
COMPLEX NUMBERS  

The purpose of this paragraph is to give you a brief overview of complex numbers, 

notation associated with complex numbers, and some of the basic operations involving 

complex numbers. 

1 Prelude to Complex Numbers 

In the real number system, there is no solution to the equation 𝑥2 = −1. 

The backbone of this new number system (complex numbers) is the number 𝑖, also 

known as the Imaginary Unit. 

𝑖 = √−1 

So,  

𝑖2 = −1 

Hence, 𝑖 = √−1 is defined so that we can deal with square roots of negative numbers 

as follows, 

√−100 = √(100)(−1) = √100√−1 = √100𝑖 = 10𝑖 

By taking multiples of this imaginary unit, we can create infinitely many more new 

numbers, like 3𝑖, √5𝑖 and −12𝑖. These are examples of imaginary numbers. 

However, we can go even further than that and add real numbers and imaginary 

numbers, for example 2 + 7𝑖, 3 − √2𝑖. These combinations are called complex 

numbers. 

Defining complex numbers 

So, let’s give the definition of a complex number. 

Given two real numbers 𝑎 and 𝑏 we will define the complex number 𝑧 as, 

𝑧 = 𝑎 + 𝑏𝑖 

Note that at this point we’ve not actually defined just what 𝑖 is at this point. The number 

𝑎 is called the real part of 𝑧 and the number 𝑏 is called the imaginary part of 𝑧 and are 

often denoted as, 

Re𝑧 = 𝑎 and Im𝑧 = 𝑏 

The table below shows examples of complex numbers, with the real and imaginary 

parts identified. Some people find it easier to identify the real and imaginary parts if 

the number is written in standard form. 

Complex Number  Standard Form: 𝑎 + 𝑏𝑖 Description of parts 

7𝑖 − 2 −2 + 7𝑖 The real part is −2, and the 



imaginary part is 7. 

4 − 3𝑖 4 + (−3)𝑖 The real part is 4, and the imaginary 

part is −3. 

9𝑖 0 + 9𝑖 The real part is 0, and the imaginary 

part is 9. 

−2 −2 + 0𝑖 The real part is −2, and the 

imaginary part is 0. 

In the last two cases, if the real part is 0 we call the complex number a pure imaginary 

number. Next, a complex number that has a zero imaginary part is in fact a real 

number. 

So,  

An imaginary number is a complex number 𝑎 + 𝑏𝑖, where 𝑎 = 0. Similarly, we can 

say that a real number is a complex number 𝑎 + 𝑏𝑖, where 𝑏 = 0. 

From the first definition, we can conclude that any imaginary number is also a complex 

number. From the second definition, we can conclude that any real number is also a 

complex number. 

The set of complex numbers is denoted by the symbol ℂ. Thus we have the chain of 

inclusions: 

ℂ ⊃ ℝ ⊃ ℚ ⊃ ℤ ⊃ ℕ 

So why do we study complex numbers anyway? Believe it or not, complex numbers 

have many applications—electrical engineering and quantum mechanics to name a 

few!  

From a purely mathematical standpoint, one cool thing that complex numbers allow us 

to do is to solve any polynomial equation. 

𝑥2 + 2𝑥 + 5 = 0  𝑥1,2 =
−2±√22−4∙5

2
=

−2±√−16

2
=

−2±√𝑖2∙16

2
=

−2±4∙𝑖

2
 

Hence,  

𝑥1= −1+2∙𝑖 and 𝑥2= −1−2∙𝑖 

To check the solutions, we calculated  

(𝑥 − 𝑥1) ∙ (𝑥 − 𝑥2) = (𝑥 + 1 − 2 ∙ 𝑖 ) ∙ (𝑥 + 1 + 2 ∙ 𝑖 ) = (𝑥 + 1)2 − (2 ∙ 𝑖)2

= 𝑥2 + 2𝑥 + 1 − (4 ∙ 𝑖2) = 𝑥2 + 2𝑥 + 1 − 4 ∙ (−1) = 𝑥2 + 2𝑥 + 5 

As we continue our study of mathematics, we will learn more about these numbers. 

 

2 Complex Number Operations 

We next need to define how we do basic operations with complex numbers.  



1. Given two complex numbers 𝑧1 = 𝑥1 + 𝑖𝑦1and 𝑧2 = 𝑥2 + 𝑖𝑦2 we define addition 

and subtraction as follows,  

𝑧 = 𝑧1 + 𝑧2 = (𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2) = (𝑥1 + 𝑥2) + 𝑖(𝑦1 + 𝑦2) 

and 

𝑧 = 𝑧1 − 𝑧2 = (𝑥1 + 𝑖𝑦1) − (𝑥2 + 𝑖𝑦2) = (𝑥1 − 𝑥2) + 𝑖(𝑦1 − 𝑦2) 

We just have a bunch of real parts and imaginary parts that we can then add up together 

or subtract them.  

For the sake of exactness, the operation of subtraction is introduced through the 

definition of an additive inverse −𝑧 such that 𝑧 + (−𝑧) = 0, i.e. − 𝑧 = −𝑎 − 𝑏𝑖.  

Then, to define the subtraction of two complex numbers, we add a complex number 𝑧1 

and an additive inverse of complex number 𝑧2. This is 

𝑧1 − 𝑧2 = 𝑧1 + (−𝑧2) 

 Examples: 

1. (−3 + 5𝑖) + (4 − 8𝑖) = (−3 + 4) + (5 − 8)𝑖 = 1 − 3𝑖 
2. (3 + 2𝑖) + (−1 − 5𝑖) = (3 − 1) + (2 − 5)𝑖 = 2 − 3𝑖 
3. (2 + 3𝑖) + (6 − 3𝑖) = (2 + 6) + (3 − 3)𝑖 = 8 − 0𝑖 = 8 

4. (10 − 3𝑖) + (−10 + 3𝑖) = (10 − 10) + (−3 + 3)𝑖 = 0 − 0𝑖 = 0 

 

1. (−5 + 2𝑖) − (3 − 5𝑖) = (−5 − 3) + (2 − (−5))𝑖 = −8 + 7𝑖 
2. (6 + 7𝑖) − (6 − 5𝑖) = (6 − 6) + (7 + 5)𝑖 = 12𝑖 
3. (0,3 + 2,5𝑖) − (−0,75 + 1,5𝑖) = (0,3 + 0,75) + (2,5 − 1,5)𝑖 = 1,05 + 𝑖 

 

2. Given two complex numbers 𝑧1 = 𝑥1 + 𝑖𝑦1and 𝑧2 = 𝑥2 + 𝑖𝑦2 we define 

multiplication as follows, 

𝑧 = (𝑥1 + 𝑖𝑦1) ∙ (𝑥2 + 𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑥2 + 𝑦1𝑦2) 

 Example: 

(1 − 2𝑖) ⋅ (3 + 2𝑖) = (1 ⋅ 3 − (−2) ⋅ 2) + (1 ⋅ 2 + (−2) ⋅ 3)𝑖 = (3 + 4) + (2 − 6)𝑖

= 7 − 4𝑖 

 

3. Suppose that we have two complex numbers 𝑧1 = 𝑥1 + 𝑖𝑦1and 𝑧2 = 𝑥2 + 𝑖𝑦2 then 

the division of these two is defined to be, 

𝑧1

𝑧2
= 𝑧1𝑧2

−1 

where 𝑧2
−1 is a multiplicative inverse. 



A multiplicative inverse for a non-zero complex number 𝑧 = 𝑎 + 𝑏𝑖 is an element 

denoted by 𝑧−1 such that 𝑧𝑧−1 = 1. Following this formula, we get  

𝑧−1 =
𝑎

𝑎2 + 𝑏2
−

𝑏

𝑎2 + 𝑏2
𝑖 

Hence, 

𝑧1

𝑧2
=

𝑥1 + 𝑖𝑦1

𝑥2 + 𝑖𝑦2
= (𝑥1 + 𝑖𝑦1)(𝑥2 + 𝑖𝑦2)−1 =

𝑥1𝑥2 + 𝑦1𝑦2

𝑥2
2 + 𝑦2

2 − 𝑖
𝑥1𝑥2 − 𝑦1𝑦2

𝑥2
2 + 𝑦2

2  

 Example: 

6 + 3𝑖

10 + 8𝑖
= (6 + 3𝑖)(10 + 8𝑖)−1 

where (10 + 8𝑖)−1 =
10

102+82
−

8

102+82
𝑖 =

10−8𝑖

164
. 

Then, 

6 + 3𝑖

10 + 8𝑖
= (6 + 3𝑖)(10 + 8𝑖)−1 = (6 + 3𝑖)

10 − 8𝑖

164
=

60 − 48𝑖 + 30𝑖 − 24𝑖2

164

=
21

41
−

9

82
𝑖 

 

 3. Conjugate and Modulus 

There are a couple of other operations that we should take a look at since they tend to 

show up on occasion. We’ll also take a look at quite a few nice facts about these 

operations. 

The first one we’ll look at is the complex conjugate, (or just the conjugate). Given the 

complex number 𝑧 = 𝑎 + 𝑏𝑖 the complex conjugate is denoted by 𝑧̅ and is defined to 

be, 

𝑧 = 𝑎 − 𝑏𝑖 

In other words, we just switch the sign on the imaginary part of the number. 

Here are some basic facts about conjugates. 

𝑧 = 𝑧

𝑧1 ± 𝑧2 = 𝑧1 ± 𝑧2

𝑧1𝑧2 = 𝑧1𝑧2

(
𝑧1

𝑧2
) =

𝑧1

𝑧2

 

The first one just says that if we conjugate twice we get back to what we started with 

originally and hopefully this makes some sense. The remaining three just say we can 



break up sum, differences, products and quotients into the individual pieces and then 

conjugate. 

So, just so we can say that we worked a number example or two let’s do a couple of 

examples illustrating the above facts. 

𝑧 for 𝑧 = 3 − 15𝑖: 𝑧 = 3 + 15𝑖 ⇒ 𝑧 = 3 + 15𝑖 = 3 − 15𝑖 = 𝑧 

𝑧1 − 𝑧2 for 𝑧1 = 5 + 𝑖 and 𝑧2 = −8 + 3𝑖: 𝑧1 − 𝑧2 = 13 − 2𝑖 ⇒ 𝑧1 − 𝑧2 = 13 − 2𝑖 =

13 + 2𝑖 

𝑧1 − 𝑧2 for 𝑧1 = 5 + 𝑖 and 𝑧2 = −8 + 3𝑖: 𝑧1 − 𝑧2 = 5 + 𝑖 − (−8 + 3𝑖) = 5 − 𝑖 −

(−8 − 3𝑖) = 13 + 2𝑖 

There is another nice fact that uses conjugates that we should probably take a look at. 

However, instead of just giving the fact away let’s derive it. We’ll start with a complex 

number 𝑧 = 𝑎 + 𝑏𝑖 and then perform each of the following operations. 

𝑧 + 𝑧 = 𝑎 + 𝑏𝑖 + (𝑎 − 𝑏𝑖) 𝑧 − 𝑧 = 𝑎 + 𝑏𝑖 − (𝑎 − 𝑏𝑖)

= 2𝑎 = 2𝑏𝑖
 

Now, recalling that Re𝑧 = 𝑎 and Im𝑧 = 𝑏  we see that we have, 

Re𝑧 =
𝑧 + 𝑧

2
, Im𝑧 =

𝑧 − 𝑧

2𝑖
 

 

The other operation we want to take a look at in this section is the modulus of a complex 

number. Given a complex number 𝑧 = 𝑎 + 𝑏𝑖 the modulus is denoted by |𝑧| and is 

defined by 

|𝑧| = √𝑎2 + 𝑏2 

Notice that the modulus of a complex number is always a real number and in fact it 

will never be negative since square roots always return a positive number or zero 

depending on what is under the radical. 

We can get a nice fact about the relationship between the modulus of a complex 

number and its real and imaginary parts. To see this let’s square both sides of Equation 

and use the fact that Re𝑧 = 𝑎 and I Im𝑧 = 𝑏. Doing this we arrive at 

|𝑧|2 = 𝑎2 + 𝑏2 = (Re𝑧)2 + (Im𝑧)2 

There is a very nice relationship between the modulus of a complex number and its 

conjugate. Let’s start with a complex number 𝑧 = 𝑎 + 𝑏𝑖 and take a look at the 

following product: 

𝑧𝑧 = (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) = 𝑎2 + 𝑏2 

From this product we can see that 



𝑧𝑧 = |𝑧|2 

We can also now formalize the process for division from the previous section now that 

we have the modulus and conjugate notations. In order to get the 𝑖 out of the 

denominator of the quotient we really multiplied the numerator and denominator by 

the conjugate of the denominator. Doing all this gives the following formula for 

division, 

𝑧1

𝑧2
=

𝑧1𝑧2

𝑧2𝑧2
=

𝑧1𝑧2

|𝑧2|2
 

Then, given two complex numbers 𝑧1 = 𝑥1 + 𝑖𝑦1and 𝑧2 = 𝑥2 + 𝑖𝑦2 we define 

𝑧1

𝑧2
=

𝑥1 + 𝑖𝑦1

𝑥2 + 𝑖𝑦2
=

𝑥1 + 𝑖𝑦1

𝑥2 + 𝑖𝑦2
∙

𝑥2 − 𝑖𝑦2

𝑥2 − 𝑖𝑦2
=

𝑥1𝑥2 + 𝑦1𝑦2

𝑥2
2 + 𝑦2

2 − 𝑖
𝑥1𝑥2 − 𝑦1𝑦2

𝑥2
2 + 𝑦2

2  

 

 Example: 

6 + 3𝑖

10 + 8𝑖
=

(6 + 3𝑖)(10 − 8𝑖)

(10 + 8𝑖)(10 − 8𝑖)
=

(60 + 24) − 𝑖(60 − 24)

102 + 82
=

84

164
−

36

164
𝑖

=
21

41
−

9

82
𝑖 

 

 4 Polar & Exponential Form 

There are some alternate forms of a complex number that are useful at times. 

Geometric Interpretation 

Before we get into the alternate forms we should first take a very brief look at a natural 

geometric interpretation of complex numbers since this will lead us into our first 

alternate form. 

Just like we can use the number line to visualize the set of real numbers, we can use 

the complex plane to visualize the set of complex numbers. 

  



Consider the complex number 𝑧 = 𝑎 + 𝑏𝑖. We can think of this complex number as 

either the point (𝑎, 𝑏) in the standard Cartesian coordinate system or as the vector that 

starts at the origin and ends at the point (𝑎, 𝑏).  

The complex plane consists of two number lines that intersect in a right angle at the 

point (0,0). The horizontal number line (what we know as the x-axis on a Cartesian 

plane) is the real axis. The vertical number line (the y-axis on a Cartesian plane) is the 

imaginary axis. 

An example of this is shown in the figure. 

Polar Form 

Let’s now take a look at the first alternate form for a complex number. If we think of 

the non-zero complex number 𝑧 = 𝑎 + 𝑏𝑖 as the point (𝑎, 𝑏) in the xy-plane we also 

know that we can represent this point by the polar coordinates (𝑟, 𝜃), where 𝑟 is the 

distance of the point from the origin and 𝜃 is the angle, in radians, from the positive 𝑥-

axis to the ray connecting the origin to the point. 

 

When working with complex numbers we assume that 𝑟 is positive and that 𝜃 can be 

any of the possible (both positive and negative) angles that end at the ray. Note that 

this means that there are literally an infinite number of choices for 𝜃. 

We excluded 𝑧 = 0 since 𝜃 is not defined for the point (0,0). We will therefore only 

consider the polar form of non-zero complex numbers. 

We have the following conversion formulas for converting the polar coordinates (𝑟, 𝜃) 

into the corresponding Cartesian coordinates of the point, (𝑎, 𝑏). 

𝑎 = 𝑟 cos 𝜃 , 𝑏 = 𝑟sin 𝜃 

If we substitute these into 𝑧 = 𝑎 + 𝑏𝑖 and factor an 𝑟 out we arrive at the polar form 

of the complex number, 

𝑧 = 𝑟(cos 𝜃 + 𝑖sin 𝜃) 

Note as well that we also have the following formula from polar coordinates relating 

𝑟 to 𝑎 and 𝑏 



𝑟 = √𝑎2 + 𝑏2 

but, the right side is nothing more than the definition of the modulus and we see that, 

𝑟 = |𝑧| 

So, sometimes the polar form will be written as, 

𝑧 = |𝑧|(cos 𝜃 + 𝑖sin 𝜃) 

The angle 𝜃 is called the argument of 𝑧 and is denoted by, 

𝜃 = arg 𝑧 

The argument of 𝑧 can be any of the infinite possible values of 𝜃 each of which can be 

found by solving 

tan 𝜃 =
𝑏

𝑎
 

and making sure that 𝜃 is in the correct quadrant. 

Note as well that any two values of the argument will differ from each other by an 

integer multiple of 2π. This makes sense when you consider the following. 

 

Exponential Form 

Now that we’ve discussed the polar form of a complex number we can introduce the 

second alternate form of a complex number. First, we’ll need Euler’s formula, 

𝐞𝑖𝜃 = cos 𝜃 + 𝑖sin 𝜃 

With Euler’s formula we can rewrite the polar form of a complex number into its 

exponential form as follows. 

𝑧 = 𝑟𝐞𝑖𝜃 

where 𝜃 = 𝑎𝑟𝑔𝑧 and so we can see that, much like the polar form, there are an infinite 

number of possible exponential forms for a given complex number. 

We can also get some formulas for the product or quotient of complex numbers. Given 

two complex numbers 𝑧1 = 𝑟1𝐞𝑖𝜃1 and  𝑧2 = 𝑟2𝐞𝑖𝜃2 where 𝜃1 is any value of arg𝑧1 and 

𝜃2 is any value of arg𝑧2 , we have 

𝑧1𝑧2 = (𝑟1𝐞𝑖𝜃1)(𝑟2𝐞𝑖𝜃2) = 𝑟1𝑟2𝐞𝑖(𝜃1+𝜃2)

𝑧1

𝑧2
=

𝑟1𝐞𝑖𝜃1

𝑟2𝐞𝑖𝜃2
=

𝑟1

𝑟2
𝐞𝑖(𝜃1−𝜃2)

 

The polar forms for both of these are, 



𝑧1𝑧2 = 𝑟1𝑟2(cos (𝜃1 + 𝜃2) + 𝑖sin (𝜃1 + 𝜃2))

𝑧1

𝑧2
=

𝑟1

𝑟2
(cos (𝜃1 − 𝜃2) + 𝑖sin (𝜃1 − 𝜃2))

5 Powers and Roots 

In this paragraph we’re going to take a look at a really nice way of quickly computing 

integer powers and roots of complex numbers. 

We’ll start with integer powers of 𝑧 = 𝑟𝐞𝑖𝜃 since they are easy enough. If 𝑛 is an

integer then, 

𝑧𝑛 = (𝑟𝐞𝑖𝜃)𝑛 = 𝑟𝑛𝐞𝑖𝑛𝜃

There really isn’t too much to do with powers other than working a quick example. 

Example: (3 + 3𝑖)5

Of course, we could just do this by multiplying the number out, but this would be time 

consuming and prone to mistakes. Instead we can convert to exponential form and then 

to quickly get the answer. 

The exponential form is 

𝑟 = √9 + 9 = 3√2, tan 𝜃 =
3

3
⇒ Arg𝑧 =

𝜋

4

Then, 

3 + 3𝑖 = 3√2𝐞𝑖
𝜋
4

Now, 

(3 + 3𝑖)5 = (3√2)5𝐞𝑖
5𝜋
4 = 972√2(cos (

5𝜋

4
) + 𝑖sin (

5𝜋

4
)) = 972√2(−

√2

2
−

√2

2
𝑖)

= −972 − 972𝑖 

Note that if 𝑟 = 1 then we have, 

𝑧𝑛 = (𝐞𝑖𝜃)𝑛 = 𝐞𝑖𝑛𝜃

and if we take the last two terms and convert to polar form we arrive at a formula that 

is called de Moivre’s formula. 

(cos 𝜃 + 𝑖sin 𝜃)𝑛 = cos (𝑛𝜃) + 𝑖sin (𝑛𝜃)𝑛 = 0, ±1, ±2, …
We now need to move onto computing roots of complex numbers. We’ll start this off 

“simple” by finding the nth roots of unity. The nth roots of unity for 𝑛 = 2,3, … are 

the distinct solutions to the equation, 




