Higher ODEs

1. Reduction of Order

The differential equation of the nth order in the general case has the form:

$$
F\left(x ; y(x), y^{\prime}(x), y^{\prime \prime}(x), \ldots, y^{(n)}(x)\right)=0
$$

where F is a continuous function of the specified arguments: an unknown function of one real or complex variable x, its derivatives.

A second order differential equation is written in general form as

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0,
$$

where F is a function of the given arguments.

If the differential equation can be resolved for the highest derivative it can be represented in the following explicit form:

$$
y^{(n)}(x)=f\left(x ; y(x), y^{\prime}(x), y^{\prime \prime}(x), \ldots, y^{(n-1)}(x)\right)
$$

For the 2 nd order differential equation, the following explicit form for the second derivative $y^{\prime \prime}$ may exist:

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

In special cases the function f in the right side may contain only some variables. Such incomplete equations include 5 different types considered below.
Those special cases of the function f for the 2 nd order differential equation include the situation when in the right side may contain only one or two variables. Such incomplete equations of the 3 different types are as follows:

1) $y^{\prime \prime}=f(x)$,
2.1) $y^{\prime \prime}=f\left(x, y^{\prime}\right)$, 2.2) $y^{\prime \prime}=f\left(y^{\prime}\right)$,
3.1) $y^{\prime \prime}=f\left(y, y^{\prime}\right)$, 3.2) $y^{\prime \prime}=f(y)$

With the help of certain substitutions, these equations can be transformed into first order equations.
In the general case of a second order differential equation, its order can be reduced if this equation has a certain symmetry. Below we discuss two types of such equations (cases 4 and 5):
4) The function $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ is a homogeneous function of the arguments $y, y^{\prime}, y^{\prime \prime}$;
5) The function $F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ is an exact derivative of the first order function
$\Phi\left(x, y, y^{\prime}\right)$.
Consider examples for the various cases of order reduction of the second order and higher order differential equations.

Case 1. Equation of type $y^{\prime \prime}=f(x)$
For an equation of type $y^{\prime \prime}=f(x)$ its order can be reduced by introducing a new function $p(x)$ such that $y^{\prime}=p(x)$. As a result, we obtain the first order differential equation

$$
p^{\prime}=f(x) .
$$

Solving it, we find the function $p(x)$. Then we solve the second equation

$$
y^{\prime}=p(x) .
$$

and obtain the general solution of the original equation.

Example 1. Solve the differential equation $y^{\prime \prime}=\sin x+\cos x$. This example relates to the Case 1. Consider the function $y^{\prime}=p(x)$. Then $y^{\prime \prime}=p^{\prime}$. Consequently,

$$
p^{\prime}=\sin x+\cos x
$$

Integrating, we find the function $p(x)$:

$$
\begin{aligned}
& \frac{d p}{d x}=\sin x+\cos x, \Rightarrow d p=(\sin x+\cos x) d x, \Rightarrow \int d p=\int(\sin x+\cos x) d x, \Rightarrow p \\
& =-\cos x+\sin x+C_{1}
\end{aligned}
$$

Given that $y^{\prime}=p$ we integrate one more equation of the 1st order:

$$
\begin{gathered}
y^{\prime}=-\cos x+\sin x+C_{1}, \Rightarrow \int d y=\int\left(-\cos x+\sin x+C_{1}\right) d x, \Rightarrow \\
y=-\sin x-\cos x+C_{1} x+C_{2} .
\end{gathered}
$$

The latter formula gives the general solution of the original differential equation.

Example 2. Find the general solution of the differential equation $y^{\prime \prime \prime}=x^{2}-1$. We use the consecutive n times integration of the given right hand part of the differential equation. Then the general solution of the equation is represented as

$$
y(x)=\frac{x^{5}}{60}-\frac{x^{3}}{6}+C_{1} x^{2}+C_{2} x+C_{3} .
$$

Here C_{1}, C_{2}, C_{3} are arbitrary numbers.

Example 3. Find a particular solution of the equation $y^{I V}=\sin x+1$ with the initial conditions $x_{0}=0, y_{0}=1, y_{0}^{\prime}=y_{0}^{\prime \prime}=y_{0}^{\prime \prime \prime}=0$.
We first construct the general solution, successively integrating the given equation:

$$
\begin{gathered}
y^{\prime \prime \prime}=-\cos x+x+C_{1}, \\
y^{\prime \prime}=-\sin x+\frac{x^{2}}{2}+C_{1} x+C_{2}, \\
y^{\prime}=\cos x+\frac{x^{3}}{6}+\frac{C_{1} x^{2}}{2}+C_{2} x+C_{3}, \\
y=\sin x+\frac{x^{4}}{24}+\frac{C_{1} x^{3}}{6}+\frac{C_{2} x^{2}}{2}+C_{3} x+C_{4} .
\end{gathered}
$$

Substituting the initial values, we determine the coefficients $C_{1}-C_{4}$ from the system of equations:

$$
\begin{gathered}
0=-1+C_{1} \\
0=C_{2} \\
0=1+C_{3} \\
1=C_{4}
\end{gathered}, \begin{gathered}
C_{1}=0 \\
C_{2}=0 \\
C_{3}=-1 \\
C_{4}=1
\end{gathered} .
$$

Hence, the particular solution satisfying the initial conditions has the form:

$$
y(x)=\sin x+\frac{x^{4}}{24}+\frac{x^{3}}{6}-x+1 .
$$

Example 4. Find the general solution of the differential equation $\left(y^{\prime \prime}\right)^{2}-$ $\left(y^{\prime \prime}\right)^{3}=x$.
This equation can be solved by the parametric method. We put $y^{\prime \prime}=t$. Then,

$$
x=t^{2}-t^{3} .
$$

Given that $d\left(y^{\prime}\right)=y^{\prime \prime} d x$, we find the derivative y^{\prime} expressed in terms of the parameter t :

$$
\begin{gathered}
d\left(y^{\prime}\right)=y^{\prime \prime} d x=t\left(2 t-3 t^{2}\right) d t=\left(2 t^{2}-3 t^{3}\right) d t, \Rightarrow \\
y^{\prime}=\int\left(2 t^{2}-3 t^{3}\right) d t=\frac{2 t^{3}}{3}-\frac{3 t^{4}}{4}+C_{1} .
\end{gathered}
$$

Similarly, we perform one more integration:

$$
\begin{aligned}
d y=y^{\prime} d x & =\left(\frac{2 t^{3}}{3}-\frac{3 t^{4}}{4}+C_{1}\right) \cdot\left(2 t-3 t^{2}\right) d t \\
& =\left(\frac{4 t^{3}}{3}-\frac{3 t^{4}}{2}+2 C_{1} t-t^{5}+\frac{9 t^{6}}{4}-3 C_{1} t^{2}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y=\int\left(\frac{4 t^{3}}{3}-\frac{3 t^{4}}{2}+2 C_{1} t-t^{5}+\frac{9 t^{6}}{4}-3 C_{1} t^{2}\right) d t \\
& =\frac{t^{4}}{3}-\frac{3 t^{5}}{10}+C_{1} t^{2}-\frac{t^{6}}{6}+\frac{9 t^{7}}{28}-C_{1} t^{3}+C_{2} \\
& \quad=\frac{9 t^{7}}{28}-\frac{t^{6}}{6}-\frac{3 t^{5}}{10}+\frac{t^{4}}{3}-C_{1} t^{3}+C_{1} t^{2}+C_{2} .
\end{aligned}
$$

Thus, the general solution is represented in parametric form as

$$
\begin{gathered}
x=t^{2}-t^{3} \\
\left\{y=\frac{9 t^{7}}{28}-\frac{t^{6}}{6}-\frac{3 t^{5}}{10}+\frac{t^{4}}{3}-C_{1} t^{3}+C_{1} t^{2}+C_{2}\right.
\end{gathered}
$$

where C_{1}, C_{2} are arbitrary constants.

Case 2.1 Equation of type $y^{\prime \prime}=f\left(x, y^{\prime}\right)$
Here we use the substitution $y^{\prime}=p(x)$ where $p(x)$ is a new unknown function. As a result, we obtain the first order equation:

$$
p^{\prime}=\frac{d p}{d x}=f(x, p) .
$$

By integrating, we find the function $p(x)$. Next, we solve one more equation of the 1 st order

$$
y^{\prime}=p(x)
$$

and find the general solution $y(x)$.

Example 5. Solve the differential equation $\sqrt{x} y^{\prime \prime}=\left(y^{\prime}\right)^{2}$.
This equation does not explicitly include the variable y, i.e. it corresponds to the type 4 in our classification. We introduce the new variable $y^{\prime}=p(x)$. The original equation is transformed into the first order equation:

$$
\sqrt{x} p^{\prime}=p^{2}
$$

which is solved by separation of variables:

$$
\begin{gathered}
\sqrt{x} \frac{d p}{d x}=p^{2}, \Rightarrow \frac{d p}{p^{2}}=\frac{d x}{\sqrt{x}}, \Rightarrow \int \frac{d p}{p^{2}}=\int \frac{d x}{\sqrt{x}}, \Rightarrow-\frac{1}{p}=2 \sqrt{x}+C_{1}, \Rightarrow \\
p=y^{\prime}=\frac{-1}{2 \sqrt{x}+C_{1}}
\end{gathered}
$$

Integrating the resulting equation once more yields the function $y(x)$

$$
\frac{d y}{d x}=\frac{-1}{2 \sqrt{x}+C_{1}}, \Rightarrow d y=-\frac{d x}{2 \sqrt{x}+C_{1}}, \Rightarrow y=-\int \frac{d x}{2 \sqrt{x}+C_{1}} .
$$

To compute the last integral we make the substitution: $x=t^{2}, d x=2 t d t$. As a result, we have

$$
\begin{gathered}
y=-\int \frac{d x}{2 \sqrt{x}+C_{1}}=-\int \frac{2 t d t}{2 t+C_{1}}=-\int \frac{2 t+C_{1}-C_{1}}{2 t+C_{1}} d t=-\int\left(1-\frac{C_{1}}{2 t+C_{1}}\right) d t \\
=-t+C_{1} \int \frac{d t}{2 t+C_{1}}=-t+\frac{C_{1}}{2} \int \frac{d\left(2 t+C_{1}\right)}{2 t+C_{1}} \\
=-t+\frac{C_{1}}{2} \ln \left|2 t+C_{1}\right|+C_{2} .
\end{gathered}
$$

Returning to the variable x, we finally obtain

$$
y=-\sqrt{x}+\frac{C_{1}}{2} \ln \left|2 \sqrt{x}+C_{1}\right|+C_{2} .
$$

Case 2.2 Equation of type $y^{\prime \prime}=f\left(y^{\prime}\right)$
In this case, to reduce the order we introduce the function $y^{\prime}=p(x)$ and obtain the equation

$$
y^{\prime \prime}=p^{\prime}=\frac{d p}{d x}=f(p),
$$

which is a first order equation with separable variables p and x. Integrating, we find the function $p(x)$, and then the function $y(x)$.

Example 6. Solve the differential equation $y^{\prime \prime}=\sqrt{1-\left(y^{\prime}\right)^{2}}$.
This equation does not contain the function y and the independent variable x (Case 3). Therefore, we set $y^{\prime}=p(x)$. Then this equation takes the form

$$
y^{\prime \prime}=p^{\prime}=\sqrt{1-p^{2}} .
$$

The resulting first-order equation for the function $p(x)$ is a separable equation and can be easily integrated:

$$
\begin{gathered}
\frac{d p}{d x}=\sqrt{1-p^{2}}, \Rightarrow \frac{d p}{\sqrt{1-p^{2}}}=d x, \Rightarrow \int \frac{d p}{\sqrt{1-p^{2}}}=\int d x, \Rightarrow \\
\arcsin p=x+C_{1}, \Rightarrow p=\sin \left(x+C_{1}\right) .
\end{gathered}
$$

Replacing p by y^{\prime}, we obtain

$$
y^{\prime}=\sin \left(x+C_{1}\right)
$$

Integrating again, we find the general solution of the original differential equation:

$$
\begin{gathered}
\frac{d y}{d x}=\sin \left(x+C_{1}\right), \Rightarrow d y=\sin \left(x+C_{1}\right) d x, \Rightarrow \int d y=\sin \int\left(x+C_{1}\right) d x, \Rightarrow \\
y=-\cos \left(x+C_{1}\right)+C_{2}, \Rightarrow y=C_{2}-\cos \left(x+C_{1}\right)
\end{gathered}
$$

Example 7. Find the general solution of the differential equation $y^{\prime \prime \prime}=$ $\sqrt{1-\left(y^{\prime \prime}\right)^{2}}$.

This equation is of type 2 . We introduce the new variable $z=y^{\prime \prime}$. This leads to the first-order equation:

$$
z^{\prime}=\sqrt{1-z^{2}}
$$

Integrating, we find:

$$
\begin{aligned}
\frac{d z}{d x}= & \sqrt{1-z^{2}}, \frac{d z}{\sqrt{1-z^{2}}}=d x, \int \frac{d z}{\sqrt{1-z^{2}}}=\int d x \\
& \arcsin z=x+C_{1} \Rightarrow z=\sin \left(x+C_{1}\right)
\end{aligned}
$$

In fact, we have transformed the initial equation to an equation of type 1 . The general solution $y(x)$ is most easily obtained by double integration of the expression for z :

$$
\begin{gathered}
y^{\prime \prime}=\sin \left(x+C_{1}\right) \\
y^{\prime}=-\cos \left(x+C_{1}\right)+C_{2} \\
y=-\sin \left(x+C_{1}\right)+C_{2} x+C_{3}
\end{gathered}
$$

where C_{1}, C_{2}, C_{3} are arbitrary constants.

Case 3.1 Equation of type $y^{\prime \prime}=f(y)$
The right-hand side of the equation depends only on the variable y. We introduce a new function $p(y)$, setting $y^{\prime}=p(y)$. Then we can write

$$
y^{\prime \prime}=\frac{d}{d x}\left(y^{\prime}\right)=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=\frac{d p}{d y} p
$$

so the equation becomes:

$$
\frac{d p}{d y} p=f(y)
$$

Solving it, we find the function $p(y)$. Then we find the solution of the equation $y^{\prime}=$ $p(y)$ that is, the function $y(x)$.

Example 8. Solve the differential equation $y^{\prime \prime}=\frac{1}{4 \sqrt{y}}$.
This is an equation of type 3 , where the right-hand side depends only on the variable y. We introduce the parameter $p(y)=y^{\prime}$. Then the equation can be written as

$$
y^{\prime \prime}=\frac{d p}{d y} p=\frac{1}{4 \sqrt{y}}
$$

We obtain the equation of the 1 st order for the function $p(y)$ with separable variables. Integrating gives:

$$
\frac{d p}{d y} p=\frac{1}{4 \sqrt{y}}, \Rightarrow 2 p d p=\frac{d y}{2 \sqrt{y}}, \Rightarrow \int 2 p d p=\int \frac{d y}{2 \sqrt{y}}, \Rightarrow p^{2}=\sqrt{y}+C_{1}
$$

where C_{1} is a constant of integration.
Taking the square root of both sides, we find the function $p(y)$

$$
p= \pm \sqrt{\sqrt{y}+C_{1}}
$$

Now recall that $y^{\prime}=p$ and solve another equation of the 1 st order:

$$
y^{\prime}= \pm \sqrt{\sqrt{y}+C_{1}}, \Rightarrow \frac{d y}{d x}= \pm \sqrt{\sqrt{y}+C_{1}}
$$

Separate the variables and integrate:

$$
\frac{d y}{\sqrt{\sqrt{y}+C_{1}}}= \pm d x \Rightarrow \int \frac{d y}{\sqrt{\sqrt{y}+C_{1}}}= \pm \int d x .
$$

To calculate the integral on the left-hand side, make the replacement:

$$
\sqrt{y}+C_{1}=z, \Rightarrow d z=\frac{d y}{2 \sqrt{y}}, \Rightarrow d y=2 \sqrt{y} d z=2\left(z-C_{1}\right) d z
$$

Then the left-hand integral is equal to

$$
\begin{aligned}
\int \frac{d y}{\sqrt{\sqrt{y}+C_{1}}} & =\int \frac{2\left(z-C_{1}\right) d z}{\sqrt{z}}=2 \int\left(\frac{z}{\sqrt{z}}-\frac{C_{1}}{\sqrt{z}}\right) d z=2 \int\left(z^{\frac{1}{2}}-C_{1} z^{-\frac{1}{2}}\right) d z \\
& =2\left(\frac{z^{\frac{3}{2}}}{\frac{3}{2}}-C_{1} \frac{z^{\frac{1}{2}}}{\frac{1}{2}}\right)=\frac{4}{3} z^{\frac{3}{2}}-4 C_{1} z^{\frac{1}{2}}=\frac{4}{3} \sqrt{\left(\sqrt{y}+C_{1}\right)^{3}}-4 C_{1} \sqrt{\sqrt{y}+C_{1}}
\end{aligned}
$$

As a result, we obtain the following algebraic equation:

$$
\frac{4}{3} \sqrt{\left(\sqrt{y}+C_{1}\right)^{3}}-4 C_{1} \sqrt{\sqrt{y}+C_{1}}=C_{2} \pm x
$$

where C_{1}, C_{2} are constants of integration
The last expression is the general solution of the differential equation in implicit form.

Case 3.2 Equation of type $y^{\prime \prime}=f\left(y, y^{\prime}\right)$
To solve this equation, we introduce a new function $p(y)$, setting $y^{\prime}=p(y)$, similar to case 3.1. Differentiating this expression with respect to x leads to the equation

$$
y^{\prime \prime}=\frac{d\left(y^{\prime}\right)}{d x}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=\frac{d p}{d y} p
$$

As a result, our original equation is written as an equation of the 1 st order

$$
p \frac{d p}{d y}=f(y, p)
$$

Solving it, we find the function $p(y)$. Then we solve another first order equation

$$
y^{\prime}=p(y)
$$

and determine the general solution $y(x)$.

Example 9. Solve the differential equation $y^{\prime \prime}=(2 y+3)\left(y^{\prime}\right)^{2}$.
This equation does not explicitly contain the independent variable x, that is refers to the Case 3. Let $y^{\prime}=p(y)$ Then the equation can be written as

$$
p^{\prime}=(2 y+3) p^{2}
$$

Separate variables and integrate:

$$
\begin{gathered}
\frac{d p}{p^{2}}=(2 y+3) d y, \Rightarrow \int \frac{d p}{p^{2}}=\int(2 y+3) d y, \Rightarrow-\frac{1}{p}=y^{2}+3 y+C_{1}, \Rightarrow \\
p=y^{\prime}=\frac{-1}{y^{2}+3 y+C_{1}} .
\end{gathered}
$$

Integrating again, we obtain the final solution in implicit form:

$$
\begin{aligned}
& \left(y^{2}+3 y+C_{1}\right) d y=-d x, \Rightarrow \int\left(y^{2}+3 y+C_{1}\right) d y=-\int d x \\
& \quad \Rightarrow y^{3}+\frac{3 y^{2}}{2}+C_{1} y+C_{2}=-x, \Rightarrow 2 y^{3}+3 y^{2}+C_{1} y+C_{2}+2 x=0
\end{aligned}
$$

where C_{1}, C_{2} are constants of integration.

