Lecture #8: Linear Operations on Vectors Given by Their
Coordinates

8.1 Projection of the Vector on Axis
Let us consider an arbitrary vector AB and an axis with direction given by the

vector G (Fig.10). To get points A", B” we drop perpendiculars from the origin and
terminus of the vector on the axis.
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Figure 10

Definition. The length of the segment A'B” taken with sigh “+” if A'B™ has the

_

same direction with G or with the sigh “—” if A'B” has the opposite direction with
U is called projection of the vector AB on U (or on the axis with direction «).
Notation: prﬁﬁ?;.

Note. From the definition and Fig.10 it follows that

prgﬁ = ‘ﬁ‘ = ‘ﬁ‘ cos(ré, u)= ‘ﬁ‘cosw

Properties of the projections:
1. pryha=Apr;a;
2. pry(@a+b)=pra+prb.
3. pnga = prya for positive A;

and pr,;a=—prya for negative A.

Proof. 1. Let o= (é,AU) (Fig.11). Then

Figure 11

pryAa = Aa|cos(ra,l)=|A| &|cos(rd,U) =



Alldlcosa if L>0 Allalcoso if >0
:{ 2. afcosa {l |alcosa =A|d|cosa =Apr;a.

% ]la]cos(n—a)if A<0 |=|1]l@|cosa if %<0
2. Let us prove this property geometrically. There are six different cases (Fig.12).
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It follows from case | that
pr,(a+b)=pr,a+ prb.
It follows from case Il that
—pry(@a+b)=-pr,a+-prb,ie. pr;(@a+b)=pra+ prb.
It follows from case |11 that
pr,a=pr;(@a+b)—pr;b,ie. pr;(@a+b)=pr,a+ prb.
It follows from case IV that
—pr,b =—pr,(@+b)+ pra,i.e. pr,(@a+b) = pra+ pr,b.
It follows from case V that
pr.b = pr;(a+b) - pr,a, i.e. pr;(@a+b)=pr,a+ pr,b.
It follows from case VI that



—pr,a=—pr;(@+b)+prb,ie pr;(@a+b)=pra+prb.
3. Since for the positive A the direction of the axis stays the same, the projection of

the vector saves its value. For the negative A we obtain the opposite direction of the
axis and therefore the opposite sign of the projection.

Properties are proven.

Note. One additional property of vector projection follows directly from the
definition:

Example. It is known that pr,a=10, pr;b =5. Find pr_¢(3d-2D).

By the projection properties we have

pr (3@ —2b) =—pr.(3a-2b) =-3pr.a+2pr.b =—3-10+2-5=-30+10=-20.

Thus, the vector —¢ and the vector-projection of the vector 3a —2b have the
opposite directions.

8.2 Cartesian Coordinate System

@gﬁnition. Cartesian coordinate system consists on a point O called an origin and

perpendicular directed coordinate axes passing through the origin.

Cartesian coordinate system with two (three) axes is called coordinate system
in plane (in space).

Traditionally, the axes in plane are called axis of abscissas (axis Ox) and axis
of ordinates (axis Oy) and directed in the way that the shortest turn from positive
semi-axis Ox to positive semi-axis Oy is made anticlockwise.
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Definition. The axes in space are called axis of abscissas (axis Ox), axis of

ordinates (axis Oy) and applicate axis (axis Oz) and directed in the way that the
shortest turn from positive semi-axis Ox to positive semi-axis Oy is made
anticlockwise if you look from the positive semi-axis Oz.

@qﬁnition. Natural bases in plane and in space are bases formed from the unit

vectors directed along the positive semi-axes.
Namely, natural basis in plane is set of vectors

i(10), j(0,9);
and natural basis in space is set of vectors
i(1,0,0), j(0,1,0),k(0,0,1).

Herewith,
[TH T HK=L
and
P LJT Lk, jLk,ie (i,])=@k)=(jk) =0,
z 1 From the Theorem about vector decomposition it

follows that to find coordinates of the vector in the
mentioned above bases we should connect the
origin of the vector with point O and drop
perpendiculars on the exes to find the vector-
projections of this vector on basis vectors.

y In this case the vector is equal to sum of obtained
vector-projections (Fig.13).

Thus, we have:

Figurel3

in plane Oxy
d=a,i +a,j=(a,,a,);
in space Oxyz

d=a, +a,]+ak=(a,a,,a,),



where
a, = pra=[d|cosa, a, = pr;a =[d|cosP, a,=pr.da=/alcosy,

N A A

and o =(&,i), p=(a,]), y=(a,k) are angles between the vector and positive semi-
axes Ox,0y,0z.

(Dgﬁnition. cosa,cosP,cosy are called the direction cosines of the vector.

From Fig.13 it follows that
1) By Pythagorean Theorem

|d|=,/af +a’ +a’

|d> |&|* cos®o+|a|* cos®B+|d[* cos?y
af af

2) 1= = cos? o + cos% B+ cos? v, i.e.

cos? o +c0s* B+cos®y =1

3) Vector (cosa,cosf,cosy) is a vector of unit length with the same with vector a

direction. Thus, this vector is ort of the vector a, i.e.

o

a® = (cos o, cosP,cosy) =

jabl

Examplé. Itis known that |a|=2, cosa=1/2, cosy=-1/2 and an angle between

the axis Oy and & is acute. Find the coordinates of the vector &.
Since the angle B is acute then cosp >0 and

1 1 1 1
cosB=~/1-cos? o —cos’y = [1-=——= = |= =,
p=+ ! 4 4 \2 12
Therefore
ay =|alcosa=1, a, = alcosp=+v2, a,=ajcosy=-1;

a=(L2;-1)

8.3 Radius-vector of the Point



(D(gﬁnition. Suppose we have Cartesian coordinate system. Vector OM with origin

in the point O and a terminus M is called a radius-vector of the point M, denoted 7y,
or simply 7

Coordinates of the point in the Cartesian coordinate system by definition are
coordinates of its radius-vector, i.e.

If OM —7%—vityj+zk=(x,y,z) then M(X,V,z).
!Z

8.4 Coordinates of Vectors in Orthonormal Basis

Let us find coordinates of the vector AB through the coordinates of A and B (Fig.14).
AB =0B—-0A=(Xg,Yg:Z8) = (Xa, Ya:Za) = (Xg = Xa: Y& — YA, Z8 —ZA)

Z A A(XA,yA,ZA)

B(Xg,YB,Z8)

>

O y

Figure 14

(Dgﬁnition. It means that to find coordinates of the vector we should subtract from
the coordinates of the terminus the coordinates of the origin.



At the same time, since module of the vector AB is equal to the distance between two
points, we state the following:

Definition. The distance between two points A and B is equal to

d = AB = \/(XB - XA)2 +(Yg — YA)2 +(zg — ZA)2 :

Example. It is known that & = AB = (1,2;-1), A(LL0). Find the coordinates of the
point B and distance between the points A and B.

Ay =Xg— Xy =>Xg =a, + X, =1+1=2;

a, =Yg~ Ya=>Yg=ay+ya=2+1=3;

a, =Ig—2p=>Ig=a,+2,=-1+0=-1.
Therefore, B(2;3;-1).

The distance between the points A and B is equal to the length of the vector AB:

d:\/12+22+(—1)2 -6

8.5 Linear Operations on Vectors Given by Their Coordinates

Suppose we consider some 3-dimensional linear space with basis € ,€,,§;,
and vectors
X=0,6 +a,6, + a6, =(a,0,,05),
Y = P& + Bof, + B8 = (B, Bor ) -
Then one can calculate
- multiplication of a vector by a scalar
AX =B + 08, + 38;) = LB + A8, + Aok, = (Ao, Ay, Aay).
- sum of vectors
X+ V=€ + a8, + €y + Bi€ + B8, + B3, =
=(ay + B)E +(ay + B,)E, + (a3 + B3)€; = (o + By + By, a5+ fBs).
- subtraction of vectors
X—Y =€ +a,8, + 1€ — (B€ + Bo6, + i€;) =

=(a, = B8 +(ay — B,)6, + (ay — B3)6 = (o, — Py — By otz — Bs)



Conclusions:

1. To multiply vector by scalar means to multiply all its coordinates by this
scalar;

2. To add (subtract) two vectors means to add (subtract) their corresponding
coordinates.

Example. Find 3@, and @ + b. if the vectors @ = (1, -2, 4); b = (0, -3, 1)
3a=(31, 3-(-2), 3-4)=(3, -6, 12)

a+ b= (1+0, -2-3, 4+1) = (1, -5, 5)

Definition. TWo Vectors @ =(a.; ay,; a and b =(b,; by; by) are equal if their

coordinates are equal
ax :bX) ay = by, az = bz

Definition. Two vectors @ =(a.; a,; ay and b =(by; by; b;) are collinear if their
coordinates are proportional:

Gy _ %

by by by
Proof: If @ and b are collinear then a scalar A occur such that a=\b. Therefore,
ax = Abx; ay = Aby; a,=1b,,

from which the proportionality of the coordinates arises.
Example. Check collinearity of vectors a =(2; -7; 4) i b =(4; -14; 5)

2 =7 4

4 —14" 5
The vectors are not collinear.



