Lecture #9: Products of VVectors
9.1 A Dot (Scalar) Product

(Dgﬁnition. Scalar product (or dot product) of two vectors & and b is a number

(scalar) equal to \é“ﬁ‘ cosa., where o =a”b is an angle between vectors & and b .
We denote the scalar product in two ways: (é, 5) or just ab . So,
(a,6)= alb|cosa.
Since
lb[cosa = prb, dcosa = pr.a,

we have

Proof.
1) (a,6)=|a ab|cos o = |ba] cos o = (6.a);
2) (14,5 )=[p|pr;ra = 15| pr;a = 1(a.6 )

—

3) (a+b,¢)=[c| npg (@ +b) =[c|(pr.a+ pr,b )= (a,¢)+ (b,c).
Properties are proven.
From the definition It follows that

(@a)=la® or |a=y@E3).

Thus, we obtain an additional fourth property of scalar product:

4) (a,8)>0 and (8,d)=0<a=0.



Note. (a,a)=a? is called a scalar square

5) Statement (Criterion of the perpendicularity) Two non-zero vectors are
perpendicular if and only if their scalar product is equal to zero, i.e.

alb < (a,b)=0.
Indeed,

alb <:>oc:g<:>cosoc:0<:>(§,5):|éllﬁlcosazo.

Example 1. 1t is known that a=5p+24, b=p-3G, [p/=1 |d=2,
A T . =
@z(p,qug.Fmd‘aer‘.

By the last formula

—

=(a+b,a+b)=(5p+2G+ p-3G,5p+2q4+p—304)=(6p—G,6p—0) =

=36(p, p)—6(p,q) —6(q, p) + (G, q) =[BYy properties of scalar product]=
=36|pJ? —12(f),q)+|q|2:36-1—12-1-2-cosg+22 =36-12+4=28.

Thus,

‘§+6‘=\/2_8=2\/7.

Example 2. Find the ort of the vector.

From the definition of ort it follows that a° = Aa, where A > 0. Therefore

1=(a°,a°)=(ra,na)=22af =2 =%:>

=

o8
A

Note, that we have obtained the same formula as obtained above through the
direction cosines.

Let us find the formula to calculate the scalar product of vectors given by their

coordinates in the orthonormal basis 7, j,k .



Since
[T JHk[=1
and
i L] 7Lk jLk, ie (i,7)=@G.k)=(j.k)=0,
we have

(a.b)=(ad +a,] +a,k,bi +b,j+bk)=ab, +ab, +a,b,.

It means that to find the scalar product we should multiply the corresponding
coordinates of vectors and then summarize these products.

Note. This formula is valid for the vectors in plane (case, when a, =b, =0).

Example. 1t is known that d(1,2,3), b(-112), €(0,1,4). Find a value k such that
al (5 — ké). By the criterion of the perpendicularity we have
0=(a,b - k¢)=(a,b)-k(ac)=
=1(-1)+2-1+3-2—k(1-0+2-1+3-4) =

~7-14k =0.
Thus
=t -1
14 2

Note. The two and three-dimensional vector spaces with scalar product, satisfying

four properties written above, are called Euclidean vector spaces.

Example Find the angle ¢ =(a, b) between the vector a= (ax; ay; az) and

b=(by, by, b;)
Since (a,6)= alo|cos(a ~b)
Then,
050 a-'b axby + a,b, + a,b,

[al]b) \/a,f +a,?+ aZZ\/b,C2 +b,% +b,°




u
i - _

Prya = aycosa + a, cosf + a, cosy
S

ﬁ?(amplé 4. Find a dot product of the vectors @ = (2,—1,4); b = (0,3, -5).

d —

a-b=2-0+(-1)"3+4-(-5) =-3-20=-23.

€

_%xamplé 5. A triangle with vertices is given A(1; -1; 3), B(7; -5; 4), C(0;3; -4).

Find the inner angle at the vertex A.
¥he coordinates of the vectors are

© AB = (7-1; -5+1; 4-3) = (6, -4, 1); AC = (0-1; 3+1; -4-3) = (-1, 4, -7).
‘f’hen,

|AB| = /62 + (—4)2 + 12 =36 + 16 + 1 = V53;

b
Lm = /(=12 +42 + (=7)2 = V1 + 16 + 49 = V66;

Finally

b s SEDHCD AT 6-16-7 29
V53 -1/66 /3498 /3498

i _29 29

g (p=a7‘ccosm=n—arccosm.

1
¢ 9.2 ACross (Vector) Product

S
QDefinition. The ordered triple of non-complanar vectors &,b,¢ form a right-hand

triple if the shortest turn from the vector a to the vector b is made anticlockwise
when their origins are connected and you observe this turn from the terminus of C .
H] other case they form a left — hand triple.

@gﬁnition. Vector product (or cross product) of vectors & and b is a vector ¢
a
satisfying the following three conditions:
n _
1)cLla,clb;

2) \6\:\3\‘5‘sin o, where o is an angle between & and b ;



3) &, b, ¢ form the right—hand triple.

We denote vector product in two ways, namely ¢ =axb or ¢ = [*,5].

Algebraic properties of the vector product:
1) :é, 5]: —[5, é] (Property of anti-symmetry);
2) ra,6]=2[a,6]=[a. 5]
3) |a.b+c|=a,b|+[ac].

G’roqﬁ Properties 1)-2) follow directly from conditions 2 and 3 of definition.

To prove the property 3) let us show first that there is another way to plot the result
of vector product (Fig. 17). We connect the origins of two vectors, project the vector

Figure 17
b on the plane perpendicular to the vector &. Then we turn the obtained vector 51
anticlockwise on 90 degrees and multiply by \a\ . The resultis @xb since it satisfies

all conditions from the definition.
We are going to use this procedure to prove the third property. Consider the
parallelogram | from the Fig.18 and project it on the plane perpendicular to a.

d

Figure 18



Obtained figure 11 is also parallelogram and, moreover, the diagonal d =b +¢ of the
figure I is projected into the diagonal d, =b, +¢; of the figure I1. To obtain the figure
111 we turn the figure 11 anticlockwise on 90 degrees and stretch it in [a] times. At

that we again obtain the parallelogram where the diagonal of 111 is obtained by turn
and stretching of the diagonal of Il. It means that the obtained diagonal is the vector

axd =ax (b +¢) equal to the sum of the parallelogram sides, i.e.
3x&=§x(6+6)=3x6+3x6.

Properties are proven.

Geometrical properties of the vector product:

1) d||b < axb =0 (Criterion of collinearity of two non-zero vectors)
_ N, 0 _ .
Indeed, &|| b @a:(é,b):{ <:>sina:0:>‘a’xb‘:0<:>éxb:0.
T

Note. Another criterion of collinearity follows from definition, namely,

31l b =1 H ax ay 4,
d|lb < d=Ab < a, =2b,a,=2Ab,a, =Ab, & F=—=-%,
b, b, b,

I.e. the coordinates of collinear vectors are proportional.

BfoccceccccC D) Spa =|axb|, ie. the area of the
a i h ,/' parallelogram constructed on the vectors
A o Dﬂ ,’[’) a and b is equal to the module of their
b vector product.
Figure 19 Indeed, from Fig. 19 we have

Spar = AB-AD-sina = \a”ﬁ‘sin(a,BJ = |axb|.
3) The altitude of the parallelogram is equal to
‘é X 6‘

b

h:

Indeed, from Fig.19 It follows that:
S _[a:8

Spar =N AD=h="0% = 5




4) The area of the triangle, constructed on the vectors d and b , is equal to a half of
the module of their vector product. At the same time, the formula for the altitude

dropped on the vector b is the same as for the parallelogram. So
_ hxw

S, = 5

Let us find the formula to calculate the vector product of vectors given by their
coordinates in the orthonormal basis 1, j,k . Since

g

ixi=0 ixj=k ixk=-]
Jxi=-k jxj=0 Jxk=T
kxi=] kKxj=-i kxk=0

the vector product of vectors a=a,i +a,]+a,k and b =b,i +b,j+b,K is equal

to

[5,6]:[aXT+ayJ?+aZIZ,in"+byj7+bZIZ]:aXbXTxT+abeTxT+aXbZTxIZ+abeTxT+
+aybyj7>< jra szxlz++aZbXIZxT+aZbyIZx j+a,bkxk =

=(axb ab)XJ+( axbz+aZbX)ExT+(ayb ab)J k =

[ ] Kk
—~T(a,b, —a,b, )+ (-1)j(asb, -a,b,)+Kk(ab, —ab,)=la, a, a,
b, b, b,
So,
i J Kk
xb=la, a, a,.
b, b, b,

ﬁx,amplé. Find area of the triangle with vertices in the points A(11), B(2,-1),C(0,3)

and vector h collinear to the altitude dropped on side AB.
Since the problem is formulated in plane we can not calculate vector product to find
area. That is why before solving this problem we reformulate the task by expanding

the coordinates of points to spatial case, i.e. we suppose that vertices have the
following coordinates:



A(1,1,0), B(2,-1,0),C(0,2,0).
Then AB=(1,-2,0), AC =(-110),

— —

i J K
ABxAC=|1 -2 0/=0i -0j+(-1k =(0,0,-1),
-1 1 0
l— — 132 o ;> 1.1
Sy ==|ABxAC|==0"+0"+(-)  ==-1=—.
v = ABxAC|=_ (D=3 1=

Vector h is perpendicular to the vector AB and to the vector AB x AC (since
this vector is perpendicular to any vector in the plane of triangle). It means that

i jJ k
h=|AB,ABxAC|=[1 -2 0|=2i+]+0k=(210).
0 0 -

These coordinates are coordinates in space. To get final answer we should

save only the first two coordinates, i.e. h(2,1).
9.3 A Mixed Product

@gﬁnition. Mixed product of vectors &,b,¢ is equal to the value obtained after
scalar multiplication of the vector ¢ by the vector product of vectors & and b , i.e.
(a,b,¢)=(axb,c).

Theorem (Criterion of complanarity of three mnon-zero vectors)

(é, 5,6): 0« 4,b,c are complanar.

(o)

~ ~ axb L : :
Proof. (ﬁ,b,é):(éxb,é):0c> - . It means that either C is parallel to the

Q)
(=N
o o

X =

plane of @ and b or & and b are collinear. In all these cases the vectors &,b,¢ are

complanar. Theorem is proven.

Note. If at least two factors coincide in the mixed product, this product is equal to

zero. Thatis (d,3,b) =0.



Theorem (Mixed product of the right-hand triple) a,b,c form the right-hand
triple if and only if (a,b,¢)> 0.
Proof. From Fig.20 it follows that if &,b,¢

form the right-hand triple then an angle o
Is acute. Thus

(axb,c)=(a,b,c)>0.
From the other hand, if

- Figure 20
(axb,6)>0:>003a>0:>

= « is acute = &,b,c form the right-hand triple. Theorem is proven.
Corollary. (a,b,c)<0< &,b,c form the left-hand triple.

Theorem (Geometrical meaning of the mixed product)V . aiepines =|@.0.C)

, i.e. the volume of the parallelepiped, constructed on the vectors &,b,¢ , is equal to
the module of their mixed product.

Proof. Suppose &,b, ¢ is a right-hand triple (Fig.21). Then

Figure 21
V =S ADsin o = |axblc|sin o =

=|axblc[sin| = - |=|axblc|cosp = (axb,c)=(a,b,¢)=|(a,b,c).
Clsin| 5 ]

If a,b,c form the left-hand triple (for this case ¢ and « are shown as ¢’,o’ on
Fig.21) then



sina:sin(B—E):—sin(g—ﬁjz—cosﬁ.
Therefore V = —(a 56) a,b,c). Theorem is proven.

Note. It is simple to check that if &,b, ¢ isa right-hand triple then ¢,a,b and b,¢,a
form the right-hand triples, as well. Hence,
V =(4,b,c)=(c,a,b)=(b,c,a).
In the same way it can be shown that
V =—(b,a,c)=—(¢,b,a) =—(a,¢,b).
Moreover, from the obtained above it follows that
(a,b,c)=(axb,c)=(b,c,a) = (bxc,a) =(a,bxc),

I.e. to find mixed product we can multiply any two neighbour vectors in the vector
way and then multiply the result vector by the third one in the scalar way.

Algebraic properties of the mixed product:
1) (@b,c)=(c,a,b)=(b.c.a),
and
1.b) (a,b,c)=—(b.a,c)=—(a,c,b)=—(c.b,a);
i.e. cyclic transposition of vectors does not change the value of the mixed product,
but the transposition of any two neighbour vectors changes the sign of the mixed

product. It follows from the last Note or from the properties of scalar and vector
products.

2) (Aa,b,¢)=2(a,b,c)=(a,xb,c)=(a,b,rc),
3) [@+b,c,d)=(acd)+(b,cd).
Last two properties follow directly from the properties of scalar and vector products.

Geometrical properties of the mixed product:
1) Vparallelepiped :‘(5’6’6} (Fig.22)



Nty A 4
N ’

Figure 22

The altitude of the tetrah

2) The altitude of the parallelepiped dropped on
the base of vectors d and b is

v (@p.c)

h=

S ‘EXB‘ .

3) The volume of the tetrahedron constructed

on vectors d,b,¢ (Fig.22) is equal to
L 1\(&, .

Vietrahedron = gvpar. =—|\a,b
edron coincides with the altitude of the

6

parallelepiped, so it could be found by the same formula.

Let us find the formula to calculate the mixed product of vectors given by their

coordinates in the orthonormal basis

iJ.k.

Suppose,
a:aXT+ayi+aZE:(aX,ay,aZ)
b =b,i +b,J +b,k =(b,,b,.b,)
6=CXT+cy]+cZIZ:(cX,cy,cz)
Let us evaluate (,b,¢)=(a,b x¢)
i ] k
_ b, b, _b, b| _b, b
bxc=b, b, b,|=i" -7 Fl+k|* J|=
Cy C| oy G o ©y
C, C C,
b, b,| |b, b, b by
Cy C o Gl [Cx Cy
a, a, a
. b, b b, b b, b x ¥z
(_”bx(_f):ax y Z—ay X Z+az X y=bx by bz'
c, G ¢, C, Cy Cy
C, C, G
Therefore,
a, a, a,
(@b.c)=o, b, by
c, C C



Example 1. Find the coordinates of the vertex D of the tetrahedron ABCD if the

volume of this tetrahedron is equal to 10, D is situated on the positive semi-axis Oz
and A(L2;3), B(-1,0;2),C(0,4).

From condition it follows that D has coordinates D(0;0;z5) and

v =10:%‘(E,A—C,E], ie. ‘(E,AT:,E] = 60.

But
2 -2 1

(Es’,?c,ﬁ)z—l 2 -2 |=-4(zp-3)-4+2+2+8-2(z5-3) =
-1 -2 z5-3

= 62 +26.

Therefore

—625=-86 | zp =43/3

Since D is situated on the positive semi-axis Oz the answer is D(0;0;43/3).

-6z, =34 Zp =—34/6=-17/3
—6zD+26=i60<:{ b <:{ P / /

Example 2. Prove that four points are situated on the same plane if their coordinates
are A(111), B(1,2;3), C(2;3;4), D(0;2;4).

These points are from the same plane if and only if the vectors AB,AC,AD are
complanar. Let us check this statement.

0 1 2
(AB,AC,AD)=|1 2 3=0-3+2+4-3-0=0.

-1 1 3
Therefore the vectors are complanar and points are situated on the same plane.
if (a,b,c)
a,c,c)+(b,b,6)+(b,c,€)=1+0+0+0=1.

1. By mixed product properties:
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