## Lecture \#4:

### 4.1 Inverse Matrix

Definition. A square matrix $A$ is called a non-singular matrix if $\operatorname{det} A \neq 0$. In other case it is called a singular.

Definition. A square matrix $A^{-1}$ is called an inverse matrix to the square nonsingular matrix $A$ if $A^{-1} A=A A^{-1}=E$.

In this case, the matrix $A$ is called invertible

## Example.

Suppose $A=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right), B=\left(\begin{array}{cc}\cos (-t) & -\sin (-t) \\ \sin (-t) & \cos (-t)\end{array}\right)=\left(\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right)$.
Then $A B=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)\left(\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right)=$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\cos ^{2} t+\sin ^{2} t & \begin{array}{c}
\cos t \sin t-\sin t \cos t \\
\sin t \cos t-\cos t \sin t \\
\sin ^{2} t+\cos ^{2} t
\end{array}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& B A=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\cos ^{2} t+\sin ^{2} t & -\cos t \sin t+\sin t \cos t \\
-\sin t \cos t+\cos t \sin t & \sin ^{2} t+\cos ^{2} t
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Thus, $B=A^{-1}$, i.e. the matrix $B$ is an inverse matrix to the matrix $A$.

Analyzing this results one can see that an inverse matrix $A^{-1}$ will have the same size as the matrix $A$. It is very important to observe that the inverse of a matrix, if it exists, is unique. Another way to think of this is that if it acts like the inverse, then it is the inverse.

Theorem: Uniqueness of Inverse
Suppose $A$ is an $n \times n$ matrix such that an inverse $A^{-1}$ exists. Then there is only one such inverse matrix. That is, given any matrix $B$ such that $A B=B A=I, B=$ $A^{-1}$.

## Proof

In this proof, it is assumed that $I$ is an $n \times n$ identity matrix. Let $A, B$ be $n \times n$ matrices such that $A^{-1}$ exists and $A B=B A=I$. We want to show that $A^{-1}=B$.

Now using properties, we have seen, we get:

$$
A^{-1}=A^{-1} I=A^{-1}(A B)=\left(A^{-1} A\right) B=I B=B
$$

Hence, $A^{-1}=B$ which tells us that the inverse is unique.

The next example demonstrates how to check the inverse of a matrix.
Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$. Show $\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$ is the inverse of $A$
To check this, multiply

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

and

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

## Properties of the Inverse

Let $A$ be an $n \times n$ matrix and $I$ the usual identity matrix

1. $I$ is invertible and $I^{-1}=I$
2. If $A$ is invertible then so is $A^{-1}$, and $\left(A^{-1}\right)^{-1}=A$
3. If $A$ is invertible then so is $A^{k}$, and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$
4. If $A$ is invertible and $p$ is a nonzero real number, then $p A$ is invertible and $(p A)^{-1}=\frac{1}{p} A^{-1}$
Further, we explore how to find $A^{-1}$.

First, we need to introduce a new matrix called the cofactor matrix of $A$.
Definition. The cofactor matrix of $A$ is the matrix whose $i j-$ th entry is the $i j-$ th cofactor of $A$. The formal definition is as follows:

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then the cofactor matrix of $A$, denoted $\operatorname{cof}(A)$, is defined by $\operatorname{cof}(A)=\left[\operatorname{cof}(A)_{i j}\right]$ where $\operatorname{cof}(A)_{i j}$ is the $i j-$ th cofactor of $A$ :

$$
\operatorname{cof}(A)=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\vdots & & & \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}
\end{array}\right)
$$

Note that $\operatorname{cof}(A)_{i j}$ denotes the $i j$-th entry of the cofactor matrix.

We will use the cofactor matrix to define the adjugate of $A$. We can also call this matrix the classical adjoint of $A$.
Definition. The adjugate or classical adjoint of a square matrix $A$ is the transpose of its cofactor matrix and we denote it by

$$
\operatorname{adj}(A): \operatorname{adj}(A)=(\operatorname{cof}(A))^{T}=\left(\begin{array}{cccc}
A_{11} & A_{21} & \ldots & A_{n 1} \\
A_{12} & A_{22} & & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & & A_{n n}
\end{array}\right) .
$$

Theorem (Necessary condition for the matrix to have an inverse matrix) If matrix $A$ has an inverse matrix $A^{-1}$ then $\operatorname{det} A \neq 0$.
Proof. Let us prove the theorem from the contrary. Let $\operatorname{det} A=0$. By property 10 of the determinants:
$1=\operatorname{det} E=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det} A \operatorname{det} A^{-1}=0 \operatorname{det} A^{-1}=0$. We have got a contradiction. Theorem is proven.

Definition. The matrix A is called non-singular if its determinant does not equal to zero, otherwise the matrix is singular.

Theorem (Sufficient condition for the matrix to have an inverse matrix) Any nonsingular matrix $A$ has an inverse matrix and only one.
Proof. Let us prove that matrix $B=\frac{1}{\operatorname{det} A} A^{a d}$ is inverse matrix to the matrix $A$.

$$
\begin{gathered}
A B=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right) \frac{1}{\operatorname{det} A}\left(\begin{array}{cccc}
A_{11} & A_{21} & \ldots & A_{n 1} \\
A_{12} & A_{22} & & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & & A_{n n}
\end{array}\right)= \\
\frac{1}{\operatorname{det} A}\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{cccc}
A_{11} & A_{21} & \ldots & A_{n 1} \\
A_{12} & A_{22} & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & & A_{n n}
\end{array}\right)=
\end{gathered}
$$

$=[$ by Theorem on determinant decomposition and Theorem about sum of products of row/column elements by algebraic cofactors of elements from another
row/columns]=

$$
=\frac{1}{\operatorname{det} A}\left(\begin{array}{cccc}
\operatorname{det} A & 0 & \ldots & 0 \\
0 & \operatorname{det} A & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & \operatorname{det} A
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & 1
\end{array}\right)=E .
$$

In the same way it can be proven that $B A=E$. It means that $B$ is inverse matrix of $A$. Let us prove that $A$ does not have other inverse matrices.

Suppose C is another inverse matrix of $A$, i.e. $A B=B A=E$ and $C A=A C=E$ . Then $C=C E=C A B=E B=B$. It means that $B$ is the only inverse matrix.
The theorem is proven.

So, in this case we have that the inverse of the matrix can be found by the formula:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\vdots & & & \\
A_{n 1} & A_{n 2} & \ldots & A_{n n}
\end{array}\right)^{T}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cccc}
A_{11} & A_{21} & \ldots & A_{n 1} \\
A_{12} & A_{22} & & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & & A_{n n}
\end{array}\right) \text { if } \operatorname{det} A \neq 0
$$

That is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Example. Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 0 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

According to Theorem

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

First, we will find the determinant of this matrix. Using Theorems, we can first simplify the matrix through row operations. First, add -3 times the first row to the second row. Then add -1 times the first row to the third row to obtain

$$
B=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -6 & -8 \\
0 & 0 & -2
\end{array}\right]
$$

By Theorem $\operatorname{det}(A)=\operatorname{det}(B)$. By Theorem, $\operatorname{det}(B)=1 \times-6 \times-2=12$. Hence, $\operatorname{det}(A)=12$.

Now, we need to find $\operatorname{adj}(A)$. To do so, first we will find the cofactor matrix
of $A$. This is given by

$$
\operatorname{cof}(A)=\left[\begin{array}{ccc}
-2 & -2 & 6 \\
4 & -2 & 0 \\
2 & 8 & -6
\end{array}\right]
$$

Here, the $i j$-th entry is the $i j$-th cofactor of the original matrix $A$ which you can verify. Therefore, from Theorem, the inverse of $A$ is given by

$$
A^{-1}=\frac{1}{12}\left[\begin{array}{ccc}
-2 & -2 & 6 \\
4 & -2 & 0 \\
2 & 8 & -6
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
-\frac{1}{6} & -\frac{1}{6} & \frac{2}{3} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]
$$

Remember that we can always verify our answer for $A^{-1}$. Compute the product $A A^{-1}$ and $A^{-1} A$ and make sure each product is equal to $I$.

Compute $A^{-1} A$ as follows

$$
A^{-1} A=\left[\begin{array}{ccc}
-\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
-\frac{1}{6} & -\frac{1}{6} & \frac{2}{3} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 0 & 1 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

Hence our answer is correct.
Example. Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
-\frac{1}{6} & \frac{1}{3} & -\frac{1}{2} \\
-\frac{5}{6} & \frac{2}{3} & -\frac{1}{2}
\end{array}\right]
$$

First we need to find $\operatorname{det}(A)$. This step is left as an exercise and you should verify that $\operatorname{det}(A)=\frac{1}{6}$. The inverse is therefore equal to

$$
A^{-1}=\frac{1}{(1 / 6)} \operatorname{adj}(A)=6 \operatorname{adj}(A)
$$

We continue to calculate as follows. Here we show the $2 \times 2$ determinants needed to find the cofactors.

$$
A^{-1}=6\left[\begin{array}{ccc}
\left|\begin{array}{cc}
\frac{1}{3} & -\frac{1}{2} \\
\frac{2}{3} & -\frac{1}{2}
\end{array}\right| & -\left|\begin{array}{rr}
-\frac{1}{6} & -\frac{1}{2} \\
-\frac{5}{6} & -\frac{1}{2}
\end{array}\right| & \left|\begin{array}{rr}
-\frac{1}{6} & \frac{1}{3} \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right| \\
-\left|\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{2}{3} & -\frac{1}{2}
\end{array}\right| & \left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{5}{6} & -\frac{1}{2}
\end{array}\right| & -\left|\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right| \\
\left|\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{3} & -\frac{1}{2}
\end{array}\right| & -\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{6} & -\frac{1}{2}
\end{array}\right| & \left|\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{6} & \frac{1}{3}
\end{array}\right|
\end{array}\right]^{T}
$$

Expanding all the $2 \times 2$ determinants, this yields

$$
A^{-1}=6\left[\begin{array}{ccc}
\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{6} & -\frac{1}{3} \\
-\frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 1 \\
1 & -2 & 1
\end{array}\right]
$$

Again, you can always check your work by multiplying $A^{-1} A$ and $A A^{-1}$ and ensuring these products equal $I$.

$$
A^{-1} A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 1 & 1 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
-\frac{1}{6} & \frac{1}{3} & -\frac{1}{2} \\
-\frac{5}{6} & \frac{2}{3} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## Inverses of Transposes and Products

By means of the obtained above formula for inverse matrix, it is simple to prove the following properties of the inverse matrices and products:

Let $A, B$, and $A_{i}$ for $i=1, \ldots, k$ be $n \times n$ matrices

1. If $A$ is an invertible matrix, then $\left(A^{-1}\right)^{-1}=A$;
2. If $A$ is an invertible matrix, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$;
3. If $A$ and $B$ are invertible matrices, then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$ . Moreover, If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, then the product $A_{1} A_{2} \cdots A_{k}$ is invertible, and $\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$
4. $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
