
Higher ODEs 

1. Reduction of Order 

The differential equation of the nth order in the general case has the form: 

  𝐹(𝑥; 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥), … , 𝑦(𝑛)(𝑥)) = 0, 

where 𝐹 is a continuous function of the specified arguments: an unknown function of 

one real or complex variable 𝑥, its derivatives. 

 

 A second order differential equation is written in general form as 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) = 0, 

where 𝐹 is a function of the given arguments. 

 

If the differential equation can be resolved for the highest derivative it can be 

represented in the following explicit form:  

  𝑦(𝑛)(𝑥) = 𝑓(𝑥; 𝑦(𝑥), 𝑦′(𝑥), 𝑦′′(𝑥), … , 𝑦(𝑛−1)(𝑥)) 

For the 2nd order differential equation, the following explicit form for the second 

derivative 𝑦′′ may exist: 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′). 

 In special cases the function 𝑓 in the right side may contain only some variables. 

Such incomplete equations include 5 different types considered below. 

Those special cases of the function 𝑓 for the 2nd order differential equation include 

the situation when in the right side may contain only one or two variables. Such 

incomplete equations of the 3 different types are as follows: 

1) 𝑦′′ = 𝑓(𝑥),  

2.1) 𝑦′′ = 𝑓(𝑥, 𝑦′), 2.2) 𝑦′′ = 𝑓(𝑦′), 

3.1) 𝑦′′ = 𝑓(𝑦, 𝑦′),  3.2) 𝑦′′ = 𝑓(𝑦) 

With the help of certain substitutions, these equations can be transformed into first 

order equations. 

In the general case of a second order differential equation, its order can be reduced if 

this equation has a certain symmetry. Below we discuss two types of such equations 

(cases 4 and 5): 

4) The function 𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) is a homogeneous function of the arguments 𝑦, 𝑦′, 𝑦′′; 

5) The function 𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) is an exact derivative of the first order function 



Φ(𝑥, 𝑦, 𝑦′). 

 Consider examples for the various cases of order reduction of the second order 

and higher order differential equations. 

 Case 1. Equation of type 𝑦′′ = 𝑓(𝑥) 

For an equation of type 𝑦′′ = 𝑓(𝑥) its order can be reduced by introducing a new 

function 𝑝(𝑥) such that 𝑦′ = 𝑝(𝑥). As a result, we obtain the first order differential 

equation 

𝑝′ = 𝑓(𝑥). 

Solving it, we find the function 𝑝(𝑥). Then we solve the second equation 

𝑦′ = 𝑝(𝑥). 

and obtain the general solution of the original equation. 

 

 Example 1. Solve the differential equation 𝑦′′ = sin 𝑥 + cos 𝑥. 

This example relates to the Case 1. Consider the function 𝑦′ = 𝑝(𝑥). Then 𝑦′′ = 𝑝′.  

Consequently,  

𝑝′ = sin 𝑥 + cos 𝑥. 

Integrating, we find the function 𝑝(𝑥): 

𝑑𝑝

𝑑𝑥
= sin 𝑥 + cos 𝑥, ⇒ 𝑑𝑝 = (sin 𝑥 + cos 𝑥)𝑑𝑥, ⇒ ∫ 𝑑𝑝 = ∫ (sin 𝑥 + cos 𝑥)𝑑𝑥, ⇒ 𝑝

= −cos 𝑥 + sin 𝑥 + 𝐶1. 

Given that 𝑦′ = 𝑝 we integrate one more equation of the 1st order: 

𝑦′ = − cos 𝑥 + sin 𝑥 + 𝐶1, ⇒ ∫ 𝑑𝑦 = ∫ (− cos 𝑥 + sin 𝑥 + 𝐶1)𝑑𝑥, ⇒ 

𝑦 = −sin 𝑥 − cos 𝑥 + 𝐶1𝑥 + 𝐶2. 

The latter formula gives the general solution of the original differential equation. 

 

 Example 2. Find the general solution of the differential equation 𝑦′′′ = 𝑥2 − 1. 

We use the consecutive n times integration of the given right hand part of the 

differential equation. Then the general solution of the equation is represented as  

𝑦(𝑥) =
𝑥5

60
−

𝑥3

6
+ 𝐶1𝑥2 + 𝐶2𝑥 + 𝐶3. 

Here 𝐶1, 𝐶2, 𝐶3 are arbitrary numbers.  

 



 Example 3. Find a particular solution of the equation 𝑦𝐼𝑉 = sin 𝑥 + 1 with the 

initial conditions 𝑥0 = 0, 𝑦0 = 1, 𝑦0
′ = 𝑦0

′′ = 𝑦0
′′′ = 0.  

We first construct the general solution, successively integrating the given equation: 

𝑦′′′ = −cos 𝑥 + 𝑥 + 𝐶1, 

𝑦′′ = −sin 𝑥 +
𝑥2

2
+ 𝐶1𝑥 + 𝐶2, 

𝑦′ = cos 𝑥 +
𝑥3

6
+

𝐶1𝑥2

2
+ 𝐶2𝑥 + 𝐶3, 

𝑦 = sin 𝑥 +
𝑥4

24
+

𝐶1𝑥3

6
+

𝐶2𝑥2

2
+ 𝐶3𝑥 + 𝐶4. 

Substituting the initial values, we determine the coefficients 𝐶1−𝐶4 from the system of 

equations: 

{

0 = −1 + 𝐶1

0 = 𝐶2

0 = 1 + 𝐶3

1 = 𝐶4

, ⇒ {

𝐶1 = 0
𝐶2 = 0

𝐶3 = −1
𝐶4 = 1

. 

Hence, the particular solution satisfying the initial conditions has the form: 

𝑦(𝑥) = sin 𝑥 +
𝑥4

24
+

𝑥3

6
− 𝑥 + 1. 

 

 Example 4. Find the general solution of the differential equation (𝑦′′)2 −

(𝑦′′)3 = 𝑥. 

This equation can be solved by the parametric method. We put 𝑦′′ = 𝑡. Then, 

𝑥 = 𝑡2 − 𝑡3. 

Given that 𝑑(𝑦′) = 𝑦′′𝑑𝑥, we find the derivative 𝑦′ expressed in terms of the 

parameter 𝑡: 

𝑑(𝑦′) = 𝑦′′𝑑𝑥 = 𝑡(2𝑡 − 3𝑡2)𝑑𝑡 = (2𝑡2 − 3𝑡3)𝑑𝑡, ⇒ 

𝑦′ = ∫ (2𝑡2 − 3𝑡3)𝑑𝑡 =
2𝑡3

3
−

3𝑡4

4
+ 𝐶1. 

Similarly, we perform one more integration: 

𝑑𝑦 = 𝑦′𝑑𝑥 = (
2𝑡3

3
−

3𝑡4

4
+ 𝐶1) ⋅ (2𝑡 − 3𝑡2)𝑑𝑡

= (
4𝑡3

3
−

3𝑡4

2
+ 2𝐶1𝑡 − 𝑡5 +

9𝑡6

4
− 3𝐶1𝑡2)𝑑𝑡, 



⇒ 𝑦 = ∫ (
4𝑡3

3
−

3𝑡4

2
+ 2𝐶1𝑡 − 𝑡5 +

9𝑡6

4
− 3𝐶1𝑡2)𝑑𝑡 

=
𝑡4

3
−

3𝑡5

10
+ 𝐶1𝑡2 −

𝑡6

6
+

9𝑡7

28
− 𝐶1𝑡3 + 𝐶2

=
9𝑡7

28
−

𝑡6

6
−

3𝑡5

10
+

𝑡4

3
− 𝐶1𝑡3 + 𝐶1𝑡2 + 𝐶2. 

Thus, the general solution is represented in parametric form as 

{
𝑥 = 𝑡2 − 𝑡3

𝑦 =
9𝑡7

28
−

𝑡6

6
−

3𝑡5

10
+

𝑡4

3
− 𝐶1𝑡3 + 𝐶1𝑡2 + 𝐶2

 

where 𝐶1, 𝐶2 are arbitrary constants. 

 

 Case 2.1 Equation of type 𝑦′′ = 𝑓(𝑥, 𝑦′) 

Here we use the substitution 𝑦′ = 𝑝(𝑥) where 𝑝(𝑥) is a new unknown function. As a 

result, we obtain the first order equation: 

𝑝′ =
𝑑𝑝

𝑑𝑥
= 𝑓(𝑥, 𝑝). 

By integrating, we find the function 𝑝(𝑥). Next, we solve one more equation of the 1st 

order 

𝑦′ = 𝑝(𝑥) 

and find the general solution 𝑦(𝑥). 

 

 Example 5. Solve the differential equation √𝑥𝑦′′ = (𝑦′)2. 

This equation does not explicitly include the variable 𝑦, i.e. it corresponds to the type 

4 in our classification. We introduce the new variable 𝑦′ = 𝑝(𝑥). The original equation 

is transformed into the first order equation: 

√𝑥𝑝′ = 𝑝2, 

which is solved by separation of variables: 

√𝑥
𝑑𝑝

𝑑𝑥
= 𝑝2, ⇒

𝑑𝑝

𝑝2
=

𝑑𝑥

√𝑥
, ⇒ ∫

𝑑𝑝

𝑝2
= ∫

𝑑𝑥

√𝑥
, ⇒ −

1

𝑝
= 2√𝑥 + 𝐶1, ⇒ 

𝑝 = 𝑦′ =
−1

2√𝑥 + 𝐶1

. 

Integrating the resulting equation once more yields the function 𝑦(𝑥) 



𝑑𝑦

𝑑𝑥
=

−1

2√𝑥 + 𝐶1

, ⇒ 𝑑𝑦 = −
𝑑𝑥

2√𝑥 + 𝐶1

, ⇒ 𝑦 = −∫
𝑑𝑥

2√𝑥 + 𝐶1

. 

To compute the last integral we make the substitution: 𝑥 = 𝑡2, 𝑑𝑥 = 2𝑡𝑑𝑡. As a result, 

we have 

𝑦 = −∫
𝑑𝑥

2√𝑥 + 𝐶1

= −∫
2𝑡𝑑𝑡

2𝑡 + 𝐶1
= −∫

2𝑡 + 𝐶1 − 𝐶1

2𝑡 + 𝐶1
𝑑𝑡 = −∫ (1 −

𝐶1

2𝑡 + 𝐶1
)𝑑𝑡

= −𝑡 + 𝐶1∫
𝑑𝑡

2𝑡 + 𝐶1
= −𝑡 +

𝐶1

2
∫

𝑑(2𝑡 + 𝐶1)

2𝑡 + 𝐶1

= −𝑡 +
𝐶1

2
ln |2𝑡 + 𝐶1| + 𝐶2. 

Returning to the variable 𝑥, we finally obtain 

𝑦 = −√𝑥 +
𝐶1

2
ln |2√𝑥 + 𝐶1| + 𝐶2. 

 

 Case 2.2 Equation of type 𝑦′′ = 𝑓(𝑦′) 

In this case, to reduce the order we introduce the function 𝑦′ = 𝑝(𝑥) and obtain the 

equation 

𝑦′′ = 𝑝′ =
𝑑𝑝

𝑑𝑥
= 𝑓(𝑝), 

which is a first order equation with separable variables 𝑝 and 𝑥. Integrating, we find 

the function 𝑝(𝑥), and then the function 𝑦(𝑥). 

 

 Example 6. Solve the differential equation 𝑦′′ = √1 − (𝑦′)2. 

This equation does not contain the function 𝑦 and the independent variable 𝑥 (Case 3). 

Therefore, we set 𝑦′ = 𝑝(𝑥). Then this equation takes the form 

𝑦′′ = 𝑝′ = √1 − 𝑝2. 

The resulting first-order equation for the function 𝑝(𝑥) is a separable equation and can 

be easily integrated: 

𝑑𝑝

𝑑𝑥
= √1 − 𝑝2, ⇒

𝑑𝑝

√1 − 𝑝2
= 𝑑𝑥, ⇒ ∫

𝑑𝑝

√1 − 𝑝2
= ∫ 𝑑𝑥, ⇒ 

arcsin 𝑝 = 𝑥 + 𝐶1, ⇒ 𝑝 = sin (𝑥 + 𝐶1). 

Replacing 𝑝 by 𝑦′, we obtain 

𝑦′ = sin (𝑥 + 𝐶1). 



Integrating again, we find the general solution of the original differential equation: 

𝑑𝑦

𝑑𝑥
= sin(𝑥 + 𝐶1) , ⇒ 𝑑𝑦 = sin(𝑥 + 𝐶1) 𝑑𝑥, ⇒ ∫ 𝑑𝑦 = sin ∫ (𝑥 + 𝐶1) 𝑑𝑥, ⇒ 

𝑦 = −cos (𝑥 + 𝐶1) + 𝐶2, ⇒ 𝑦 = 𝐶2 − cos (𝑥 + 𝐶1). 

 

 Example 7. Find the general solution of the differential equation 𝑦′′′ =

√1 − (𝑦′′)2. 

This equation is of type 2. We introduce the new variable 𝑧 = 𝑦′′. This leads to the 

first-order equation: 

𝑧′ = √1 − 𝑧2. 

Integrating, we find: 

𝑑𝑧

𝑑𝑥
= √1 − 𝑧2,

𝑑𝑧

√1 − 𝑧2
= 𝑑𝑥, ∫

𝑑𝑧

√1 − 𝑧2
= ∫ 𝑑𝑥, 

arcsin 𝑧 = 𝑥 + 𝐶1, 𝑧 = sin (𝑥 + 𝐶1). 

In fact, we have transformed the initial equation to an equation of type 1. The general 

solution 𝑦(𝑥) is most easily obtained by double integration of the expression for 𝑧: 

𝑦′′ = sin (𝑥 + 𝐶1), 

𝑦′ = −cos (𝑥 + 𝐶1) + 𝐶2, 

𝑦 = −sin (𝑥 + 𝐶1) + 𝐶2𝑥 + 𝐶3, 

where 𝐶1, 𝐶2, 𝐶3 are arbitrary constants. 

 

 Case 3.1 Equation of type 𝑦′′ = 𝑓(𝑦) 

The right-hand side of the equation depends only on the variable 𝑦. We introduce a 

new function 𝑝(𝑦), setting 𝑦′ = 𝑝(𝑦). Then we can write 

𝑦′′ =
𝑑

𝑑𝑥
(𝑦′) =

𝑑𝑝

𝑑𝑥
=

𝑑𝑝

𝑑𝑦

𝑑𝑦

𝑑𝑥
=

𝑑𝑝

𝑑𝑦
𝑝, 

so the equation becomes: 

𝑑𝑝

𝑑𝑦
𝑝 = 𝑓(𝑦). 

Solving it, we find the function 𝑝(𝑦). Then we find the solution of the equation 𝑦′ =

𝑝(𝑦) that is, the function 𝑦(𝑥). 

 



 Example 8. Solve the differential equation 𝑦′′ =
1

4√𝑦
. 

This is an equation of type 3, where the right-hand side depends only on the variable 

𝑦. We introduce the parameter 𝑝(𝑦) = 𝑦′. Then the equation can be written as 

𝑦′′ =
𝑑𝑝

𝑑𝑦
𝑝 =

1

4√𝑦
. 

We obtain the equation of the 1st order for the function 𝑝(𝑦) with separable variables. 

Integrating gives: 

𝑑𝑝

𝑑𝑦
𝑝 =

1

4√𝑦
, ⇒ 2𝑝𝑑𝑝 =

𝑑𝑦

2√𝑦
, ⇒ ∫ 2𝑝𝑑𝑝 = ∫

𝑑𝑦

2√𝑦
, ⇒ 𝑝2 = √𝑦 + 𝐶1, 

where 𝐶1 is a constant of integration. 

Taking the square root of both sides, we find the function 𝑝(𝑦) 

𝑝 = ±√√𝑦 + 𝐶1. 

Now recall that 𝑦′ = 𝑝 and solve another equation of the 1st order: 

𝑦′ = ±√√𝑦 + 𝐶1, ⇒
𝑑𝑦

𝑑𝑥
= ±√√𝑦 + 𝐶1. 

Separate the variables and integrate: 

𝑑𝑦

√√𝑦 + 𝐶1

= ±𝑑𝑥, ⇒ ∫
𝑑𝑦

√√𝑦 + 𝐶1

= ±∫ 𝑑𝑥. 

To calculate the integral on the left-hand side, make the replacement: 

√𝑦 + 𝐶1 = 𝑧, ⇒ 𝑑𝑧 =
𝑑𝑦

2√𝑦
, ⇒ 𝑑𝑦 = 2√𝑦𝑑𝑧 = 2(𝑧 − 𝐶1)𝑑𝑧. 

Then the left-hand integral is equal to 

∫
𝑑𝑦

√√𝑦 + 𝐶1

= ∫
2(𝑧 − 𝐶1)𝑑𝑧

√𝑧
= 2∫ (

𝑧

√𝑧
−

𝐶1

√𝑧
)𝑑𝑧 = 2∫ (𝑧

1
2 − 𝐶1𝑧−

1
2)𝑑𝑧

= 2(
𝑧

3
2

3
2

− 𝐶1

𝑧
1
2

1
2

) =
4

3
𝑧

3
2 − 4𝐶1𝑧

1
2 =

4

3
√(√𝑦 + 𝐶1)3 − 4𝐶1√√𝑦 + 𝐶1. 

As a result, we obtain the following algebraic equation: 

4

3
√(√𝑦 + 𝐶1)3 − 4𝐶1√√𝑦 + 𝐶1 = 𝐶2 ± 𝑥, 



where 𝐶1, 𝐶2 are constants of integration

The last expression is the general solution of the differential equation in implicit form. 

Case 3.2 Equation of type 𝑦′′ = 𝑓(𝑦, 𝑦′)

To solve this equation, we introduce a new function 𝑝(𝑦), setting 𝑦′ = 𝑝(𝑦), similar

to case 3.1. Differentiating this expression with respect to 𝑥 leads to the equation 

𝑦′′ =
𝑑(𝑦′)

𝑑𝑥
=

𝑑𝑝

𝑑𝑥
=

𝑑𝑝

𝑑𝑦

𝑑𝑦

𝑑𝑥
=

𝑑𝑝

𝑑𝑦
𝑝.

As a result, our original equation is written as an equation of the 1st order 

𝑝
𝑑𝑝

𝑑𝑦
= 𝑓(𝑦, 𝑝). 

Solving it, we find the function 𝑝(𝑦). Then we solve another first order equation 

𝑦′ = 𝑝(𝑦)

and determine the general solution 𝑦(𝑥). 

Example 9. Solve the differential equation 𝑦′′ = (2𝑦 + 3)(𝑦′)2.

This equation does not explicitly contain the independent variable 𝑥, that is refers to 

the Case 3. Let 𝑦′ = 𝑝(𝑦) Then the equation can be written as

𝑝′ = (2𝑦 + 3)𝑝2.

Separate variables and integrate: 

𝑑𝑝

𝑝2
= (2𝑦 + 3)𝑑𝑦, ⇒ ∫

𝑑𝑝

𝑝2
= ∫ (2𝑦 + 3)𝑑𝑦, ⇒ −

1

𝑝
= 𝑦2 + 3𝑦 + 𝐶1, ⇒

𝑝 = 𝑦′ =
−1

𝑦2 + 3𝑦 + 𝐶1
. 

Integrating again, we obtain the final solution in implicit form: 

(𝑦2 + 3𝑦 + 𝐶1)𝑑𝑦 = −𝑑𝑥, ⇒ ∫ (𝑦2 + 3𝑦 + 𝐶1)𝑑𝑦 = −∫ 𝑑𝑥,

⇒ 𝑦3 +
3𝑦2

2
+ 𝐶1𝑦 + 𝐶2 = −𝑥, ⇒ 2𝑦3 + 3𝑦2 + 𝐶1𝑦 + 𝐶2 + 2𝑥 = 0,

where 𝐶1, 𝐶2 are constants of integration.

Case 4. Function 𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′) is homogeneous with respect to the arguments 
𝑦, 𝑦′, 𝑦′′




