|

= 1 ⋅ [1(−2 − 2𝑥) − 1(2 − 𝑥2) + 1(2𝑥 + 𝑥2)]

= −2 − 2𝑥 − 2 + 𝑥2 + 2𝑥 + 𝑥2 = 2𝑥2 − 4; 

𝑊1 = |

0 𝑒−𝑥 𝑥2

0 −𝑒−𝑥 2𝑥

2𝑥 −
4

𝑥
𝑒−𝑥 2

| = (2𝑥 −
𝑥

4
) ⋅ (2𝑥𝑒−𝑥 + 𝑥2𝑒−𝑥)

= (2𝑥2 − 4)(𝑥 + 2)𝑒−𝑥 , 

𝑊2 = |

𝑒𝑥 0 𝑥2

𝑒𝑥 0 2𝑥

𝑒𝑥 2𝑥 −
4

𝑥
2

| = −(2𝑥 −
𝑥

4
) ⋅ (2𝑥𝑒𝑥 − 𝑥2𝑒𝑥) = (2𝑥2 − 4)(𝑥 − 2)𝑒𝑥, 

𝑊3 = |

𝑒𝑥 𝑒−𝑥 0
𝑒𝑥 −𝑒−𝑥 0

𝑒𝑥 𝑒−𝑥 2𝑥 −
4

𝑥

| = 𝑒−𝑥𝑒𝑥|

1 1 0
1 −1 0

1 1 2𝑥 −
4

𝑥

| = (2𝑥 −
𝑥

4
)(−1 − 1)

= −
2

𝑥
(2𝑥2 − 4). 

Then the derivatives 𝐶1′(𝑥), 𝐶2′(𝑥), 𝐶3′(𝑥) are 

𝐶1
′ =

𝑊1

𝑊
=

(2𝑥2 − 4)(𝑥 + 2)𝑒−𝑥

2𝑥2 − 4
= (𝑥 + 2)𝑒−𝑥 , 

𝐶2
′ =

𝑊2

𝑊
=

(2𝑥2 − 4)(𝑥 − 2)𝑒𝑥

2𝑥2 − 4
= (𝑥 − 2)𝑒𝑥, 

𝐶3′ =
𝑊3

𝑊
=

−
2
𝑥 (2𝑥2 − 4)

2𝑥2 − 4
= −

2

𝑥
. 

Integrating, we find the functions 



𝐶1(𝑥) = ∫ (𝑥 + 2)𝑒−𝑥𝑑𝑥 = [

𝑢 = 𝑥 + 2
𝑣′ = 𝑒−𝑥

𝑢′ = 1
𝑣 = −𝑒−𝑥

] = −(𝑥 + 2)𝑒−𝑥 − ∫ (−𝑒−𝑥)𝑑𝑥

= −(𝑥 + 2)𝑒−𝑥 + ∫ 𝑒−𝑥𝑑𝑥 = −(𝑥 + 2)𝑒−𝑥 − 𝑒−𝑥 + 𝐴1

= −(𝑥 + 3)𝑒−𝑥 + 𝐴1, 

𝐶2(𝑥) = ∫ (𝑥 − 2)𝑒𝑥𝑑𝑥 = [

𝑢 = 𝑥 − 2
𝑣′ = 𝑒𝑥

𝑢′ = 1
𝑣 = 𝑒𝑥

] = (𝑥 − 2)𝑒𝑥 − ∫ 𝑒𝑥𝑑𝑥

= (𝑥 − 2)𝑒𝑥 − 𝑒𝑥 + 𝐴2 = (𝑥 − 3)𝑒𝑥 + 𝐴2, 

𝐶3(𝑥) = ∫ (−
2

𝑥
)𝑑𝑥 = −2∫

𝑑𝑥

𝑥
= −2ln |𝑥| + 𝐴3. 

Now we can write the general solution of the nonhomogeneous equation: 

𝑦(𝑥) = 𝐶1(𝑥)𝑌1(𝑥) + 𝐶2(𝑥)𝑌2(𝑥) + 𝐶3(𝑥)𝑌3(𝑥)

= [−(𝑥 + 3)𝑒−𝑥 + 𝐴1]𝑒𝑥 + [(𝑥 − 3)𝑒𝑥 + 𝐴2]𝑒−𝑥 + [−2ln |𝑥| + 𝐴3]𝑥2

= 𝐴1𝑒𝑥 + 𝐴2𝑒−𝑥 + 𝐴3𝑥2 − (𝑥 + 3) + 𝑥 − 3 − 2𝑥2ln |𝑥|

= 𝐴1𝑒𝑥 + 𝐴2𝑒−𝑥 + 𝐴3𝑥2 − 2𝑥2ln |𝑥| − 6. 

 

4. Higher Order Linear Nonhomogeneous Differential Equations with 

Constant Coefficients 

These equations have the form 

𝑦(𝑛)(𝑥) + 𝑎1𝑦(𝑛−1)(𝑥) + ⋯ + 𝑎𝑛−1𝑦′(𝑥) + 𝑎𝑛𝑦(𝑥) = 𝑓(𝑥), 

where 𝑎1, …, 𝑎𝑛 are real or complex numbers, and the right-hand side 𝑓(𝑥) is a 

continuous function on some interval [𝑎, 𝑏]. 

Using the linear differential operator 𝐿(𝐷) equal to 

𝐿(𝐷) = 𝐷𝑛 + 𝑎1𝐷𝑛−1 + ⋯ + 𝑎𝑛−1𝐷 + 𝑎𝑛, 

the nonhomogeneous differential equation can be written as 

𝐿(𝐷)𝑦(𝑥) = 𝑓(𝑥). 

The general solution 𝑦(𝑥) of the nonhomogeneous differential equation is q sum of 

the general solution 𝑦0(𝑥) of the corresponding homogeneous equation and a 

particular solution 𝑦1(𝑥) of the nonhomogeneous equation: 

𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥). 

For an arbitrary right side 𝑓(𝑥), the general solution of the nonhomogeneous equation 

can be found using the method of variation of parameters. If the right-hand side is the 

product of a polynomial and exponential functions, it is more convenient to seek a 



particular solution by the method of undetermined coefficients. 

 Method of Variation of Parameters 

We assume that the general solution of the homogeneous differential equation of the 

𝑛th order is known and given by 

𝑦0(𝑥) = 𝐶1𝑌1(𝑥) + 𝐶2𝑌2(𝑥) + ⋯ + 𝐶𝑛𝑌𝑛(𝑥). 

According to the method of variation of constants (or Lagrange method), we consider 

the functions 𝐶1(𝑥), …, 𝐶𝑛(𝑥) instead of the regular numbers 𝐶1, …, 𝐶𝑛. These 

functions are chosen so that the solution 

𝑦 = 𝐶1(𝑥)𝑌1(𝑥) + 𝐶2(𝑥)𝑌2(𝑥) + ⋯ + 𝐶𝑛(𝑥)𝑌𝑛(𝑥) 

satisfies the original nonhomogeneous equation. 

The derivatives of 𝑛 unknown functions 𝐶1′(𝑥), …, 𝐶𝑛′(𝑥) are determined from the 

system of 𝑛 equations: 

{

𝐶1
′(𝑥)𝑌1(𝑥) + 𝐶2

′(𝑥)𝑌2(𝑥) + ⋯ + 𝐶𝑛
′ (𝑥)𝑌𝑛(𝑥) = 0

𝐶1
′(𝑥)𝑌1

′(𝑥) + 𝐶2
′(𝑥)𝑌2

′(𝑥) + ⋯ + 𝐶𝑛
′ (𝑥)𝑌𝑛

′(𝑥) = 0
… … … … … … …

𝐶1
′(𝑥)𝑌1

(𝑛−1)
(𝑥) + 𝐶2

′(𝑥)𝑌2
(𝑛−1)

(𝑥) + ⋯ + 𝐶𝑛
′ (𝑥)𝑌𝑛

(𝑛−1)
(𝑥) = 𝑓(𝑥)

 

The determinant of this system is the Wronskian of 𝑌1(𝑥), …, 𝑌𝑛(𝑥) forming a 

fundamental system of solutions. By the linear independence of these functions, the 

determinant is not zero and the system is uniquely solvable. The final expressions for 

the functions 𝐶1(𝑥), …, 𝐶𝑛(𝑥)  can be found by integration. 

 

 Method of Undetermined Coefficients 

If the right-hand side 𝑓(𝑥) of the differential equation is a function of the form 

𝑃𝑛(𝑥)𝑒𝛼𝑥    or   [𝑃𝑛(𝑥)cos 𝛽𝑥 + 𝑄𝑚(𝑥)sin 𝛽𝑥]𝑒𝛼𝑥 , 

where 𝑃𝑛(𝑥) and 𝑄𝑚(𝑥) are polynomials of degree 𝑛 and m, respectively, then the 

method of undetermined coefficients may be used to find a particular solution. 

In this case, we seek a particular solution in the form corresponding to the structure of 

the right-hand side of the equation.  

 Case 1: if the function has the form 

𝑓(𝑥) = 𝑃𝑛(𝑥)𝑒𝛼𝑥 , 

the particular solution is given by 

𝑦1(𝑥) = 𝑥𝑠𝐴𝑛(𝑥)𝑒𝛼𝑥 , 

where 𝐴𝑛(𝑥) is a polynomial of the same degree 𝑛 as 𝑃𝑛(𝑥). The coefficients of the 

polynomial 𝐴𝑛(𝑥) are determined by direct substitution of the trial solution 𝑦1(𝑥) in 



the nonhomogeneous differential equation. 

In the so-called resonance case, when the number of 𝛼 in the exponential function 

coincides with a root of the characteristic equation, an additional factor 𝑥𝑠, where 𝑠 is 

the multiplicity of the root, appears in the particular solution. In the non-resonance 

case, we set 𝑠 = 0.  

 Case 2: if the function has the form  

𝑓(𝑥) = [𝑃𝑛(𝑥)cos 𝛽𝑥 + 𝑄𝑚(𝑥)sin 𝛽𝑥]𝑒𝛼𝑥 . 

Here the particular solution has a similar structure and can be written as 

𝑦1(𝑥) = 𝑥𝑠[𝐴𝑛(𝑥)cos 𝛽𝑥 + 𝐵𝑛(𝑥)sin 𝛽𝑥]𝑒𝛼𝑥 , 

where 𝐴𝑛(𝑥), 𝐵𝑛(𝑥) are polynomials of degree 𝑛 (for 𝑛 ≥ 𝑚), and the degree 𝑠 in the 

additional factor 𝑥𝑠 is equal to the multiplicity of the complex root 𝛼 ± 𝛽𝑖 in the 

resonance case (i.e. when the numbers 𝛼 and 𝛽 coincide with the complex root of the 

characteristic equation), and accordingly, 𝑠 = 0 in the non-resonance case. 

 

 Superposition Principle 

The superposition principle is stated as follows. Let the right-hand side 𝑓(𝑥) be the 

sum of two functions: 

𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥). 

Suppose that 𝑦1(𝑥) is a solution of the equation 

𝐿(𝐷)𝑦(𝑥) = 𝑓1(𝑥), 

and the function 𝑦2(𝑥) is, accordingly, a solution of the second equation 

𝐿(𝐷)𝑦(𝑥) = 𝑓2(𝑥). 

Then the sum of the functions 

𝑦(𝑥) = 𝑦1(𝑥) + 𝑦2(𝑥) 

will be a solution of the linear nonhomogeneous equation 

𝐿(𝐷)𝑦(𝑥) = 𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥). 

 

 Example 1. Find the general solution of the differential equation 𝑦′′′ + 3𝑦′′ −

10𝑦′ = 𝑥 − 3. 

First we find the general solution of the homogeneous equation 

𝑦′′′ + 3𝑦′′ − 10𝑦′ = 0. 

Calculate the roots of the characteristic equation: 



𝜆3 + 3𝜆2 − 10𝜆 = 0, ⇒ 𝜆(𝜆2 + 3𝜆 − 10) = 0, ⇒ 𝜆(𝜆 − 2)(𝜆 + 5) = 0. 

Hence, 

𝜆1 = 0, 𝜆2 = 2, 𝜆3 = −5. 

So the general solution of the homogeneous equation is given by 

𝑦0(𝑥) = 𝐶1 + 𝐶2𝑒2𝑥 + 𝐶3𝑒−5𝑥 , 

where 𝐶1, 𝐶2, 𝐶3 are arbitrary numbers. 

The right side of the equation contains only a polynomial. However, if we take into 

account that 𝑒0 = 1,, we see that in fact we have the resonance case (in disguised form) 

as one of the roots of the characteristic equation is also zero: 𝜆1 = 0. Therefore, we 

will seek a particular solution in the form 

𝑦1(𝑥) = 𝑥(𝐴𝑥 + 𝐵) = 𝐴𝑥2 + 𝐵𝑥. 

Substitute the derivatives 

𝑦1
′ = 2𝐴𝑥 + 𝐵, 𝑦1

′′ = 2𝐴, 𝑦1
′′′ = 0. 

into the nonhomogeneous equation and determine the coefficients 𝐴, 𝐵 

0 + 3 ⋅ 2𝐴 − 10(2𝐴𝑥 + 𝐵) = 𝑥 − 3, ⇒ 6𝐴 − 20𝐴𝑥 − 10𝐵 = 𝑥 − 3,

⇒ {
−20𝐴 = 1

6𝐴 − 10𝐵 = −3
, ⇒ {

𝐴 = −
1

20

𝐵 =
27

100

, ⇒ {
𝐴 = −

5

100

𝐵 =
27

100

. 

The particular solution 𝑦1 is written as 

𝑦1(𝑥) = 𝑥(−
5

100
𝑥 +

27

100
) =

𝑥

100
(27 − 5𝑥). 

Thus, the general solution of nonhomogeneous differential equation is given by 

𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) = 𝐶1 + 𝐶2𝑒2𝑥 + 𝐶3𝑒−5𝑥 +
𝑥

100
(27 − 5𝑥). 

 

 Example 2. Find the general solution of the differential equation 𝑦′′′ − 𝑦′ =

sin 3𝑥. 

We construct the general solution of the homogeneous equation 

𝑦′′′ − 𝑦′ = 0. 

The roots of the characteristic equation are 

𝜆3 − 𝜆 = 0, ⇒ 𝜆(𝜆2 − 1) = 0, ⇒ 𝜆(𝜆 − 1)(𝜆 + 1) = 0, ⇒ 𝜆1 = 0, 𝜆2 = 1, 𝜆3 = −1. 

Consequently, the general solution of the homogeneous equation can be written as 



𝑦0(𝑥) = 𝐶1 + 𝐶2𝑒𝑥 + 𝐶3𝑒−𝑥 , 

where 𝐶1, 𝐶2, 𝐶3 are arbitrary numbers. 

Based on the structure of the right-hand side, we seek a particular solution in the form 

of trial function 

𝑦1(𝑥) = 𝐴sin 3𝑥 + 𝐵cos 3𝑥. 

The derivatives of this function are as follows: 

𝑦1
′ = 3𝐴cos 3𝑥 − 3𝐵sin 3𝑥, 

𝑦1
′′ = −9𝐴sin 3𝑥 − 9𝐵cos 3𝑥, 

𝑦1
′′′ = −27𝐴cos 3𝑥 + 27𝐵sin 3𝑥. 

Substituting these derivatives into the equation, we obtain 

−27𝐴cos 3𝑥 + 27𝐵sin 3𝑥 − 3𝐴cos 3𝑥 + 3𝐵sin 3𝑥 = sin 3𝑥,

⇒ −30𝐴cos 3𝑥 + 30𝐵sin 3𝑥 = sin 3𝑥, ⇒ {
−30𝐴 = 0
30𝐵 = 1

, ⇒ {
𝐴 = 0

𝐵 =
1

30

. 

Thus, a particular solution can be written as 

𝑦1(𝑥) =
1

30
cos 3𝑥. 

Accordingly, the general solution of the nonhomogeneous equation is described by 

𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) = 𝐶1 + 𝐶2𝑒𝑥 + 𝐶3𝑒−𝑥 +
1

30
cos 3𝑥. 

 

 Example 3. Find the general solution of the differential equation 𝑦𝐼𝑉 − 𝑦 =

2cos 𝑥. 

We first consider the homogeneous equation 

𝑦𝐼𝑉 − 𝑦 = 0 

and construct its general solution. The characteristic equation 

𝜆4 − 1 = 0 

has the following roots: 

(𝜆2 − 1)(𝜆2 + 1) = 0, ⇒ (𝜆 − 1)(𝜆 + 1)(𝜆2 + 1) = 0, ⇒ 

𝜆1 = 1, 𝜆2 = −1, 𝜆3,4 = ±𝑖. 

Consequently, the general solution of the homogeneous equation has the form: 

𝑦0(𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑒−𝑥 + 𝐶3cos 𝑥 + 𝐶4sin 𝑥, 



where 𝐶1, … , 𝐶4 are arbitrary numbers. 

Now we find a particular solution of the nonhomogeneous equation. Here we have the 

resonance case, since the expression in the right side corresponds to one of the roots 

of the characteristic equation. Hence, we seek a particular solution in the form 

𝑦1(𝑥) = 𝑥(𝐴cos 𝑥 + 𝐵sin 𝑥). 

The derivatives of this function are 

𝑦1
′ = 𝐴cos 𝑥 + 𝐵sin 𝑥 + 𝑥(−𝐴sin 𝑥 + 𝐵cos 𝑥), 

𝑦1
′′ = −𝐴sin 𝑥 + 𝐵cos 𝑥 + (−𝐴sin 𝑥 + 𝐵cos 𝑥) + 𝑥(−𝐴cos 𝑥 − 𝐵sin 𝑥)

= −2𝐴sin 𝑥 + 2𝐵cos 𝑥 − 𝑥(𝐴cos 𝑥 + 𝐵sin 𝑥), 

𝑦1
′′′ = −2𝐴cos 𝑥 − 2𝐵sin 𝑥 − (𝐴cos 𝑥 + 𝐵sin 𝑥) − 𝑥(−𝐴sin 𝑥 + 𝐵cos 𝑥)

= −3𝐴cos 𝑥 − 3𝐵sin 𝑥 + 𝑥(𝐴sin 𝑥 − 𝐵cos 𝑥), 

𝑦𝐼𝑉 = 3𝐴sin 𝑥 − 3𝐵cos 𝑥 + (𝐴sin 𝑥 − 𝐵cos 𝑥) + 𝑥(𝐴cos 𝑥 + 𝐵sin 𝑥)

= 4𝐴sin 𝑥 − 4𝐵cos 𝑥 + 𝑥(𝐴cos 𝑥 + 𝐵sin 𝑥). 

Substitute the derivatives in the nonhomogeneous equation and determine the 

coefficients 𝐴, 𝐵 

4𝐴sin 𝑥 − 4𝐵cos 𝑥 + 𝑥(𝐴cos 𝑥 + 𝐵sin 𝑥) − 𝑥(𝐴cos 𝑥 + 𝐵sin 𝑥) = 2cos 𝑥,

⇒ {
4𝐴 = 0

−4𝐵 = 2
, ⇒ {

𝐴 = 0

𝐵 = −
1

2

. 

Thus, a particular solution is expressed as 

𝑦1(𝑥) = −
𝑥

2
sin 𝑥. 

Then the general solution of the original nonhomogeneous equation can be written as 

𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑒−𝑥 + 𝐶3cos 𝑥 + 𝐶4sin 𝑥 −
𝑥

2
sin 𝑥. 

 

 Example 4. Solve the equation 𝑦𝐼𝑉 + 𝑦′′′ − 3𝑦′′ − 5𝑦′ − 2𝑦 = 𝑒2𝑥 − 𝑒−𝑥 . 

First we find the general solution of the homogeneous equation 

𝑦𝐼𝑉 + 𝑦′′′ − 3𝑦′′ − 5𝑦′ − 2𝑦 = 0. 

Write the characteristic equation and find its roots: 

𝜆4 + 𝜆3 − 3𝜆2 − 5𝜆 − 2 = 0, ⇒ 𝜆4 − 2𝜆3 + 3𝜆3 − 6𝜆2 + 3𝜆2 − 6𝜆 + 𝜆 − 2 = 0,

⇒ 𝜆3(𝜆 − 2) + 3𝜆2(𝜆 − 2) + 3𝜆(𝜆 − 2) + 𝜆 − 2 = 0,

⇒ (𝜆3 + 3𝜆2 + 3𝜆 + 1) ⋅ (𝜆 − 2) = 0, ⇒ (𝜆 + 1)3(𝜆 − 2) = 0. 

It is seen that the equation has two roots: 



𝜆1 = −1, 𝜆2 = 2, 

and the multiplicity of the first root is 3. 

Then the general solution of the homogeneous equation can be written as 

𝑦0(𝑥) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥2)𝑒−𝑥 + 𝐶4𝑒2𝑥 , 

where 𝐶1, …, 𝐶4 are as usual arbitrary numbers. 

We now construct a particular solution of the nonhomogeneous equation. Using the 

superposition principle, it is convenient to consider two nonhomogeneous equations 

of the form 

𝑦𝐼𝑉 + 𝑦′′′ − 3𝑦′′ − 5𝑦′ − 2𝑦 = 𝑒2𝑥; 

𝑦𝐼𝑉 + 𝑦′′′ − 3𝑦′′ − 5𝑦′ − 2𝑦 = −𝑒−𝑥 . 

The sum of the right sides of these equations corresponds to the right side of the 

original nonhomogeneous equation. 

Note that we have the resonance cases in both equations. In the first equation the 

number 2 in the exponential function coincides with the root 𝜆2 = 2 of multiplicity 2. 

In the second equation the number −1 in the exponential function coincides with 

another root 𝜆1 = −1, the multiplicity of which is equal to 3. With this in mind, we 

seek particular solutions in the forms 

𝑦1 = 𝐴𝑥𝑒2𝑥 , 𝑦2 = 𝐵𝑥3𝑒−𝑥 . 

The derivatives for the trial solution 𝑦1 have the form 

𝑦1
′ = 𝐴(𝑒2𝑥 + 2𝑥𝑒2𝑥) = 𝐴(2𝑥 + 1)𝑒2𝑥 , 

𝑦1
′′ = 𝐴[2𝑒2𝑥 + (4𝑥 + 2)𝑒2𝑥] = 𝐴(4𝑥 + 4)𝑒2𝑥 , 

𝑦1
′′′ = 𝐴[4𝑒2𝑥 + (8𝑥 + 8)𝑒2𝑥] = 𝐴(8𝑥 + 12)𝑒2𝑥 , 

𝑦1
𝐼𝑉 = 𝐴[8𝑒2𝑥 + (16𝑥 + 24)𝑒2𝑥] = 𝐴(16𝑥 + 32)𝑒2𝑥 . 

Substituting this into the first equation, we find the coefficient 𝐴: 

𝐴(16𝑥 + 32)𝑒2𝑥 + 𝐴(8𝑥 + 12)𝑒2𝑥 − 3𝐴(4𝑥 + 4)𝑒2𝑥 − 5𝐴(2𝑥 + 1)𝑒2𝑥 − 2𝐴𝑥𝑒2𝑥

= 𝑒2𝑥 , 

⇒ 𝐴(16𝑥 + 8𝑥 − 12𝑥 − 10𝑥 − 2𝑥)𝑒2𝑥 + 𝐴(32 + 12 − 12 − 5)𝑒2𝑥 = 𝑒2𝑥 , 

⇒ 27𝐴 = 1, ⇒ 𝐴 =
1

27
. 

Therefore, the particular solution 𝑦1 is given by 

𝑦1(𝑥) =
𝑥

27
𝑒2𝑥 . 

Similarly, we find the particular solution 𝑦2 The derivatives of the trial function 𝑦2 are 



𝑦2
′ = 𝐵(3𝑥2𝑒−𝑥 − 𝑥3𝑒−𝑥) = 𝐵(−𝑥3 + 3𝑥2)𝑒−𝑥 , 

𝑦2
′′ = 𝐵[(−3𝑥2 + 6𝑥)𝑒−𝑥 − (−𝑥3 + 3𝑥2)𝑒−𝑥] = 𝐵(𝑥3 − 6𝑥2 + 6𝑥)𝑒−𝑥 , 

𝑦2
′′′ = 𝐵[(3𝑥2 − 12𝑥 + 6)𝑒−𝑥 − (𝑥3 − 6𝑥2 + 6𝑥)𝑒−𝑥]

= 𝐵(−𝑥3 + 9𝑥2 − 18𝑥 + 6)𝑒−𝑥 , 

𝑦2
𝐼𝑉 = 𝐵[(−3𝑥2 + 18𝑥 − 18)𝑒−𝑥 − (−𝑥3 + 9𝑥2 − 18𝑥 + 6)𝑒−𝑥]

= 𝐵(𝑥3 − 12𝑥2 + 36𝑥 − 24)𝑒−𝑥 . 

Substituting these derivatives into the second equation, we calculate the coefficient 𝐵 

𝐵(𝑥3 − 12𝑥2 + 36𝑥 − 24)𝑒−𝑥 + 𝐵(−𝑥3 + 9𝑥2 − 18𝑥 + 6)𝑒−𝑥 − 3𝐵(𝑥3 − 6𝑥2

+ 6𝑥)𝑒−𝑥 − 5𝐵(−𝑥3 + 3𝑥2)𝑒−𝑥 − 2𝐵𝑥3𝑒−𝑥 = −𝑒−𝑥 , 

⇒ 𝐵(𝑥3 − 𝑥3 − 3𝑥3 + 5𝑥3 − 2𝑥3)𝑒−𝑥 + 𝐵(−12𝑥2 + 9𝑥2 + 18𝑥2 − 15𝑥2)𝑒−𝑥

+ 𝐵(36𝑥 − 18𝑥 − 18𝑥)𝑒−𝑥 + 𝐵(−24 + 6)𝑒−𝑥 = −𝑒−𝑥 , 

⇒ −18𝐵 = −1, ⇒ 𝐵 =
1

18
. 

We obtain the solution 𝑦2  as follows: 

𝑦2(𝑥) =
𝑥3

18
𝑒−𝑥 . 

In accordance with the principle of superposition, a particular solution of the original 

nonhomogeneous equation is represented as 

𝑦p = 𝑦1(𝑥) + 𝑦2(𝑥) =
𝑥

27
𝑒2𝑥 +

𝑥3

18
𝑒−𝑥 . 

Finally, the general solution is given by 

𝑦(𝑥) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥2)𝑒−𝑥 + 𝐶4𝑒2𝑥 +
𝑥

27
𝑒2𝑥 +

𝑥3

18
𝑒−𝑥

= (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥2 +
𝑥3

18
)𝑒−𝑥 + (𝐶4 +

𝑥

27
)𝑒2𝑥. 

 

 Example 5. Solve the equation 𝑦′′′ + 𝑦′ =
1

cos 𝑥
 

First we solve the corresponding homogeneous equation 

𝑦′′′ + 𝑦′ = 0. 

The roots of its characteristic equation are: 

𝜆3 + 𝜆 = 0, ⇒ 𝜆(𝜆2 + 1) = 0, ⇒ 𝜆1 = 0, 𝜆2,3 = ±𝑖. 

Consequently, the general solution of the homogeneous equation has the form: 

𝑦0(𝑥) = 𝐶1 + 𝐶2cos 𝑥 + 𝐶3sin 𝑥, 



where 𝐶1, 𝐶2, 𝐶3 are arbitrary numbers. 

According to the method of variation of constants, we will consider the functions 

𝐶1(𝑥), 𝐶2(𝑥), 𝐶3(𝑥) instead of the numbers 𝐶1, 𝐶2, 𝐶3 to construct the general solution 

of the nonhomogeneous equation. These functions will satisfy the nonhomogeneous 

equation, provided 

{

𝐶1
′𝑌1 + 𝐶2

′𝑌2 + 𝐶3
′𝑌3 = 0

𝐶1
′𝑌1

′ + 𝐶2
′𝑌2

′ + 𝐶3
′𝑌3

′ = 0

𝐶1
′𝑌1

′′ + 𝐶2
′𝑌2

′′ + 𝐶3
′𝑌3

′′ =
1

cos 𝑥

 

Here the functions 𝑌1, 𝑌2, 𝑌3 are the fundamental system of solutions. They were found 

in the solution of the homogeneous equation: 

𝑌1 = 1, 𝑌2 = cos 𝑥, 𝑌3 = sin 𝑥. 

Then the system of equations takes the form: 

{

𝐶1
′ ⋅ 1 + 𝐶2

′cos 𝑥 + 𝐶3
′sin 𝑥 = 0

𝐶1
′ ⋅ 0 + 𝐶2

′(−sin 𝑥) + 𝐶3
′cos 𝑥 = 0

𝐶1
′ ⋅ 0 + 𝐶2

′(−cos 𝑥) + 𝐶3
′(−sin 𝑥) =

1

cos 𝑥

, ⇒ {

𝐶1
′ + 𝐶2

′cos 𝑥 + 𝐶3
′sin 𝑥 = 0

−𝐶2
′sin 𝑥 + 𝐶3

′cos 𝑥 = 0

−𝐶2
′cos 𝑥 − 𝐶3

′sin 𝑥 =
1

cos 𝑥

 

The main determinant (Wronskian) is 

𝑊 = |
1 cos 𝑥 sin 𝑥
0 −sin 𝑥 cos 𝑥
0 −cos 𝑥 −sin 𝑥

| = 1 ⋅ |
−sin 𝑥 cos 𝑥
−cos 𝑥 −sin 𝑥

| = sin2𝑥 + cos2𝑥 = 1. 

We find expressions for the derivatives 𝐶1′(𝑥), 𝐶2′(𝑥), 𝐶3′(𝑥) calculating the other 

three determinants: 

Δ1 = |

0 cos 𝑥 sin 𝑥
0 −sin 𝑥 cos 𝑥
1

cos 𝑥
−cos 𝑥 −sin 𝑥

| =
1

cos 𝑥
|

cos 𝑥 sin 𝑥
−sin 𝑥 cos 𝑥

| =
1

cos 𝑥
(cos2𝑥 + sin2𝑥)

=
1

cos 𝑥
, 

Δ2 = |

1 0 sin 𝑥
0 0 cos 𝑥

0
1

cos 𝑥
−sin 𝑥

| = 1 ⋅ |
0 cos 𝑥
1

cos 𝑥
−sin 𝑥

| = −
1

cos 𝑥
⋅ cos 𝑥 = −1, 

Δ3 = |

1 cos 𝑥 0
0 −sin 𝑥 0

0 −cos 𝑥
1

cos 𝑥

| = 1 ⋅ |
−sin 𝑥 0

−cos 𝑥
1

cos 𝑥

| = −sin 𝑥 ⋅
1

cos 𝑥
= −tan 𝑥. 

Consequently, the derivatives 𝐶1′(𝑥), 𝐶2′(𝑥), 𝐶3′(𝑥) are given by 



𝐶1
′ =

Δ1

𝑊
=

1

cos 𝑥
, 𝐶2

′ =
Δ2

𝑊
= −1, 𝐶3

′ =
Δ3

𝑊
= −tan 𝑥. 

The integrals of these functions are tabulated, so that we can immediately write: 

𝐶1(𝑥) = ∫
𝑑𝑥

cos 𝑥
= ln | tan(

𝑥

2
+

𝜋

4
) | + 𝐴1, 

𝐶2(𝑥) = ∫ (−1)𝑑𝑥 = −𝑥 + 𝐴2, 

𝐶3(𝑥) = ∫ (−tan 𝑥)𝑑𝑥 = ln | cos 𝑥 | + 𝐴3, 

where 𝐴1, 𝐴2, 𝐴3 are constants of integration. 

Substituting this into the general solution, we find the answer in the following form: 

𝑦(𝑥) = 𝐶1(𝑥) + 𝐶2(𝑥)cos 𝑥 + 𝐶3(𝑥)sin 𝑥

= ln | tan(
𝑥

2
+

𝜋

4
) | + 𝐴1 + (−𝑥 + 𝐴2)cos 𝑥 + (ln | cos 𝑥 | + 𝐴3)sin 𝑥

= 𝐴1 + 𝐴2cos 𝑥 + 𝐴3sin 𝑥 + ln | tan(
𝑥

2
+

𝜋

4
) | − 𝑥cos 𝑥

+ sin 𝑥ln | cos 𝑥 |. 


