
Lecture #5:  Solving of Systems of Linear Algebraic Equations (SLAE) 

with m number of equations and n number unknowns 
 

Let us consider the system of m linear algebraic equations (SLAE) with n 

unknown variables: 
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where we can denote that a matrix A is called the matrix of the system, B is a column 

of right hand side, X is a column of unknowns, that is 
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Let us denote each k-th row of the matrix A of the size m by n as ),1( mkek  ,  

 naaae 112111  , 

 naaae 222212  , 

… 

 knkkk aaae 21 , 
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 nnnnn aaae 21  

and each k-th column of this matrix as ),1( nktk  , i.e. 
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Then the above system can be rewritten in the following equivalent forms: 

BAX   

or  

Bxtxtxtxt nn  332211 . 

Definition. If 0B  then the system is called inhomogeneous. Otherwise, i.e. 0B

, it is called homogeneous. 

Definition. Any set of numbers nnxxx  ,,, 2211   is called a solution of 

the system, if after substituting these numbers into the system, the identity will 



be obtained.  

Definition. If the system has at least one solution, then it is called a consistent 

system. 

Definition. If the system has no solutions, then it is called an inconsistent system. 

Definition. If the system has only one solution, then it is called a definite system. 

Definition. If the system has more then one solution, then it is called an indefinite 

system. 

 

Definition. A matrix including both the matrix A and the column B, i.e. 
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*  is called an augmented matrix of the system. 

 

5.1 The Conception of Linear Dependence/Independence 

 

Example: 

 

has the row vectors 𝑒1 = [3,0,2,2] (first row) 

𝑒2 = [−5,42,24,54] (second row) 

𝑒3 = [21,−21,0,−15] (third row) 

We can combine: 

6 ∙ 𝑒1 −
1

2
∙ 𝑒2 = 6 ∙ [3,0,2,2] −

1

2
∙ [−5,42,24,54] = [21,−21,0,−15] = 𝑒3 

So, 𝑒3 is a linear combination of 𝑒1 and 𝑒2  

Definition. The expression mmeeee  332211 , where ),1( mkk   are 

real numbers (coefficients), is called a linear combination of rows, ),1( mkek  . 

Similar, the expression nntttt  332211 , where ),1( mkk   are real 

numbers, is called a linear combination of columns, ),1( nktk  .  



Definition. Rows of the matrix are linearly dependent (LD) if there is some zero 

linear combination of the rows with at least one nonzero coefficient, i.e. 

meee ,,, 21   are LD  0:and0
00332211  imm ieeee  . 

Definition. Rows of the matrix are linearly independent (LI) if any linear 

combination, which is equal to zero has zero coefficients, i.e. 

meee ,,, 21   are LI  ieeee imm  00332211  . 

Note. The same definitions of linear dependence and linear independence can be 

introduced for columns. 

Example. Let us consider matrix 
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      213 265432121292 eee  . Thus, 02 321  eee . We 

have linear combination of the rows equal to zero. But 021  , 012  , 

013  . It means that rows of this matrix are LD. 

 

Theorem (Criterion of linear dependence for the rows) For rows of the matrix to be 

linearly dependent it is necessary and sufficient that one of them is linear 

combination of other rows. 

Proof. Necess i ty.  We know that rows of the matrix are linearly dependent. We 

should proof that one of them is linear combination of other rows. Suppose we have 

some zero linear combination of rows. From definition of linear dependence, we 

know that at least one coefficient is not equal to zero. Suppose it has number 𝑘, i.e. 

0k . Let us divide this zero expression by k  and express the row ke  from the 

obtained equation: 
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.    Necessity is proven. 



Suff ic iency.  Let 
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. We should prove that rows are linearly dependent. 

Let us put ke  to the right of the last equation. So we have k
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0 , i.e. zero 

linear combination of all rows with the coefficient 01k . From definition of 

linear dependence, it follows that the rows are LD. Theorem is proven. 

 

5.2 Rank of the Matrix 

 

Definition. Minor of the k-th order kM  of the matrix A of the size m by n (

),min(0 nmk  ) is the determinant consisting of the elements standing in the 

intersection of any k rows and any k columns of the matrix A. 

Example. 
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elements from the first and the third rows and the first and the forth columns of A is 

one of the minors of the second order. 

 

Definition. Rank of the matrix A is a maximum order of nonzero (nontrivial) minors 

of the matrix A. It is denoted as )(Ark  or )(Ar .  

Example. 
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Definition. Suppose )(Arr  . Nonzero minor of rth order is called the basic minor 

and rows and columns of the matrix A composing this minor are called the basic 

rows and columns.  

Note. Sometimes there are several basic minors in the matrix A. 

 

Theorem (about basic minor)  The following statements are valid: 



(i) Basic rows (columns) are linearly independent; 

(ii) Any row (column) of matrix A is a linear combination of basic rows 

(columns). 

Proof. (i): Let us assume that basic rows are linearly dependent. It means that one of 

the rows in the basic minor is linear combination of other rows. From property 9 of 

the determinants it follows that basic minor is equal to zero. We’ve got a 

contradiction with definition of the basic minor. Statement (i) is proven. 

(ii): Without loss of generality we can assume that basic minor is situated in 

the upper left corner of the matrix A. So, 
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Let us consider the following determinant obtained from rM  by adding the 

corresponding elements of kth row and jth column of A: 
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There are two situations: 

1) rj   or rk  . Then we have two identical rows or columns in the determinant, 

i.e. 0 . 

2) rj   and rk  . Then   is a minor of the (r+1)th order of A and equal to zero 

since r is maximum order of nonzero minors. 

Thus, in any case 0 . Let us expand this determinant down the (r+1)th 

column: 
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where coefficients i  depend on the elements of the kth row and does not depend on 

the elements of the jth column. Thus, each element of the kth row is linear 



combination of the corresponding elements of basic rows, i.e. the kth row is linear 

combination of basic rows.  

In similar way we can prove these statements for the columns. Theorem is proven. 

Note. It follows from the theorem that the rank of the matrix is equal to the maximum 

number of linearly independent rows (columns) of this matrix. 

 

5.3 Elementary Row/Column Operations 

 

Definition. A matrix is in row echelon form if 

 All nonzero rows, i.e. rows with at least one nonzero element are above any 

rows of all zeroes (all zero rows, if any, belong at the bottom of the matrix). 

 The leading coefficient (entry), i.e. the first nonzero number from the left 

(also called the pivot) of a nonzero row is always strictly to the right of the 

leading coefficient of the row above it. 

 All entries in a column below a leading entry are zeroes (implied by the first 

two criteria).  

An example of a 3×5 matrix in row echelon form: 
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Note. A matrix is in column echelon form if its transpose is in row echelon form 

(see below). 
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Definition. Elementary row operations and column operations are a simple set of 

matrix operations that can be used to reduce a matrix to the upper (lower) triangle 

or a matrix in row (column) echelon form (trapezoidal form).  

The next three actions with rows (columns) of a matrix are called elementary row 

(column) operations:  

 interchange of any two rows (columns);  

 multiplication of any row (column) by a nonzero number;  



 addition of any row (column) multiplied by a nonzero number to another row 

(column).  

Definition. The row operations, the column operations and the operation of matrix 

transposition are called together the elementary matrix manipulations 

(transformations). 

Definition. If matrix B is obtained from matrix A by elementary matrix 

manipulations, then matrices A and B are called equivalent matrices and this relation 

of equivalence is denoted as A~B. 

Note. It is obvious that matrix A can be obtained from B by the set of elementary 

manipulations which are inverse to initial manipulations applied to A to get B. 

Theorem (about ranks of equivalent matrices) If matrices A and B are equivalent 

matrices then their ranks are equal. 

Proof. Since all elementary matrix manipulations can not vanish the basic minor of 

matrix A according to determinant properties, then this determinant will be nonzero 

in the matrix B. 

Let matrix B have the nonzero minor of the bigger order then order of basic 

minor in A. But it means that this determinant is nonzero in the matrix A, too. We 

got the contradiction with the definition of basic minor. Theorem is proven. 

Theorem (about the rank of matrix in row/column echelon form). The rank of matrix 

in the upper (lower) triangle or row (column) echelon forms is equal to the number 

of nonzero rows (columns) of this matrix. 

Proof. Suppose the matrix has a row echelon form and the number of nonzero rows 

is equal to r. To proof this theorem, we should find the nonzero minor of the r-th 

order and to show that all minors of the bigger order are equal to zero.  

Since there are only r nonzero rows then each minor of the bigger order if it 

exists has zero-row and thus it is equal to zero. 

Let us consider the following determinant of the rth order with elements from 

the first r nonzero rows where: the kth column is the column consisting of the 

elements of the column of the first nonzero element of kth row, k varies from 1 to r. 

At this choice of columns, we get the upper triangular determinant with nonzero 

elements on the main diagonal, i.e. nonzero determinant of the rth order. It means 

that rank of the matrix is equal to r.  



In the similar way this theorem can be proven for the matrices in the column 

echelon form. Theorem is proven. 

Corollary. Since the rank of the matrix does not change after elementary matrix 

manipulations we reduce a matrix to the row echelon form or column echelon form, 

because once this form is computed, it is easier to determine the rank. 
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We used only elementary row operations to get matrix in the row echelon 

form. Since there are two nonzero rows the rank of this matrix is equal to 2, 

2)( Ark . 

In this case the minor 
20

11 
, for example, can be chosen as basic minor.  

 

5.4 The Theorem by Kronecker-Kapelly 
 

Theorem (Theorem by Kronecker-Kapelly) In order to SLAE be consistent it is 

necessary and sufficient for the ranks of coefficient A and augmented 
*A  matrices 

to be equal, i.e. )()( *ArkArk  . 

Proof.  

Necess i ty : Let’s the SLAE have a solution nnxxx  ,,, 2211  , then we 

can write 

Btttt nn  332211 , 

i.e. B which is the last column of 
*A  is linear combination of the other columns of 

*A . It means that B does not increase the number of linear independent columns of 

*A  with respect to A, so )()( *ArkArk  . 

http://www.csit.fsu.edu/~burkardt/papers/linear_glossary.html#Column_Echelon_Form#Column_Echelon_Form
http://www.csit.fsu.edu/~burkardt/papers/linear_glossary.html#Column_Echelon_Form#Column_Echelon_Form


Suf f iciency: Let’s rArkArk  )()( *
. It means that basic minor of A can be 

chosen as basic minor of *A . But from the theorem about basic rows and columns it 

means that B is a linear combination of the basic columns, i.e. of some columns of 

A: 

Bttt
rr iiiiii  

2211
. 

Let us complete the sum from the left side of expression to full sum of columns by 

missing columns multiplied by zeros. Then according to the definition of the solution 

the coefficients of the obtained sum are solution of the system and the system is 

consistent. Theorem is proven. 

Note. It is simple to prove by means of the rule by Cramer that: 

 If nArkArk  )()( *
 then system is definite; 

 If nArkArk  )()( *
 then system is indefinite. 

In general, to investigate a SLAE on consistence and to find solutions for the 

consistent system we have to follow the next plan described as the diagram  

 

System Linear Algebraic Equations (SLAE) 
with 

𝑚 equations  

𝑛 unknowns 

If 𝑟𝑘(𝐴) = 𝑟𝑘(𝐴∗) then 

SLAE is consistent 

If 𝑟𝑘(𝐴) ≠ 𝑟𝑘(𝐴∗) then 

SLAE is inconsistent 

If 𝑟𝑘(𝐴) = 𝑛 then 

SLAE is definite 

If 𝑟𝑘(𝐴) < 𝑛 then 

SLAE is indefinite 
 

 

Let us demonstrate this on the next example. 

Example 1. Let us solve the system  









3242

432

4321

4321

xxxx

xxxx
. 

Since the number of unknowns is greater than the number of equations then 

nArg )(  and if there are any solutions then the system is indefinite. Let us write 

down the augmented matrix of the system and, then, find out its rank 



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21

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
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12

31



. 



Thus 42)()( *  nArkArk  and system is consistent and indefinite. 

Let us rewrite the system by leaving to the left only the unknowns 

corresponding to basic columns:  
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



4231

4231

2432

243

xxxx

xxxx
. 

Since the determinant of the obtained system for variables 31, xx  is not equal to zero 

it can be solved by rule by Cramer. 

42
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
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1
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)24(2243

12
31

2432

241

424242

42

3 











xxxxxx

xx

x , where 42 , xx  are arbitrary.  

Finally, we can write the solution of the SLAE as follows:  

),1,,21( 4242 xxxxX T   

Note that the basic unknowns were expressed through the arbitrary ones. Thereby, 

by assigning any values to 42 , xx  (arbitrary unknowns) we get a lot of particular 

solutions of this system. 

For instance, let’s the arbitrary unknowns be 5,2 42  xx , then we have one of 

infinite number of solutions as follows:  

)5,1,2,2(
~

TX  

It follows from the mentioned above solution of the SLAE that next 

definitions can be introduced: 

Definition 1. Basic (or main) unknowns are called unknowns corresponding to basic 

columns of the augmented matrix of the SLAE, i.e. the determinate for coefficients 

of these unknowns is not equal to zero. Otherwise, any other unknowns of the SLAE 

are called arbitrary (or free) unknowns.  

Definition 2. The solution of the indefinite system written as a function of some 

arbitrary values is called a general solution of the system.  

Definition 3. Any solution calculated from the general solution by substituting some 

certain values instead of arbitrary unknowns is called a particular solution. 



5.5 Homogeneous Systems. Construction of the Fundamental System of 

Solutions 

 

 Let us consider the homogeneous system of m linear algebraic equations with 

n unknown variables  







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
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0

0

0

2211

2222121

1212111

nmnmm

nn

nn

xaxaxa

xaxaxa

xaxaxa




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

 

or  

0AX  

or 

02211  nn xtxtxt   

Since 0B  in the homogeneous system (HS) and zero column does not 

increase the number of linear independent columns in the augmented matrix with 

respect to matrix of the system, the homogeneous system is always consistent. 

 

 Actually, it is obvious, since the homogeneous system always has a zero 

(trivial) solution. The question is when does it have nontrivial solution? 

 

Theorem. For the homogeneous system to have nontrivial solution it is necessary and 

sufficient that nArk )( . 

Proof. Necess i ty:  If we have nontrivial solution then 

0332211  nntttt  , 0|||||| 21  n . 

But it means that columns of the matrix A are linear dependent so nArk )(  and 

thus nArk )( . 

Suf f ic iency:  If nArk )(  then n columns of the matrix A are linear dependent 

and there is a set of numbers such that 

0|||||| 21  n  and 0332211  nntttt  . 

It means that this set of numbers is a nontrivial solution of the system. Theorem is 

proven. 

 

Note. It follows from the theorem, that for the homogeneous system of n equations 

with n variables to have nontrivial solution it is necessary and sufficient that the 



determinant of the system matrix is equal to zero, i.e. the homogeneous system with 

square matrix is indefinite if and only if 0)det( A . 

 

 So, if nArk )(  then the system 0AX  is indefinite and has infinite number 

of solutions. But how many of them are linearly independent? 

 

Note 1. When we say about the linear dependence of solutions we consider solutions 

as columns 

















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
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














nnx

x


11

 and investigate linear dependence of columns. 

Note 2.  Linear combination of the solutions of homogeneous system is also a 

solution of this system. Indeed, suppose 21,YY  are the solutions of the system 0AX

, i.e. 01 AY , 02 AY . Then  

000)()()( 212121  AYAYYAYAYYA , 

i.e. 21 YY   is also a solution. 

 

Definition. Fundamental system of solutions (FSS) of the homogeneous system is 

any maximum set of linearly independent solutions. 

Note. It follows from the definition that: 

1) Only indefinite homogeneous systems have FSS. 

2) Choice of the FSS is not unique. 

Theorem (About Fundamental System of Solutions) 

(i) If nArkr  )(  then the homogeneous system has a fundamental system of (n-r) 

solutions; 

(ii) Any solution of the system is a linear combination of solutions following from 

FSS. 

Proof. Suppose the basic minor stands in the upper left corner of the matrix A. Then 

the first r rows are linearly independent and all other rows (equations) are linear 

combination of the basic rows and, thus, do not contain helpful information to find 

a solution. So let us consider only the first r rows written in the following form: 
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

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111
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1

1
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. 



The determinant of the obtained system for the unknowns rxxx ,,, 21   is not equal 

to zero, i.e. it is basic minor, and we can find values of the unknowns rxxx ,,, 21   as 

functions of other unknowns by means of rule by Cramer. In this case substituting 

instead of unknowns nrr xxx ,,, 21   some values, we get particular solutions of the 

initial system. Let us consider the following set of (n-r) particular solutions: 
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The matrix of the order n by (n-r) constructed on these columns has rank equal 

to (n-r) since there is unit matrix of the (n-r)th order in the bottom of it. It means that 

all these columns (solutions) are linearly independent.  

Let us consider now an arbitrary solution of the system 

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0 . Then 

  rnnrr XqXqXqXY 22110 
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 Tr 0021    

is a solution as well, and thus  

000 221112211   rrnrrr tttttttt  . 

Since we obtained zero linear combination of the basic linearly independent columns 

then 0,,0,0 21  r , i.e. 

022110   rnnrr XqXqXqXY   and rnnrr XqXqXqX   22110 . 

It means that any other solution is linear combination of X1, X2, …Xn-r and can not 

increase number of linearly independent columns. Thus X1, X2, …Xn-r form FSS and 

any solution is a a linear combination of solutions from FSS. 

Theorem is proven. 



Theorem (about general solution of inhomogeneous system). General solution of the 

inhomogeneous system BAX   is a sum of the particular solution of the 

inhomogeneous system and linear combination of solutions from the FSS of 

homogeneous system 0AX . 

Proof. Suppose X is an arbitrary solution and 0X  is some particular solution of the 

system BAX  . 

Then 0)( 00  BBAXAXXXAAY  and 0XXY   is the solution of 

the homogeneous system and thus equal to the linear combination of solutions of the 

FSS.  

Thus, 0XYX   is a sum of the particular solution of the inhomogeneous 

system and linear combination of the FSS. Theorem is proven. 


