Task 1. Prove the linear independence of vectors \vec{p}, \vec{q} and \vec{r}, and decompose the vector \vec{x} in terms of the vector \vec{p}, \vec{q} and \vec{r} if they are linear independent
1.1. $x=\{-2,4,7\}, p=\{0,1,2\},\{-\{1,0,1\}, r=\{-1,2,4\}$.
1.2. $x=\{6,12,-1\}, p=\{1,3,0\},\{=\{2,-1,1\}, r=\{0,-1,2\}$.
1.3. $\mathrm{x}=\{1,-4,4\}, \mathrm{p}=\{2,1,-1\}, \mathrm{q}=\{0,3,2\}, \mathrm{r}=\{1,-1,1\}$.
1.4 $x=\{-9,5,5\}, p=\{4,1,1\}, q=\{2,0,-3\}, x=\{-1,2,1\}$.
1.5. $\mathrm{x}=\{-5,-5,5\}, \mathrm{p}=\{-2,0,1\}, q-\{1,3,-1\}, \mathrm{r}=\{0,4,1\}$. 1.6. $\mathrm{x}=\{13,2,7\}, \mathrm{p}=\{5,1,0\}, \mathrm{q}=\{2,-1,3\}, \mathrm{r}-\{1,0,-1\}$.
1.7. $\mathrm{x}=\{-19,-1,7\} . \mathrm{p}=\{0,1,1\}, \mathrm{q}=\{-2,0,1\}, \mathrm{r}=\{3,1,0\}$.
18. $x=\{3,-3,4\}, p=\{1,0,2\}, 4=\{0,1,1\}, 7=\{2,-1,4\}$.
1.9. $\mathrm{x}=\{3,3,-1\}, \mathrm{p}=\{3,1,0\}, q=\{-1,2,1\}, \mathrm{r}-\{-1,0,2\}$.
1.10. $x=\{-1,7,-4\}, p=\{-1,2,1\}, q=\{2,0,3\}, r=\{1,1,-1\}$.
1.11. $\mathrm{x}=\{6,5,-14\}, \mathrm{P}=\{1,1,4\}, \mp=\{0,-3,2\}, \mathrm{F}=\{2,1,-1\}$.
1.12. $\mathrm{x}=\{6,-1,7\}, \mathrm{p}=\{1,-2,0\}, \mathrm{q}=\{-1,1,3\}, \mathrm{r}=\{1,0,4\}$.
1.13. $\mathrm{x}=\{5,15,0\}, \mathrm{P}=\{1,0,5\} .\{=\{-1,3,2\}, \mathrm{r}=\{0,-1,1\}$.
1.14. $\mathrm{x}=\{2,-1,11\}, \mathrm{p}=\{1,1,0\}, \mathrm{a}=\{0,1,-2\}, \mathrm{r}=\{1,0,3\}$.
1.15. $\mathrm{x}=\{11,5,-3\}, \mathrm{P}=\{1,0,2\},\{=\{-1,0,1\}, \mathrm{r}=\{2,5,-3\}$.
1.16. $\mathrm{x}=\{8,0,5\}, \mathrm{P}=\{2,0,1\}, q=\{1,1,0\}, \mathrm{r}=\{4,1,2\}$.
1.17. $x=\{3,1,8\}, P=\{0,1,3\}, \underset{q}{ }=\{1,2,-1\}, r=\{2,0,-1\}$.
1.18. $x=\{8,1,12\}, P=\{1,2,-1\},\{=\{3,0,2\}, r=\{-1,1,1\}$.
1.1\%. $x=\{-9,-8,-3\}, P=\{1,4,1\},\{=\{-3,2,0\}, T=\{1,-1,2\}$. 1.20. $\mathrm{x}=\{-5,9,-13\}, \mathrm{P}=\{0,1,-2\},\{=\{3,-1,1\}, \mathrm{T}=\{4,1,0\}$. 1.21. $\mathrm{x}=\{-15,5,6\}, \mathrm{P}=\{0,5,1\}, \mathrm{q}=\{3,2,-1\}, \mathrm{r}=\{-1,1,0)$. 1.22. $\mathrm{x}=\{\mathrm{x}, 9,4\}, \mathrm{p}=\{1,0,1\}, q=\{0,-2,1\}, \mathrm{r}=\{1,3,0\}$.
1.23. $x=\{23,-14,-30\}, P=\{2,1,0\}, q=\{1,-1,0\}, r=\{-3,2,5\}$. 1.24. $\mathrm{x}=\{3,1,3\}, \mathrm{P}=\{2,1,0\}, \mathrm{q}=\{1,0,1\}, \mathrm{r}=\{4,2,1\}$.

Task 2. Check the collinearity of the vectors \vec{c}_{1} and \vec{c}_{2}, which are given in the basis of the vectors \vec{a} and \vec{b}.
2.1. $a=\{1,-2,3\}, b=\{3,0,-1\}, c_{1}=2 a+4 b, c_{2}=3 b-a$.
2.2. $a=\{1,0,1\}, b=\{-2,3,5\}, c_{1}=a+2 b, c_{2}=3 a-b$.
2.3. $a=\{-2,4,1\}, b=\{1,-2,7\}, c_{1}=5 a+3 b, c_{2}=2 a-b$.
2.4. $a=\{1,2,-3\}, b=\{2,-1,-1\}, c_{1}=4 a+3 b_{1} c_{3}=8 a-b$.
2.5. $a=\{3,5,4\}, b=\{5,9,7\}, c_{2}=-2 a+b, c_{2}=3 a-2 b$.
2.6. $a=\{1,4,-2\}, b=\{1,1,-1\}, c_{1}=a+b, c_{2}=4 a+2 b$.
2.7. $a=\{1,-2,5\}, b=\{3,-1,0\}, c_{1}=4 a-2 b, c_{2}=b-2 a$.
28. $a=\{3,4,-1\}, b=\{2,-1,1\}, c_{1}=6 a-3 b, c_{2}=b-2 a$. 29. $a-\{-2,-3,-2\}, b=\{1,0,5\}, c_{1}=3 a+9 b, c_{2}=-a-3 b$. 2.10. $=\{-1,4,2\}, b=\{3,-2,6\}, c_{1}=2 a-b, c_{2}=3 b-6 a$. 2.11. $a=\{5,0,-1\}, b=\{7,2,3\}, c_{1}=2 a-b, c_{2}=3 b-6 a$. 2.12. $a=\{0,3,-2\}, b=\{1,-2,1\}, c_{1}=5 a-2 b, c_{2}=3 a+5 b$. 2.13. $=\{-2,7,-1\}, b=\{-3,5,2\}, c_{1}=2 a+3 b, c_{2}=3 a+2 b$.
2.14. $a=\{3,7,0\}, b=\{1,-3,4\}, c_{1}=4 a-2 b, c_{2}=b-2 a$. 2.15. $a=\{-1,2,-1\}, b=\{2,-7,1\}, c_{1}=6 a-2 b, c_{2}=b-3 a$. 2.16. $a=\{7,9,-2\}, b=\{5,4,3\}, c_{1}=4 a-b, c_{2}=4 b-a$. 2.17. $a=\{5,0,-2\}, b=\{6,4,3\}, c_{1}=5 a-3 b, c_{2}=6 b-10 a$.
2.18. $a=\{8,3,-1\}, b=\{4,1,3\}, c_{1}=2 a-b, c_{2}=2 b-4 a$. 2.19. $a=\{3,-1,6\}, b=\{5,7,10\}, c_{2}=4 a-2 b, c_{2}=b-2 a$. 2.20. $a=\{1,-2,4\}, b=\{7,3,5\}, c_{1}=6 a-3 b, c_{2}=b-2 a$. 2.21. $a=\{3,7,0\}, b=\{4,6,-1\}, c_{1}=3 a+2 b, c_{2}=5 a-7 b$. 2.22. $=\{2,-1,4\}, b=\{3,-7,-6\}, c_{1}=2 \mathrm{a}-3 \mathrm{~b}, \mathrm{c}_{2}=3 \mathrm{a}-2 \mathrm{~b}$. 2.23. $a=\{5,-1,-2\}, b=\{6,0,7\}, c_{1}=3 a-2 b, c_{2}=4 b-6 m$. 2.24. $a=\{-9,5,3\}, b=\{7,1,-2\}, c_{1}=2 a-b, c_{2}=3 a+5 b$.

Task 3. Find the angle between two nonzero vectors: $\overrightarrow{A B}$ and $\overrightarrow{A C}$, and the projection of the vector $\overrightarrow{A B}$ on the vector $\overrightarrow{A C}$.
3.1. $A(1,-2,3), B(0,-1,2), C(3,-4,5)$.
3.2. $A(0,-3,6), B(-12,-3,-3), C(-9,-3,-6)$.
3.3. $A(3,3,-1), B(5,5,-2), C(4,1,1)$.
3.4. $A(-1,2,-3), B(3,4,-6), C(1,1,-1)$.
3.5. $A(-4,-2,0), B(-1,-2,4), C(3,-2,1)$.
3.6. $A(5,3,-1), B(5,2,0), C(6,4,-1)$.
3.7. $A(-3,-7,-5), B(0,-1,-2), C(2,3,0)$.
38. $A(2,-4,6), B(0,-2,4), C(6,-8,10)$.
3.9. $A(0,1,-2), B(3,1,2), C(4,1,1)$.
3.10 $A(3,3,-1), B(1,5,-2), C(4,1,1)$.
3.11. $A(2,1,-1), B(6,-1,-4), C(4,2,1)$.
3.12 $A(-1,-2,1), B(-4,-2,5), C(-8,-2,2)$.
3.13. $A(6,2,-3), B(6,3,-2), C(7,3,-3)$.
3.14. $A(0,0,4), B(-3,-6,1), C(-5,-10,-1)$.
3.15. $A(2,-8,-1), B(4,-6,0), C(-2,-5,-1)$.
3.16. $A(3,-6,9), B(0,-3,6), C(9,-12,15)$.
3.17. $A(0,2,-4), B(8,2,2), C(6,2,4)$.
3.18. $A(33,-1), B(5,1,-2), C(4,1,1)$.
3.19. $A(-4,3,0), B(0,1,3), C(-2,4,-2)$.
3.20. $\mathcal{A}(1,-1,0), B(-2,-1,4), C(8,-1,-1)$.
3.21. $A(7,0,2), B(7,1,3), C(8,-1,2)$.
$322.1(2,3,2), B(-1,-3,-1), C(-3,-7,-3)$.
3.22. $A(2,2,7), B(0,0,6), C(-2,5,7)$.
$3.24 .1(-1,2,-3), B(0,1,-2), C(-3,4,-5$.
Task 4. Find the area of a parallelogram constructed on vectors \vec{a} and \vec{b} which are given in terms of the vectors \vec{p} and \vec{q} with the angle known between them, and find an altitude of the parallelogram which is dropped on the side coinciding with the vector \vec{a}.
4.1. $\mathrm{a}-\mathrm{p}+2 \mathrm{q} ; \mathrm{b}=3 \mathrm{p}-\boldsymbol{F}|\mathrm{p}|=1,|q|-2(\hat{\mathrm{Pq}})=\pi / 6$.
4.2. $=-3 p+4, b=p-2 q i|p|=4,|q|-1,(\hat{P q})-\pi / 4$.
4.3. $\quad=-p-3 q, b-p+2 q ;|p|=1 / 5,|q|=1,(\hat{p q})=\pi / 2$.
4.4. $a=3 p-2 q, b=p+5 q ;|p|=4,|q|=1 / 2,(\hat{p q})-5 \pi / 6$.
4.5. $=-p-2 q, b=2 p+q ;|p|=2,|q|=3,(\hat{p q})=3 \pi / 4$.
4. $:=p+3 q, b-p-2 q ;|p|-2,|q|=3,(\hat{P q})=\pi / 3$.
4.7. $a=2 p-q, b=p+3 q i|p|=3,|q|=2(\hat{p q})=\pi / 2$.
4.8. $a=4 p+4, b=p-a ;|p|=7,|q|=2,(\hat{p q})=\pi / 4$.
4. $\mathbf{2}=\mathrm{p}-4 \mathrm{f}, \mathrm{b}=3 \mathrm{p}+\mathrm{q}| | \mathrm{p}|=1,|q|-2,(\hat{p q})=\pi / 6$.
$4.1 a . a=p+4 q, b-2 p-4 ;|p|=7,|q|=2,(\hat{p q})=\pi / 3$,
4.11. $a=3 p+2 q, b-p-s|p|=10,|q|=1,(\hat{p q})=\pi / 2$.
4.12. $=-4 p-q, b-p+2 q ;|p|=5,|q|-4,(\hat{p q})=\pi / 4$.
4.13. $a=2 p+3 q, b=p-2 q ;|p|=6,|q|=7$, (pq) $-\pi / 3$.
4.14. $a=3 p-q, b=p+2 q ;|p|=3$, $|q|=4,(\hat{p q})=\pi / 3$.
4.15. $a-2 p+3 q, b-p-2 q ;|p|=2,|q|=3,(\hat{p q})=\pi / 4$.
4.16. $a=2 p-3 q,|b=3 p+8| p|=4,|q|=1,(\hat{p q})=\pi / 6$. 4.17. $a=5 p+4, b=p-3 q|p|=1,|q|=2(\hat{p q})=\pi / 3$. 4.18. $\mathrm{a}=7 \mathrm{p}-2 \mathrm{q}, \mathrm{b}=\mathrm{p}+3 \mathrm{~g} ;|\mathrm{p}|=1 / 2,|q|=2,(\mathrm{pq})=\pi / 2$ 4.19. $a-6 p-4,|\mathrm{p}=\mathrm{p}+\underset{\mathrm{F}}{\mathrm{i}}| \mathrm{p}|=3,|\mathrm{q}|=4,(\hat{\mathrm{pq}})=\pi / 4$. 4.20. $a=10 p+q, b=3 p-2 q ;|p|=4,|q|=1,(p q)=\pi / 6$. 4.21. $a-6 p-4, b=p+2 \pi ;|p|-8,|q|=1 / 2,(\hat{p q})=\pi / 3$. 4.22. $a=3 p+4, \quad b=q-P ;|p|=2,5,|q|=2,(\hat{p q})=\pi / 2$. 4.23. $a=7 \mathrm{p}+q,|\mathrm{p}=\mathrm{p}-3 \mathrm{q} ;|\mathrm{p}|=3,|q|=1,(\hat{p q})=3 \pi / 4$. 424. $a=p+3 q, b-3 p-q ;|p|=3,|q|=5,(\hat{p q})=2 \pi / 3$.

Task 5. Check the coplanarity of vectors \vec{a}, \vec{b} and \vec{c}
5.1. $a=\{2,3,1\}, b=\{-1,0,-1\}, c=\{2,2,2\}$.
5.2. $a=\{3,2,1\}, b=\{2,3,4\}, c=\{3,1,-1\}$.
53. $a(1,5,2\}, b=\{-1,1,-1\}, c=\{1,1,1\}$.
5.4. $a=\{1,-1,-3\}, b=\{3,2,1\}, \mathrm{c}=\{2,3,4\}$.
5.5. $_\{3,3,1\}, h=\{1,-2,1\}, c=\{1,1,1\}$.
5.6. $a=\{3,1,-1\}, b=\{-2,-1,0\}, c=\{5,2,-1\}$.
5.7. $a(4,3,1\}, b=\{1,-2,1\}, c=\{2,2,2\}$.
5.8. $=\{4,3,1\}, b=\{6,7,4\}, c=\{2,0,-1\}$.
59. $a=\{3,2,1\}, b=\{1,-3,-7\}, c=\{1,2,3\}$.
5.10. $a=\{3,7,2\}, b=\{-2,0,-1\}, c=\{2,2,1\}$.
5.11. $=\{1,-2,6\}, b=\{1,0,1\}, c=\{2,-6,17\}$.
5.12. $-\{6,3,4\}, b=\{-1,-2,-1\}, c=\{2,1,2\}$.
5.13. $A=\{7,3,4\}, b=\{-1,-2,-1\}, c=\{4,2,4\}$.
5.14. $A=\{2,3,2\}, \mathrm{b}=\{4,7,5\}, \mathrm{c}=\{2,0,-1\}$.
5.15. $a=\{5,3,4\}, b=\{-1,0,-1\}, c=\{4,2,4\}$.
5.16. $a-\{3,10,5\}, b-\{-2,-2,-3\}, c-\{2,4,3\}$.
5.17. $-(-2,-4,-3\}, b=\{4,3,1\}, c-\{(6,7,4\}$.
5.18. $a=\{3,1,-1\}, b-\{1,0,-1\}, c=\{8,3,-2\}$.
5.19. $:=\{4,2,2\}, b=\{-3,-3,-3\}, c=\{2,1,2\}$.
$5.20=\{4,1,2\}, b=\{9,2,5\}, c=\{1,1,-1\}$.
5.21. $a=\{5,3,4\}, b=\{4,3,3\}, c=\{9,5,8\}$.
$5.22 . a=\{3,4,2\}, b=\{1,1,0\}, c=\{8,11,6\}$.
$5.23=\{4,-1,-6\}, b=\{1,-3,-7\}, c=\{2,-1,-4\}$.
$5.24=\{3,1,0\}, b=\{-5,-4,-5\}, c=\{4,2,4\}$.
Task 6. Calculate the volume of a tetrahedron whose vertices are given by points A_{1}, A_{2}, A_{3} and A_{4}, and its attitude dropped from the point A_{4} on the face $A_{1} A_{2} A_{3}$
6.1. $A_{1}(1,3,6), A_{2}(2,2,1), A_{3}(-1,0,1), A_{4}(-4,6,-3)$.
$6.2 . A_{1}(-4,2,6), A_{3}(2,-3,0), A_{3},(-10,5,8), A_{1}(-5)$.
$6.3 . A_{1}(7,2,4), A_{2}(7,-1,-2), A_{3}(3,3,1), A_{4}(-4,2,1)$.
6.4. $A_{1}(2,1,4), A_{2}(-1,5,-2), A_{3}(-7,-3,2), A_{4}(-6,-3,6)$.
6.5. $A_{1}(-1,-5,2), A_{2}(-6,0,-3), A_{3}(3,6,-3), A_{4}(-10,6,7)$.
6.6. $A_{1}(0,-1,-1), A_{2}(-2,3,5), A_{3}(1,-5,-9), A_{4}(-1,-6,3)$.
6.7. $A_{1}(5,2,0), A_{2}(2,5,0), A_{3}(1,2,4), A_{4}(-1,1,1)$.
6.8. $A_{1}(2,-1,-2), A_{2}(1,2,1), A_{3}(5,0,-6), A_{4}(-10,9,-7)$.
6.9. $A_{1}(-2,0,-4), A_{2}(-1,7,1), A_{3}(4,-8,-4), A_{4}(1,-4,6)$.
6.1a. $A_{1}(14,4,5), A_{2}(-5,-3,2), A_{3}(-2,-6,-3), A_{4}(-2,2,-1)$.
6.11. $A_{1}(1,2,0), A_{2}(3,0,-3), A_{3}(5,2,0), A_{4}(8,4,-9)$.
$612 A_{1}(2,-1,2), A_{2}(1,2,-1), A_{3}(3,2,1), A_{4}(-4,2,5)$.
6.13. $A_{1}(1,1,2), A_{2}(-1,1,3), A_{3}(2,-2,4), A_{4}(-1,0,-2)$.
6.14. $A_{1}(2,3,1), A_{2}(4,1,-2), A_{3}(6,3,7), A_{4}(7,5,-3)$.
6.15. $A_{1}(1,1,-1), A_{2}(2,3,1), A_{3}(3,2,1), A_{4}(5,9,-8)$.
6.16. $A_{1}(1,5,-7), A_{2}(-3,6,3), A_{3}(-2,7,3), A_{4}(-4,8,-12)$

6if. $\dot{\lambda}_{1}\left(-\overline{3}, \dot{4},-\overline{7}, A_{2}(1,5,-4), \lambda_{3}(-5,-2,0), A_{4}(2,5,4)\right.$.
$6.18 A_{1}(-1,2,-3), A_{2}(4,-1,0), A_{3}(2,1,-2), A_{4}(3,4,5)$.
6.12. $A_{1}(4,-1,3), A_{2}(-2,1,0), A_{3}(0,-5,1), A_{4}(3,2,-6)$.
6.20. $A_{1}(1,-1,1), A_{2}(-2,0,3), A_{3}(2,1,-1), A_{4}(2,-2,-4)$.
6.21. $A_{1}(1,2,0), A_{2}(1,-1,2), A_{3}(0,1,-1), A_{4}(-3,0,1)$.
6.22. $A_{1}(1,0,2), A_{2}(1,2,-1), A_{3}(2,-2,1), A_{4}(2,1,0)$.
$6.23 . A_{1}(1,2,-3), A_{2}(1,0,1), A_{3}(-2,-1,6), A_{4}(0,-5,-4)$.
6.24. $A_{1}(3,10,-1), A_{2}(-2,3,-5), A_{3}(-6,0,-3), A_{4}(1,-1,2)$.
6.25. $A_{1}(-1,2,4), A_{2}(-1,-2,-4), A_{3}(3,0,-1), A_{4}(7,-3,1)$.
6.26. $A_{1}(0,-3,1), A_{2}(-4,1,2), A_{3}(2,-1,5), A_{4}(3,1,-4)$.

Task 7. Find the distance from the point M_{0} to the plane passing through the points M_{1}, M_{2}, M_{3}.
7.1. $M_{1}(-3,4,-7), M_{2}(1,5,-4), M_{3}(-5,-2,0), M_{0}(-12,7,-1)$. 72. $M_{1}(-1,2,-3), M_{2}(4,-1,0), M_{3}(2,1,-2), M_{0}(1,-6,-5)$.
73. $M_{1}(-3,-1,1), M_{2}(-9,1,-2), M_{3}(3,-5,4), M_{0}(-7,0,-1)$.
7.A. $M_{1}(1,-1,1), M_{2}(-2,0,3), M_{3}(2,1,-1), M_{0}(-2,4,2)$.
75. $M_{1}(1,2,0), M_{1}(1,-1,2), M_{3}(0,1,-1), M_{0}(2,-1,4)$.
76. $M_{1}(1,0,2), M_{2}(1,2,-1), M_{3}(2,-2,1), M_{0}(-5,-9,1)$.
7.7. $M_{1}(1,2,-3), M_{2}(1,0,1), M_{3}(-2,-1,6), M_{0}(3,-2,-9)$.
78. $M_{1}(3,10,-1), M_{2}(-2,3,-5), M_{3}(-6,0,-3), M_{0}(-6,7,-10)$.
7.9. $M_{1}(-1,2,4), M_{2}(-1,-2,-4), M_{3}(3,0,-1), M_{0}(-2,3,5)$.
7.10. $M_{1}(0,-3,1), M_{2}(-4,1,2), M_{3}(2,-1,5), M_{0}(-3,4,-5)$.
7.11. $M_{1}(1,3,0), M_{2}(4,-1,2), M_{3}(3,0,1), M_{0}(4,3,0)$.
7.12. $M_{1}(-2,-1,-1), M_{2}(0,3,2), M_{3}(3,1,-4), M_{0}(-21,20,-16)$.
7.13. $M_{1}(-3,-5,6), M_{2}(2,1,-4), M_{3}(0,-3,-1), M_{0}(3,6,68)$.
7.14. $M_{1}(2,-4,-3), M_{2}(5,-6,0), M_{3}(-1,3,-3), M_{0}(2,-10,8)$.
7.15. $M_{1}(1,-1,2), M_{2}(2,1,2), M_{3}(1,1,4), M_{0}(-3,2,7)$.
7.16. $M_{1}(1,3,6), M_{2}(2,2,1), M_{3}(-1,0,1), M_{0}(5,-4,5)$.
7.17. $M_{1}(-4,2,6), M_{1}(2,-3,0,) M_{3}(-10,5,8), M_{0}(-12,1,8)$. 7.18. $M_{1}(7,2,4), M_{2}(7,-1,-2), M_{3}(-5,-2,-1), M_{0}(10,1,8)$. 7.19. $M_{1}(2,1,4), M_{2}(3,5,-2), M_{3}(-7,-3,2), M_{0}(-3,1,8)$. 7.20. $M_{1}(-1,-5,2), M_{2}(-6,0,-3), M_{3}(3,6,-3), M_{0}(10,-8,-7)$. 7.21. $M_{1}(0,-1,-1), M_{2}(-2,3,5), M_{3}(1,-5,-9), M_{0}(-4,-13,6)$. 722. $M_{1}(5,2,0), M_{2}(2,5,0), M_{3}(1,2,4), M_{0}(-3,-6,-8)$. 7.2. $M_{1}(2,-1,-2), M_{2}(1,2,1), M_{3}(5,0,-6), M_{0}(14,-3,7)$. 724. $M_{1}(-2,0,-4), M_{2}(-1,7,1), M_{3}(4,-8,-4), M_{0}(-6,5,5)$. 7.25. $M_{1}(14,4,5), M_{2}(-5,-3,2), M_{3}(-2,-6,-3), M_{0}(-1,-8,7)$ 726. $M_{1}(1,2,0), M_{2}(3,0,-3), M_{3}(5,2,6), M_{0}(-13,-8,16)$.

Task 8. Find the equation of the plane passing through the point M_{0} perpendicular to the vector $\overrightarrow{B C}$

$$
\begin{aligned}
& 8,1 . A(1,0,-2), B(2,-1,3), C(0,-3,2) . \\
& 8 . A(-1,3,4), B(-1,5,0), C(2,6,1) . \\
& 8.3 A(4,-2,0), B(1,-1,-5), C(-2,1,-3) . \\
& 8 . A(-8,0,7), B(-3,2,4), C(-1,4,5) . \\
& \text { 8.5. } A(7,-5,1), B(5,-1,-3), C(3,0,-4) .
\end{aligned}
$$

8.6. $A(-3,5,-2), B(-4,0,3), C(-3,2,5)$. 8.7. $A(1,-1,8), B(-4,-3,10), C(-1,-1,7)$. 8.8. $A(-2,0,-5), B(2,7,-3), C(1,10,-1)$. 8.9. $A(1,9,-4), B(5,7,1), C(3,5,0)$. $8.10 \cdot A(-7,0,3), B(1,-5,-4), C(2,-3,0)$. 8.11. $A(0,-3,5), B(-7,2,6), C(-3,2,4)$. 8.12 A $(5,-1,2), B(2,-4,3), C(4,-1,3)$. 813. $A(-3,7,2), B(3,5,1), C(4,5,3)$. 8.14. $A(0,-2,8), B(4,3,2), C(1,4,3)$. 815. $A(1,-1,5), B(0,7,8), C(-1,3,8)$. 8.16. $A(-10,0,9), B(12,4,11), C(85,15)$. 8.17. $A(3,-3,-6), B(1,9,-5), C(6,6,-4)$. 8.18, $A(2,1,7), B(9,0,2), C(9,2,3)$. 8.19. $A(-7,1,-4), B(8,11,-3), C(9,9,-1)$. 8.20. $A(1,0,-6), B(-7,2,1), C(-9,6,1)$. 8.21. $A(-3,1,0), B(6,3,3), C(9,4,-2)$. $8.22 A(-4,-2,5), B(3,-3,-7), C(9,3,-7)$. 8.23. $A(0,-8,10), B(-5,5,7, C(-8,0,4)$. 8.24. $A(1,-5,-2), B(6,-2,1), C(2,-2,-2)$.

Task 9. Find the angle between the planes.

$$
\text { 9.1. } x-3 y+5=0,2 x-y+5 z-16=0 \text {. }
$$

9.2. $x-3 y+z-1=0, x+z-1=0$.
9.3. $4 x-5 y+3 z-1=0, x-4 y-z+9=0$.
9.4. $3 x-y+2 z+15=0,5 x+9 y-3 z-1=0$.
95. $6 x+2 y-4 z+17=0,9 x+3 y-6 z-4=0$.
9.6. $x-y \sqrt{2}+z-1=0, x+y \sqrt{2}-z+3=0$.
9.7. $3 y-z=0,2 y+z=0$.
9.8. $6 x+3 y-2 z=0, x+2 y+6 z-12=0$.
9.9. $x+2 y+2 z-3=0,16 x+12 y-15 z-1=0$.
9.10. $2 x-y+5 z+16=0, x+2 y+3 z+8=0$.
9.11. $2 x+2 y+z-1=0, x+z-1=0$.
9.12. $3 x+y+z-4=0, y+z+5=0$.
9.13. $3 x-2 y-2 z-16=0, x+y-3 z-7=0$.
9.14. $2 x+2 y+z+9=0, x-y+3 z-1=0$.
9.15. $x+2 y+2 z-3=0,2 x-y+2 z+5=0$.

$$
\begin{aligned}
& \text { 9.16. } 3 x+2 y-3 z-1=0, x+y+z-7=0 \text {. } \\
& \text { 9.17. } x-3 y-2 z-8=0, x+y-z+3=0 \text {. } \\
& \text { 9.18. } 3 x-2 y+3 z+23=0, y+z+5=0 \text {. } \\
& \text { 9.19. } x+y+3 z-7=0, y+z-1=0 \\
& \text { 9.20. } x-2 y+2 x+17=0, x-2 y-1=0 \text {. } \\
& \text { 9.21. } x+2 y-1=0, x+y+6=0 . \\
& \text { 9.22. } 2 x-z+5=0,2 x+3 y-7=0 . \\
& \text { 9.23. } 5 x+3 y+z-18=0,2 y+z-9=0 \text {. } \\
& \text { 9.24. } 4 x+3 z-2=0, x+2 y+2 z+5=0 \text {. } \\
& \text { 9.25. } x+4 y-z+1=0,2 x+y+4 z-3=0 \text {. }
\end{aligned}
$$

Task 10. Solve the problems related to a straight line in the plane:
10.1. A triangle $A B C$ is given by the vertices $A(-2 ; 3), B(4 ; 1), C(6 ;-5)$. Find the equation of the median passing through the vertex A.
10.2. The vertices of the triangle are $\mathrm{A}(4 ; 6), \mathrm{B}(-4,0), \mathrm{C}(-1,-4)$. Find the equation of the attitude dropped from the vertex A on the side BC .
10.3. Find the equation of the straight line passing through the point of intersection of the straight lines $5 x-y+10=0$ and $8 x+4 y+9=0$, and which is parallel to the straight line given by $x+3 y=0$.
10.4. With known equations of the straight lines coinciding with the two sides pf the parallelogram: $x-3 y=0$ and $2 x+5 y+6=0$, and given its vertex $C(4$, -1), find the equations of the straight lines coinciding with the other sides of the parallelogram
10.5. Given the middle points of the sides of a triangle $\mathrm{M}_{1}(2,3), \mathrm{M}_{2}(-1,2), \mathrm{M}_{3}$ $(4,5)$. Find the equation of the triangle sides.
10.6. The straight line is given by $2 x+3 y+4=0$. Find an equation of the straight line passing through the point $\mathrm{M}(2,1)$ at the angle 45° to the given straight line.
10.7. The vertices of the triangle ABC are $\mathrm{A}(-4 ; 2), \mathrm{B}(2 ;-5), \mathrm{C}(5,0)$. Find the equation of the attitude dropped from the vertex C .
10.8. Find the equation of the straight line parallel to the other two straight lines $x+y-1=0, x+y-13=0$ and which has the same distances from each of them.
10.9. The vertices of the triangle ABC are $\mathrm{A}(-6,3)$, $\mathrm{B}(1,5)$ and $\mathrm{C}(-2,0)$. Find the equation of the straight line passing through the vertex B parallel to the
side AC.
10.10. The vertices of the triangle ABC are $\mathrm{A}(-1 ; 2), \mathrm{B}(3 ; 1), \mathrm{C}(4 ;-2)$. Find the equation of the attitude dropped from the vertex A.
10.11. The vertices of the triangle ABC are $\mathrm{A}(-1,2), \mathrm{B}(3,-1)$ and $\mathrm{C}(0,4)$. Find the equation of the straight line passing through the vertex A parallel to the side BC.
10.12. Find the area of the square if its two sides coincide with the straight lines: $3 x-2 y+3=0,6 x-4 y+5=0$.
10.13. Find a point A symmetric to $B(1,-3)$ with respect to the straight line $x+2 y-5=0$.
10.14. Two sides of the parallelogram coincide with the straight lines $x-y-1=$ $0, \mathrm{x}-2 \mathrm{y}-10=0$ and the diagonals intersect at the point $\mathrm{M}(3,-1)$. Find the equations of the straight lines coinciding with the other two sides of the parallelogram.
10.15. Find the angle between two straight lines: $4 x+6 y+5=0$ and $5 x-15 y-$ $7=0$.
10.16. Find the point symmetrical to the point $\mathrm{P}(-2,9)$ with respect to the straight line $x-y+9=0$.
10.17. The straight line $2 x+3 y-6=0$ coincides with a side of the rectangle and an intersection point of the diagonals of the rectangle is $M(5,7)$. Find the straight lines coinciding with the other sides of the rectangle if one of them is passing through the point $\mathrm{B}(2,1)$.
10.18. Find the point symmetrical to the point $P(-2,9)$, with respect to the straight line $2 x-3 y+18=0$.
10.19. The straight lines $x+y=4 ; 3 x-2 y=12 ; 2 x-y=1$ coincide with the sides of a triangle. Find the area of this triangle.
10.20. Скласти рівняння прямої, що проходить через точку перетину прямих: $5 \mathrm{x}-\mathrm{y}+10=0,8 \mathrm{x}+4 \mathrm{y}+9=0$ і паралельної прямої: $\mathrm{x}+3 \mathrm{y}=0$.
10.21. Find an inner corner of the triangle whose sides are composted by the straight lines: $3 x-y-6=0 ; x-y+4=0 ; x+2 y=0$.
10.22. Two points are $P(2 ; 3), \mathrm{Q}(-1 ; 0)$ Find the equation of the straight line passing through the point Q perpendicular to the segment PQ .
10.23. Find the angle between two straight lines: $x+y-2=0,6 x-6 y+1=0$.
10.24. Find the projection of the point $P(1,-3 / 2)$ on the straight line $2 x-3 y+$
$5=0$.
10.25. The vertices of the triangle ABC are $\mathrm{A}(-2 ; 0), \mathrm{B}(2 ; 4), \mathrm{C}(4 ; 0)$. Find the equation of the median dropped from the vertex A .

Task 12. Find the canonical equation of the straight line in the space.

$$
\text { 12.1, } 2 x+y+z-2=0,2 x-y-3 z+6=0
$$

12.2. $x-3 y+2 x+2=0, x+3 y+z+14=0$. 12.3 $x-2 y+z-4=0,2 x+2 y-z-8=0$.
12. $x+y+z-2=0, x-y-2 x+2=0$.
125. $2 x+3 y+z+6=0, x-3 y-2 z+3=0$.
12. $3 x+y-z-6=0,3 x-y+2 z=0$.
12.7. $x+5 y+2 z+11=0, x-y-z-1=0$.
12.8. $3 x+4 y-2 z+1=0,2 x-4 y+3 z+4=0$.
12.9. $5 x+y-3 x+4=0, x-y+2 x+2=0$. 12.10. $x-y-z-2=0, x-2 y+z+4=0$.
12.11. $4 x+y-3 z+2=0,2 x-y+z-8=0$.
12.12. $3 x+3 y-2 z-1=0,2 x-3 y+z+6=0$.
12.13. $6 x-7 y-4 z-2=0, x+7 y-z-5=0$.
$12148 x-y-3 x-1=0, x+y+z+10=0$.
12.15. $6 x-5 y-4 z+8=0,6 x+5 y+3 z+4=\overline{0}$.
12.16. $x+5 y-z-5=0,2 x-5 y+2 x+5=0$.
12.17. $2 x-3 y+z+6=0, x-3 y-2 z+3=0$.
1218. $5 x+y+2 z+4=0, x-y-3 z+2=0$.
12.19. $4 x+y+z+2=0,2 x-y-3 z-8=0$.
12.20. $2 x+y-3 z-2=0,2 x-y+z+6=0$.
12.21. $x+y-2 z-2=0, x-y+z+2=0$.
12.22. $x+5 y-z+11=0, x-y+2 z-1=0$.
12.23. $x-y+z-2=0, x-2 y-x+4=0$.
12.24. $6 x-7 y-y-2=0, x+7 y-4 z-5=0$.
12.25. $x+5 y+2 \varepsilon-5=0,2 x-5 y-z+5=0$.

Task 13. Find the point of intersection of a line and a plane.
131. $\frac{x-2}{-1}=\frac{y-3}{-1}=\frac{z+1}{4}, x+2 y+3 z-14=0$.
$13.2 \frac{x+1}{3}=\frac{y-3}{-4}=\frac{z+1}{5}, x+2 y-5 z+20=0$.
13.3. $\frac{x-1}{-1}=\frac{y+5}{4}=\frac{z-1}{2}, x-3 y+7 z-24=0$.
13.4. $\frac{x-1}{1}-\frac{y}{0}=\frac{z+3}{2}, 2 x-y+4 z=0$.
13.5. $\frac{x-5}{1}=\frac{y-3}{-1}=\frac{z-2}{0}, 3 x+y-5 z-12=0$.
13.6. $\frac{x+1}{-3}-\frac{y+2}{2}=\frac{x-3}{-2}, x+3 y-5 z+9=0$.
13.7. $\frac{x-1}{-2}=\frac{y-2}{1}=\frac{z+1}{-1}, x-2 y+5 z+17=0$.
138. $\frac{x-1}{2}=\frac{x-2}{0}=\frac{x-4}{1}, x-2 y+4 z-19=0$.
13.9. $\frac{x+2}{-1}=\frac{y-1}{1}=\frac{x+4}{-1}, 2 x-y+3 x+23=0$.
13.10. $\frac{x+2}{1}=\frac{y-2}{0}=\frac{x+3}{0}, 2 x-3 y-5 z-7=0$.
13.11. $\frac{x-1}{2}=\frac{y-1}{-1}=\frac{z+2}{3}, 4 x+2 y-x-11=0$.
13.12 $\frac{x-1}{1}=\frac{y+1}{0}=\frac{x-1}{-1}, 3 x-2 y-4 z-8=0$.
13.13. $\frac{x+2}{-1}=\frac{y-1}{1}=\frac{z+3}{2}, x+2 y-x-2=0$.
13.14. $\frac{x+3}{1}=\frac{y-2}{-5}-\frac{x+2}{3}, 5 x-y+4 z+3=0$.
13.15. $\frac{x-2}{2}=\frac{y-2}{-1}=\frac{x-4}{3}, x+3 y+5 z-42=0$.
13.16. $\frac{x-3}{-1}=\frac{y-4}{5}=\frac{x-4}{2}, 7 x+y+4 x-47=0$.
13.17. $\frac{x+3}{2}=\frac{y-1}{3}=\frac{z-1}{5}, 2 x+3 y+7 z-52=0$.
13.18. $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z+3}{2}, 3 x+4 y+7 z-16=0$.

$$
\begin{aligned}
& \text { 13.19. } \frac{x-5}{-2}=\frac{y-2}{0}=\frac{z+4}{-1}, 2 x-5 y+4 z+24=0 . \\
& \text { 13.20. } \frac{x-1}{8}=\frac{y-8}{-5}=\frac{z+5}{12}, x-2 y-3 z+18=0 . \\
& \text { 13.21. } \frac{x-3}{1}=\frac{y-1}{-1}=\frac{x+5}{0}, x+7 y+3 z+11=0 . \\
& \text { 13.22. } \frac{x-5}{-1}=\frac{y+3}{5}=\frac{x-1}{2}, 3 x+7 y-5 z-11=0 . \\
& 13.23 . \frac{x-1}{7}=\frac{y-2}{1}=\frac{z-6}{-1}, 4 x+y-6 z-5=0 . \\
& 13.24 \frac{x-3}{1}=\frac{y+2}{-1}=\frac{x-8}{0}, 5 x+9 y+4 z-25=0 . \\
& 13.25, \frac{x+1}{-2}=\frac{y}{0}=\frac{x+1}{3}, x+4 y+13 z-23=0 . \\
& 13.26: \frac{x-1}{6}=\frac{y-3}{1}=\frac{x+5}{3}, 3 x-2 y+5 z-3=0,
\end{aligned}
$$

Task 14. Find the point M_{1}, symmetric to the point M with respect to the line (for tasks 1-15) or to the plane (for tasks 16-31).
14.1. $M(0,-3,-2), \frac{x-1}{1}=\frac{y+1,5}{-1}=\frac{z}{1}$.
142. $M(2,-1,1), \frac{x-4,5}{1}=\frac{y+3}{-0,5}=\frac{z-2}{1}$.
143. $M(1,1,1), \frac{x-2}{1}=\frac{y+1,5}{-2}=\frac{x-1}{1}$.
14.4. $M(1,2,3), \frac{x-0,5}{0}=\frac{y+1,5}{-1}=\frac{z-1,5}{1}$.
145. $M(1,0,-1), \frac{x-3,5}{2}=\frac{y-1,5}{2}=\frac{z}{0}$.
146. $M(2,1,0), \frac{x-2}{0}=\frac{y+1,5}{-1}=\frac{z+0,5}{1}$.
14.7. $M(-2,-3,0), \frac{x+0,5}{1}=\frac{y+1,5}{0}=\frac{z-0,5}{1}$.
148. $M(-1,0,-1), \frac{x}{-1}=\frac{y-1,5}{0}=\frac{x-2}{1}$.
14.9. $M(0,2,1), \frac{x-1,5}{2}=\frac{y}{-1}=\frac{x-2}{1}$.
14.10. $M(3,-3,-1), \frac{x-6}{5}=\frac{y-3,5}{4}=\frac{x+0,5}{0}$.
14.11. $M(3,3,3), \frac{x-1}{-1}=\frac{y-1,5}{0}=\frac{x-3}{1}$.
14.12 $M(-1,2,0), \frac{x+0,5}{1}=\frac{y+0,7}{-0,2}=\frac{z-2}{2}$.
14.13. $M(2,-2,-3), \frac{x-1}{-1}=\frac{y+0,5}{0}=\frac{z+1,5}{0}$.
14.14. $M(-1,0,1), \frac{x+0,5}{0}=\frac{y-1}{0}=\frac{x-4}{2}$.
14.15. $M(0,-3,-2), \frac{x-0,5}{0}=\frac{y+1,5}{-1}=\frac{z-1,5}{1}$.
14.16. $M(1,0,1), 4 x+6 y+4 z-25=0$.
14.17. $M(-1,0,-1), 2 x+6 y-2 z+11=0$.
14.18. $M(0,2,1), 2 x+4 y-3=0$.
14.19. $M(2,1,0), y+z+2=0$.
14.20. $M(-1,2,0), 4 x-5 y-z-7=0$.
14.21. $M(2,-1,1), x-y+2 z-2=0$.
14.22. $M(1,1,1), x+4 y+3 z+5=0$.
14.23. $M(1,2,3), 2 x+10 y+10 z-1=0$.
14.24. $M(0,-3,-2), 2 x+10 y+10 z-1=0$
14.25. $M(1,0,-1), 2 y+4 z-1=0$.
14.26. $M(3,-3,-1), 2 x-4 y-4 z-13=0$.

Task 15. Reduce the equation of a line to the canonical form, draw this line and find, depending on the result:
a) the coordinates of the center of the circle and its radius;
b) the coordinates of the foci, the length of the semi-axes and the eccentricity of the ellipse;
c) the coordinates of the foci, the length of the semi-axes and the eccentricity of the hyperbola and the equation of its asymptote;
d) the coordinates of the vertex and focus of the parabola, the value of the parameter, as well as the equation of its directrix
15.1

$$
\begin{array}{lll}
x^{2}+y^{2}+10 x-6 y+25=0 & 15.16 & 3 x^{2}+3 y^{2}-6 x+8 y=0 \\
4 x^{2}+y^{2}+2 x-14 y+14=0 & 15.17 & x^{2}+2 x+4 y-7=0 \\
5 x^{2}-4 y^{2}+16 y-36=0 & 15.18 & 4 x^{2}-8 x+y+7=0 \\
4 x^{2}+3 y^{2}+18 y+15=0 & 15.19 & 9 x^{2}+16 y^{2}-90 x+32 y+97=0 \\
y^{2}+2 x-10 y+31=0 & 15.20 & x^{2}+4 y^{2}-4 x+8 y-28=0 \\
x^{2}-2 x+y=0 & 15.21 & 4 x^{2}-y^{2}-8 x-6 y-25=0 \\
x^{2}-4 y^{2}-4 x-8 y-36=0 & 15.22 & x^{2}+y^{2}+4 x-5=0 \\
x^{2}+y^{2}-2 x+6 y+1=0 & 15.23 & 4 x^{2}+3 y^{2}-8 x+12 y-32=0 \\
4 x-3 y^{2}+12 y-12=0 & 15.24 & 9 x^{2}-16 y^{2}+90 x+32 y-367=0 \\
x^{2}-10 x+y+29=0 & 15.25 & y^{2}-2 x+4 y+2=0 \\
9 x^{2}-4 y^{2}+30 x-12 y-2=0 & 15.26 & 9 x^{2}-16 y^{2}-18 x+32 y+137=0 \\
x^{2}-y^{2}-4 x+2 y+7=0 & 15.27 & 9 x^{2}+4 y^{2}+6 x-12 y+9=0 \\
3 x^{2}+2 y^{2}-6 x-12 y-9=0 & 15.28 & x^{2}+y^{2}-2 x+6 y+1=0 \\
x^{2}-2 y^{2}+4 y-12=0 & 15.29 & 4 x^{2}-y^{2}-8 x-6 y-25=0 \\
9 x^{2}+4 y^{2}+6 x-12 y+9=0 & 15.30 & 4 x^{2}-8 x+y+7=0 \\
& 15.31 & 9 x^{2}-16 y^{2}+90 x+32 y-367=0
\end{array}
$$

