
Lecture #11: Equations of Straight Line in Space 

 

 11.1 General Equation of Straight Line in Space 

 

If two planes are not parallel, then they intersect and a line 

of their intersection is called the straight line (Fig.7). 

 

From definition it follows that all points of straight 

line satisfy the following system of equations 
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This system is called the general equation of the straight 

line. 

 

Definition. Vector l


 parallel to the straight line is called the direction (or directing) 

vector of this straight line.  

Vector ),,( pnml


 determines an orientation of this straight line.  

 

Since there are several straight lines with the same orientation, to describe 

straight line in the unique way we should determine any point  0000 ,, zyxM  of this 

straight line (Fig.7). This point determines a location of this straight line. 

 

 There is a question: how to find the coordinates of point  0000 ,, zyxM  and 

the direction vector ),,( pnml


 from the general equation of the straight line? 

 Since two planes are not parallel their normal vectors are not collinear. 

Therefore 
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infinite number of solutions. 

 So we can evaluate coordinates of point 0M  by assigning to one of 

coordinates some constant value and evaluating other coordinates. 

 

Example. Find the direction vector and one point of the straight line  









43

122

zyx

zyx
. 

Here 

)1,8,5(85

311

21221 



 kji

kji

nn





. 

Then as direction vector we can take, for example, the vector 

 1,8,521  nnl
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Let us write down the matrix of the system: 
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Thus we obtained the point 
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 11.2 Canonical Equations of Straight Line 

 

Suppose we know the coordinates of 

the point  0000 ,, zyxM  and the direction 

vector ),,( pnml


 of the straight line. Then for 

any point  zyxM ,,  of this straight line we 

have (Fig.8): 
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These equations are called the canonical equations of the straight line. 

 

Note. One or two coordinates of the direction vector could be equal to zero. 

Canonical equations just show the proportionality of the coordinates of collinear 

vectors. 

 

Example. Find the canonical equations of the straight line passing through the point 

 0;3;10 M  and perpendicular to the vectors )3,0,1( a


 and )5,1,2(b


.  

The direction vector of this straight line is perpendicular to these vectors as 

well and therefore 
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. Then the canonical equations of this straight line are 
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 11.3 Equation of Straight Line Passing through Two Points 

 

Suppose we know the coordinates of two points ),,( 1111 zyxM  and 

),,( 2222 zyxM  of the given straight line. Then  

),,(),,( 12121221 zzyyxxMMpnml 


 

and the canonical equations of this straight line have the following form 
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Example. Find the canonical equations of the straight line passing through the 

points  0;3;11 M  and  4;1;22 M . By the given formula we have 
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 11.4 Parametric Equations of Straight Line 

 

From the canonical equations of straight line It follows that for any point of 

the straight line three values are equal to the same value (value of some parameter).  

Let us denote this value as t. Then  
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The last equations are called the parametric equations of the straight line. 

 

Note. Parameter t plays a role of continuous index by means of which all points of 

straight line are numbered. 

 

Example. Find the canonical equations of the straight line passing through the point 

 1;2;10M  and parallel to the vector )3,0,1( a


. Vector a


 can be taken as the direction 

vector of this straight line and therefore we have 
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 11.5 Distance from Point to Straight Line 

 

 To find distance from the point ),,( PPP zyxP  

to the straight line It is enough to find the altitude 

of the parallelogram constructed on vectors l


 and 

PM0 , where ),,( pnml 


 is the direction vector of 

the straight line, ),,( 0000 zyxM  is any point of this 

straight line (Fig.9). Therefore 
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Example. Find the distance from the origin to the straight line 
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Here  
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 11.6 Arrangements of Straight Lines in Space 

 

Definition. An angle between two straight lines is the angle between their direction 

vectors. 

As It is shown on Fig.36 
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Moreover, for any two straight lines 1L , 2L  we have: 
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Fig.36 

 

 

 



Note. The angle between two straight lines does not give to us full information 

about positional relationship between these straight lines.  

We have three different situations, namely:  

a) crossing straight lines (Fig.37a);  

b) parallel or coinciding straight lines (Fig.37b);  

c) skew straight lines (Fig.37c). 

 

In cases a)-b) these straight lines lie in one plane, in case c) they lie in different 

planes. 

It is simple to check that: 

1) Straight lines lie in the same plane if and only if their direction vectors 21,ll


 and 

vector 21MM  connecting two different points of these straight lines are complanar, 

i.e. 

  0,, 2121 MMll


. 

2) Two parallel lines coincide if and only if at least one point of one straight line 

belongs to other one. 

It follows from discussed above that: 

  0,, 2121 MMll


   straight lines are skew straight lines; 

  0,, 2121 MMll











0  if parallel, are linesstraight

0  if crossing, are linesstraight
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Example. Determine the positional relationship of two straight lines 
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. Since the direction vectors of these straight lines 
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   2,2,1,2,2,1 21 ll


 are not collinear, these straight lines are not parallel. Let us find 

the angle between them and determine either they are intersecting straight lines or 

skew ones. 
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Here 
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Therefore, these straight lines are skew straight lines. 

 

 11.7 Distance between Two Straight Lines 

 

Case 1. Suppose we have two crossing straight lines (Fig.37a). Then the distance 

between them is equal to zero, i.e. 

0d . 

Case 2. Suppose we have two parallel or coinciding straight lines (Fig.37b). Then 

the distance between them is equal to the distance from any point of one straight line 

to other straight line. Thus it can be calculated by formula: 
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Case 3. Suppose we have two skew straight lines (Fig.37c). Let us plot from the 

points 1M  and 2M  direction vectors 21,ll


 of both straight lines as it shown on 

Fig. 37c. We have formed two parallel planes. Common perpendicular of straight 

lines is perpendicular to these planes. Therefore to find distance between two skew 

straight lines It is enough to find distance between two parallel planes or just the 

altitude of the parallelepiped constructed on vectors 2121 ,, MMll


. Thus 
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Note. If two straight lines intersect then the numerator of the fraction in the last 

formula is equal to zero, while the denominator is not equal to zero. Therefore, we 

can use the last formula to find distance between any two unparallel straight lines 

(either intersecting or skew ones). 

Example. Find the distance between two straight lines  
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Since the direction vectors of these straight lines    2,2,1,2,2,1 21 ll


 are not 

collinear, these straight lines are not parallel. So we should use the last formula to 

find distance. Here 
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 11.8 Equation of Common Perpendicular to Skew Straight Lines 

 

 Since a direction vector of common perpendicular is perpendicular to both 

straight lines, we have 
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 . 

 Common perpendicular is a straight line from intersection of two planes, 

namely (Fig.10):  

1) plane passing trough the first straight line and parallel to l


;  



2) plane passing through the second straight line and parallel to l


. 

 It follows from above that general equation of the common perpendicular is  
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where  
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),,( 1111 zyxM , ),,( 2222 zyxM  are points of 

the first and the second straight lines 

relatively. 

 

 11.9 Arrangements of Plane and Straight Line 

 

 An angle   between straight line and a plane can be found in the following 

way (Fig. 11) 
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In other case, 
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From the last formula we have 

1. Straight line is parallel to the plane    0,  nlnl


; 
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2. Straight line is perpendicular to the plane   
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3. Straight line crosses a plane    0, nl


; 

4. Straight line passing through the point 0M  

belongs to the plane (Fig.12)  
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Example 1. Find an angle between the following straight line and plane: 
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Example 2. Prove that straight line 
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Therefore ln


  and 0M  belongs to this plane, i.e. this straight line lies in plane. 

 

 11.10 Point of Intersection of Straight Line and Plane 

 

 To find this point means to find solution of the following system: 
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 For this it is enough to substitute expressions for x, y, z into the equation of 

the plane and solve one equation for parameter t. 

There are three possible situations: 

1) The only solution   the only point of intersection straight line crosses this 

plane; 

2) No solutions  no points of intersection straight line is parallel to this 

plane; 

3) A lot of solutions a lot of points of intersection straight line belongs to 

this plane. 

 

Example. Find the point of intersection of the straight line 
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First, we write down the parametric equations of this straight line: 12  tx , 

23  ty , 34  tz , Rt . Then we solve the system: 
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Therefore the point of intersection is )1,21,0(P . 


