Task 1. Prove the linear independence of vectors \vec{p} , \vec{q} and \vec{r} , and decompose the vector \vec{x} in terms of the vector \vec{p} , \vec{q} and \vec{r} if they are linear independent

1.1. $x = \{-2, 4, 7\}, p = \{0, 1, 2\}, q = \{1, 0, 1\}, r = \{-1, 2, 4\}.$ 1.2. $x = \{6, 12, -1\}, p = \{1, 3, 0\}, q = \{2, -1, 1\}, r = \{0, -1, 2\}.$ 1.3. $x = \{1, -4, 4\}, p = \{2, 1, -1\}, q = \{0, 3, 2\}, r = \{1, -1, 1\}.$ 1.4. $x = \{-9, 5, 5\}, p = \{4, 1, 1\}, q = \{2, 0, -3\}, r = \{-1, 2, 1\}.$ 1.5. $x = \{-5, -5, 5\}, p = \{-2, 0, 1\}, q = \{1, 3, -1\}, r = \{0, 4, 1\}.$ 1.6. $x = \{13, 2, 7\}, p = \{5, 1, 0\}, q = \{2, -1, 3\}, r = \{1, 0, -1\}.$ 1.7. $x = \{-19, -1, 7\}, p = \{0, 1, 1\}, q = \{-2, 0, 1\}, r = \{3, 1, 0\}.$ 1.8. $x = \{3, -3, 4\}, p = \{1, 0, 2\}, q = \{0, 1, 1\}, r = \{2, -1, 4\}.$ 1.9. $x = \{3, 3, -1\}, p = \{3, 1, 0\}, q = \{-1, 2, 1\}, r = \{-1, 0, 2\}.$ 1.10. $x = \{-1, 7, -4\}, p = \{-1, 2, 1\}, q = \{2, 0, 3\}, r = \{1, 1, -1\}.$ 1.11. $x = \{6, 5, -14\}, p = \{1, 1, 4\}, q = \{0, -3, 2\}, r = \{2, 1, -1\}.$ 1.12. $x = \{6, -1, 7\}, p = \{1, -2, 0\}, q = \{-1, 1, 3\}, r = \{1, 0, 4\}.$ 1.13. $x = \{5, 15, 0\}, p = \{1, 0, 5\}, q = \{-1, 3, 2\}, r = \{0, -1, 1\}.$ 1.14. $x = \{2, -1, 11\}, p = \{1, 1, 0\}, q = \{0, 1, -2\}, r = \{1, 0, 3\}.$ 1.15. $x = \{11, 5, -3\}, p = \{1, 0, 2\}, q = \{-1, 0, 1\}, r = \{2, 5, -3\}.$ 1.16. $x = \{8, 0, 5\}, p = \{2, 0, 1\}, q = \{1, 1, 0\}, r = \{4, 1, 2\}.$ 1.17. $x = \{3, 1, 8\}, p = \{0, 1, 3\}, q = \{1, 2, -1\}, r = \{2, 0, -1\}.$ **1.18.** $x = \{8, 1, 12\}, p = \{1, 2, -1\}, q = \{3, 0, 2\}, r = \{-1, 1, 1\}.$ 1.19. $x = \{-9, -8, -3\}, p = \{1, 4, 1\}, q = \{-3, 2, 0\}, r = \{1, -1, 2\}.$ **1.20.** $x = \{-5, 9, -13\}, p = \{0, 1, -2\}, q = \{3, -1, 1\}, r = \{4, 1, 0\}.$ 1.21. $x = \{-15, 5, 6\}, p = \{0, 5, 1\}, q = \{3, 2, -1\}, r = \{-1, 1, 0\}.$ 1.22. $x = \{8, 9, 4\}, p = \{1, 0, 1\}, q = \{0, -2, 1\}, r = \{1, 3, 0\}.$ 1.23. $x = \{23, -14, -30\}, p = \{2, 1, 0\}, q = \{1, -1, 0\}, r = \{-3, 2, 5\}.$ 1.24. $x = \{3, 1, 3\}, p = \{2, 1, 0\}, q = \{1, 0, 1\}, r = \{4, 2, 1\}.$

Task 2. Check the collinearity of the vectors $\vec{c_1}$ and $\vec{c_2}$, which are given in the basis of the vectors \vec{a} and \vec{b} .

2.1.
$$a = \{1, -2, 3\}, b = \{3, 0, -1\}, c_1 = 2a + 4b, c_2 = 3b - a$$
.
2.2. $a = \{1, 0, 1\}, b = \{-2, 3, 5\}, c_1 = a + 2b, c_2 = 3a - b$.
2.3. $a = \{-2, 4, 1\}, b = \{1, -2, 7\}, c_1 = 5a + 3b, c_2 = 2a - b$.
2.4. $a = \{1, 2, -3\}, b = \{2, -1, -1\}, c_1 = 4a + 3b, c_2 = 8a - b$.
2.5. $a = \{3, 5, 4\}, b = \{5, 9, 7\}, c_1 = -2a + b, c_2 = 3a - 2b$.
2.6. $a = \{1, 4, -2\}, b = \{1, 1, -1\}, c_1 = a + b, c_2 = 4a + 2b$.
2.7. $a = \{1, -2, 5\}, b = \{3, -1, 0\}, c_1 = 4a - 2b, c_2 = b - 2a$.

2.8. a={3, 4, -1}, b={2, -1, 1}, c1=6a-3b, c2=b-2a. 2.9. $a = \{-2, -3, -2\}, b = \{1, 0, 5\}, c_1 = 3a + 9b, c_2 = -a - 3b.$ 2.10. a={-1, 4, 2}, b={3, -2, 6}, c1=2a-b, c2=3b-6a. 2.11. a={5, 0, -1}, b={7, 2, 3}, c1=2a-b, c2=3b-6a. 2.12. $a = \{0, 3, -2\}, b = \{1, -2, 1\}, c_1 = 5a - 2b, c_2 = 3a + 5b.$ 2.13. $a = \{-2, 7, -1\}, b = \{-3, 5, 2\}, c_1 = 2a + 3b, c_2 = 3a + 2b.$ 2.14. a={3, 7, 0}, b={1, -3, 4}, c1=4a-2b, c2=b-2a. 2.15. a={-1, 2, -1}, b={2, -7, 1}, c1=6a-2b, c2=b-3a. 2.16. a={7, 9, -2}, b={5, 4, 3}, c1=4a-b, c2=4b-a. 2.17. $a = \{5, 0, -2\}, b = \{6, 4, 3\}, c_1 = 5a - 3b, c_2 = 6b - 10a.$ 2.18. a={8, 3, -1}, b={4, 1, 3}, c1=2a-b, c2=2b-4a. 2.19. a={3, -1, 6}, b={5, 7, 10}, c1=4a-2b, c2=b-2a. 2.20. a={1, -2, 4}, b={7, 3, 5}, c1=6a-3b, c2=b-2a. 2.21. $a = \{3, 7, 0\}, b = \{4, 6, -1\}, c_1 = 3a + 2b, c_2 = 5a - 7b.$ 2.22. a={2, -1, 4}, b={3, -7, -6}, c1=2a-3b, c2=3a-2b. 2.23. a={5, -1, -2}, b={6, 0, 7}, c1=3a-2b, c2=4b-6a. 2.24. a= {-9, 5, 3}, b= {7, 1, -2}, c1=2a-b, c2=3a+5b.

Task 3. Find the angle between two nonzero vectors: AB and AC, and the projection of the vector \overline{AB} on the vector \overline{AC} .

3.1. A(1, -2, 3), B(0, -1, 2), C(3, -4, 5). **3.2.** A(0, -3, 6), B(-12, -3, -3), C(-9, -3, -6). **3.3.** A(3, 3, -1), B(5, 5, -2), C(4, 1, 1). **3.4.** A(-1, 2, -3), B(3, 4, -6), C(1, 1, -1).**3.5.** A(-4, -2, 0), B(-1, -2, 4), C(3, -2, 1).

3.5. A (-4, -2, 0), B (-1, -2, 4), C (3, -4, 4)3.6. A (5, 3, -1), B (5, 2, 0), C (6, 4, -1).3.7. A (-3, -7, -5), B (0, -1, -2), C (2, 3, 0).3.8. A (2, -4, 6), B (0, -2, 4), C (6, -8, 10).3.9. A (0, 1, -2), B (3, 1, 2), C (4, 1, 1).3.10. A (3, 3, -1), B (1, 5, -2), C (4, 1, 1).3.11. A (2, 1, -1), B (6, -1, -4), C (4, 2, 1).3.12. A (-1, -2, 1), B (6, -1, -4), C (4, 2, 1).3.13. A (6, 2, -3), B (6, 3, -2), C (7, 3, -3).3.14. A (0, 0, 4), B (-3, -6, 1), C (-5, -10, -1).3.15. A (2, -8, -1), B (4, -6, 0), C (-2, -5, -1).3.16. A (3, -6, 9), B (0, -3, 6), C (9, -12, 15).

3.17.
$$A(0, 2, -4)$$
, $B(8, 2, 2)$, $C(6, 2, 4)$.
3.18. $A(3, 3, -1)$, $B(5, 1, -2)$, $C(4, 1, 1)$.
3.19. $A(-4, 3, 0)$, $B(0, 1, 3)$, $C(-2, 4, -2)$.
3.20. $A(1, -1, 0)$, $B(-2, -1, 4)$, $C(8, -1, -1)$.
3.21. $A(7, 0, 2)$, $B(7, 1, 3)$, $C(8, -1, 2)$.
3.22. $A(2, 3, 2)$, $B(-1, -3, -1)$, $C(-3, -7, -3)$.
3.23. $A(2, 2, 7)$, $B(0, 0, 6)$, $C(-2, 5, 7)$.
3.24. $A(-1, 2, -3)$, $B(0, 1, -2)$, $C(-3, 4, -5)$.

Task 4. Find the area of a parallelogram constructed on vectors \vec{a} and \vec{b} which are given in terms of the vectors \vec{p} and \vec{q} with the angle known between them, and find an altitude of the parallelogram which is dropped on the side coinciding with the vector \vec{a} .

4.1. n = p + 2q, b = 3p - q; |p| = 1, |q| = 2, $(pq) = \pi/6$. 4.2. a-3p+q, b-p-2q; |p|-4, |q|-1, (pq)-x/4. 43. a=p-3q, b=p+2q; |p|=1/5, |q|=1, $(pq)=\pi/2$. 4.4. a = 3p - 2q, b = p + 5q; |p| = 4, |q| = 1/2, $(pq) = 5\pi/6$. 4.5. a-p-2q, b-2p+q; |p|-2, |q|-3, (pq)-3x/4. 4.6. n=p+3q, b=p-2q; |p|=2, |q|=3, $(pq)=\pi/3$. 4.7. a=2p-q, b=p+3q; |p|=3, |q|=2, $(pq)=\pi/2$. 4.8. a=4p+q, b=p-q; |p|=7, |q|=2, (pq)== x/4. 4.9. n-p-4q, b-3p+q; |p|=1, |q|=2, $(pq)=\pi/6$. 4.10. a-p+4q, b-2p-q; |p|-7, |q|-2, (pq)-x/3. 4.11. a=3p+2q, b=p-q; |p|=10, |q|=1, (pq)=x/2. 4.12. a=4p-q, b=p+2q; |p|=5, |q|=4, (pq)=π/4. 4.13. a=2p+3q, b=p-2q; |p|=6, |q|=7, $(pq)=\pi/3$. 4.14. a=3p-q, b=p+2q; |p|=3, |q|=4, (pq)=π/3. 4.15. a=2p+3q, b=p-2q; |p|=2, |q|=3, (pq)=π/4.

4.16.
$$a=2p-3q$$
, $b=3p+q$; $|p|=4$, $|q|=1$, $(pq)=\pi/6$.
4.17. $a=5p+q$, $b=p-3q$; $|p|=1$, $|q|=2$, $(pq)=\pi/3$.
4.18. $a=7p-2q$, $b=p+3q$; $|p|=1/2$, $|q|=2$, $(pq)=\pi/2$.
4.19. $a=6p-q$, $b=p+q$; $|p|=3$, $|q|=4$, $(pq)=\pi/4$.
4.20. $a=10p+q$, $b=3p-2q$; $|p|=4$, $|q|=1$, $(pq)=\pi/6$.
4.21. $a=6p-q$, $b=p+2q$; $|p|=8$, $|q|=1/2$, $(pq)=\pi/6$.
4.22. $a=3p+4q$, $b=q-p$; $|p|=2,5$, $|q|=2$, $(pq)=\pi/2$.
4.23. $a=7p+q$, $b=p-3q$; $|p|=3$, $|q|=1$, $(pq)=3\pi/4$.
4.24. $a=p+3q$, $b=3p-q$; $|p|=3$, $|q|=5$, $(pq)=2\pi/3$.

Task 5. Check the coplanarity of vectors \vec{a} , \vec{b} and \vec{c} .

5.1.
$$a = \{2, 3, 1\}, b = \{-1, 0, -1\}, c = \{2, 2, 2\},$$

5.2. $a = \{3, 2, 1\}, b = \{2, 3, 4\}, c = \{3, 1, -1\},$
5.3. $a = \{1, 5, 2\}, b = \{-1, 1, -1\}, c = \{1, 1, 1\},$
5.4. $a = \{1, -1, -3\}, b = \{3, 2, 1\}, c = \{2, 3, 4\},$
5.5. $a = \{3, 1, -1\}, b = \{1, -2, 1\}, c = \{1, 1, 1\},$
5.6. $a = \{3, 1, -1\}, b = \{1, -2, 1\}, c = \{2, 2, 2\},$
5.8. $a = \{4, 3, 1\}, b = \{1, -2, 1\}, c = \{2, 2, 2\},$
5.8. $a = \{4, 3, 1\}, b = \{1, -3, -7\}, c = \{1, 2, 3\},$
5.10. $a = \{3, 7, 2\}, b = \{-2, 0, -1\}, c = \{2, 2, 1\},$
5.11. $a = \{1, -2, 6\}, b = \{1, 0, 1\}, c = \{2, -6, 17\},$
5.12. $a = \{6, 3, 4\}, b = \{-1, -2, -1\}, c = \{2, 0, -1\},$
5.13. $a = \{7, 3, 4\}, b = \{-1, -2, -1\}, c = \{4, 2, 4\},$
5.14. $a = \{2, 3, 2\}, b = \{4, 7, 5\}, c = \{2, 0, -1\},$

5.15. $a = \{5, 3, 4\}, b = \{-1, 0, -1\}, c = \{4, 2, 4\}.$ 5.16. $a = \{3, 10, 5\}, b = \{-2, -2, -3\}, c = \{2, 4, 3\}.$ 5.17. $a = \{-2, -4, -3\}, b = \{4, 3, 1\}, c = \{6, 7, 4\}.$ 5.18. $a = \{3, 1, -1\}, b = \{1, 0, -1\}, c = \{8, 3, -2\}.$ 5.19. $a = \{4, 2, 2\}, b = \{-3, -3, -3\}, c = \{2, 1, 2\}.$ 5.20. $a = \{4, 1, 2\}, b = \{9, 2, 5\}, c = \{1, 1, -1\}.$ 5.21. $a = \{5, 3, 4\}, b = \{4, 3, 3\}, c = \{9, 5, 8\}.$ 5.22. $a = \{3, 4, 2\}, b = \{1, 1, 0\}, c = \{8, 11, 6\}.$ 5.23. $a = \{4, -1, -6\}, b = \{1, -3, -7\}, c = \{2, -1, -4\}.$ 5.24. $a = \{3, 1, 0\}, b = \{-5, -4, -5\}, c = \{4, 2, 4\}.$

Task 6. Calculate the volume of a tetrahedron whose vertices are given by points A_1 , A_2 , A_3 and A_4 , and its attitude dropped from the point A_4 on the face $A_1A_2A_3$.

6.1. A_1 (1, 3, 6), A_2 (2, 2, 1), A_3 (-1, 0, 1), A_4 (-4, 6, -3). 6.2. A1 (-4, 2, 6), A2 (2, -3, 0), A, (-10, 5, 8), A4 (-5, 2, -4). 6.3. A_1 (7, 2, 4), A_2 (7, -1, -2), A_3 (3, 3, 1), A_4 (-4, 2, 1). 6.4. A_1 (2, 1, 4), A_3 (-1, 5, -2), A_3 (-7, -3, 2), A_4 (-6, -3, 6). 6.5. A_1 (-1, -5, 2), A_2 (-6, 0, -3), A_3 (3, 6, -3), A_4 (-10, 6, 7). 6.6. A_1 (0, -1, -1), A_2 (-2, 3, 5), A_3 (1, -5, -9), A_4 (-1, -6, 3). 6.7. A1 (5, 2, 0), A2 (2, 5, 0), A3 (1, 2, 4), A4 (-1, 1, 1). 6.8. A1 (2, -1, -2), A2 (1, 2, 1), A3 (5, 0, -6), A4 (-10, 9, -7). 6.9. A_1 (-2, 0, -4), A_2 (-1, 7, 1), A_3 (4, -8, -4), A_4 (1, -4, 6). 6.10. A_1 (14, 4, 5), A_2 (-5, -3, 2), A_3 (-2, -6, -3), A_4 (-2, 2, -1). 6.11. A_1 (1, 2, 0), A_2 (3, 0, -3), A_3 (5, 2, 6), A_4 (8, 4, -9). 6.12. A1 (2, -1, 2), A2 (1, 2, -1), A3 (3, 2, 1), A4 (-4, 2, 5). 6.13. A_1 (1, 1, 2), A_2 (-1, 1, 3), A_3 (2, -2, 4), A_4 (-1, 0, -2). 6.14. A1 (2, 3, 1), A2 (4, 1, -2), A3 (6, 3, 7), A4 (7, 5, -3). 6.15. A1 (1, 1, -1), A2 (2, 3, 1), A3 (3, 2, 1), A4 (5, 9, -8). 6.16. A1 (1, 5, -7), A2 (-3, 6, 3), A3 (-2, 7, 3), A4 (-4, 8, -12). £17. A1 (-3, 4, -7), A2 (1, 5, -4), A3 (-5, -2, 0), A4 (2, 5, 4). 6.18. A_1 (-1, 2, -3), A_2 (4, -1, 0), A_3 (2, 1, -2), A_4 (3, 4, 5). 6.19. A_1 (4, -1, 3), A_2 (-2, 1, 0), A_3 (0, -5, 1), A_4 (3, 2, -6). 6.20. A_1 (1, -1, 1), A_2 (-2, 0, 3), A_3 (2, 1, -1), A_4 (2, -2, -4). 6.21. A_1 (1, 2, 0,), A_2 (1, -1, 2), A_3 (0, 1, -1), A_4 (-3, 0, 1). 6.22. A_1 (1, 0, 2), A_2 (1, 2, -1), A_3 (2, -2, 1), A_4 (2, 1, 0). 6.23. A_1 (1, 2, -3), A_2 (1, 0, 1), A_3 (-2, -1, 6), A_4 (0, -5, -4). 6.24. A_1 (3, 10, -1), A_2 (-2, 3, -5), A_3 (-6, 0, -3), A_4 (1, -1, 2). 6.25. A_1 (-1, 2, 4), A_2 (-1, -2, -4), A_3 (3, 0, -1), A_4 (7, -3, 1). 6.26. A_1 (0, -3, 1), A_2 (-4, 1, 2), A_3 (2, -1, 5), A_4 (3, 1, -4).

Task 7. Find the distance from the point M_0 to the plane passing through the points M_1 , M_2 , M_3 .

7.1. M_1 (-3, 4, -7), M_2 (1, 5, -4), M_3 (-5, -2, 0), M_0 (-12, 7, -1). 7.2. M_1 (-1, 2, -3), M_2 (4, -1, 0), M_3 (2, 1, -2), M_0 (1, -6, -5). 7.3. M_1 (-3, -1, 1), M_2 (-9, 1, -2), M_3 (3, -5, 4), M_0 (-7, 0, -1). 7.4. M_1 (1, -1, 1), M_2 (-2, 0, 3), M_3 (2, 1, -1), M_0 (-2, 4, 2). 7.5. M1 (1, 2, 0), M2 (1, -1, 2), M3 (0, 1, -1), M0 (2, -1, 4). 7.6. M_1 (1, 0, 2), M_2 (1, 2, -1), M_3 (2, -2, 1), M_0 (-5, -9, 1). 7.7. M_1 (1, 2, -3), M_2 (1, 0, 1), M_3 (-2, -1, 6), M_0 (3, -2, -9). 7.8. M_1 (3, 10, -1), M_2 (-2, 3, -5), M_3 (-6, 0, -3), M_0 (-6, 7, -10). 7.9. M_1 (-1, 2, 4), M_2 (-1, -2, -4), M_3 (3, 0, -1), M_0 (-2, 3, 5). 7.10. M_1 (0, -3, 1), M_2 (-4, 1, 2), M_3 (2, -1, 5), M_0 (-3, 4, -5). 7.11. M1 (1, 3, 0), M2 (4, -1, 2), M3 (3, 0, 1), M0 (4, 3, 0). 7.12. M_1 (-2, -1, -1), M_2 (0, 3, 2), M_3 (3, 1, -4), M_0 (-21, 20, -16). 7.13. M_1 (-3, -5, 6), M_2 (2, 1, -4), M_3 (0, -3, -1), M_0 (3, 6, 68). 7.14. M_1 (2, -4, -3), M_2 (5, -6, 0), M_3 (-1, 3, -3), M_6 (2, -10, 8). 7.15. M_1 (1, -1, 2), M_2 (2, 1, 2), M_3 (1, 1, 4), M_0 (-3, 2, 7). 7.16. M_1 (1, 3, 6), M_2 (2, 2, 1), M_3 (-1, 0, 1), M_0 (5, -4, 5). 7.17. M_1 (-4, 2, 6), M_1 (2, -3, 0,) M_2 (-10, 5, 8), M_0 (-12, 1, 8). 7.18. M_1 (7, 2, 4), M_2 (7, -1, -2), M_3 (-5, -2, -1), M_0 (10, 1, 8). 7.19. M1 (2, 1, 4), M2 (3, 5, -2), M3 (-7, -3, 2), M0 (-3, 1, 8). 7.20. M_1 (-1, -5, 2), M_2 (-6, 0, -3), M_3 (3, 6, -3), M_0 (10, -8, -7). 7.21. M_1 (0, -1, -1), M_2 (-2, 3, 5), M_3 (1, -5, -9), M_0 (-4, -13, 6). 7.22. M1 (5, 2, 0), M2 (2, 5, 0), M3 (1, 2, 4), M0 (-3, -6, -8). 7.23. M_1 (2, -1, -2), M_2 (1, 2, 1), M_3 (5, 0, -6), M_0 (14, -3, 7). 7.34. M_1 (-2, 0, -4), M_2 (-1, 7, 1), M_3 (4, -8, -4), M_0 (-6, 5, 5). 7.25. M_1 (14, 4, 5), M_2 (-5, -3, 2), M_3 (-2, -6, -3), M_0 (-1, -8, 7). 7.26. M1 (1, 2, 0), M2 (3, 0, -3), M3 (5, 2, 6), M0 (-13, -8, 16).

Task 8. Find the equation of the plane passing through the point M_0 perpendicular to the vector \overrightarrow{BC} .

8.1. A (1, 0, -2), B (2, -1, 3), C (0, -3, 2). **8.2.** A (-1, 3, 4), B (-1, 5, 0), C (2, 6, 1). **8.3.** A (4, -2, 0), B (1, -1, -5), C (-2, 1, -3). **8.4.** A (-8, 0, 7), B (-3, 2, 4), C (-1, 4, 5). **8.5.** A (7, -5, 1), B (5, -1, -3), C (3, 0, -4).

8.6.
$$A(-3, 5, -2)$$
, $B(-4, 0, 3)$, $C(-3, 2, 5)$.
8.7. $A(1, -1, 8)$, $B(-4, -3, 10)$, $C(-1, -1, 7)$.
8.8. $A(-2, 0, -5)$, $B(2, 7, -3)$, $C(1, 10, -1)$.
8.9. $A(1, 9, -4)$, $B(5, 7, 1)$, $C(3, 5, 0)$.
8.10. $A(-7, 0, 3)$, $B(1, -5, -4)$, $C(2, -3, 0)$.
8.11. $A(0, -3, 5)$, $B(-7, 2, 6)$, $C(-3, 2, 4)$.
8.12. $A(5, -1, 2)$, $B(2, -4, 3)$, $C(4, -1, 3)$.
8.13. $A(-3, 7, 2)$, $B(3, 5, 1)$, $C(4, 5, 3)$.
8.14. $A(0, -2, 8)$, $B(4, 3, 2)$, $C(1, 4, 3)$.
8.15. $A(1, -1, 5)$, $B(0, 7, 8)$, $C(-1, 3, 8)$.
8.16. $A(-10, 0, 9)$, $B(12, 4, 11)$, $C(85, 15)$.
8.17. $A(3, -3, -6)$, $B(1, 9, -5)$, $C(6, 6, -4)$.
8.18. $A(2, 1, 7)$, $B(9, 0, 2)$, $C(9, 2, 3)$.
8.19. $A(-7, 1, -4)$, $B(8, 11, -3)$, $C(9, 9, -1)$.
8.20. $A(1, 0, -6)$, $B(-7, 2, 1)$, $C(-9, 6, 1)$.
8.21. $A(-3, 1, 0)$, $B(6, 3, 3)$, $C(9, 4, -2)$.
8.22. $A(-4, -2, 5)$, $B(3, -3, -7)$, $C(9, 3, -7)$.
8.23. $A(0, -8, 10)$, $B(-5, 5, 7)$, $C(-8, 0, 4)$.
8.24. $A(1, -5, -2)$, $B(6, -2, 1)$, $C(2, -2, -2)$.

Task 9. Find the angle between the planes.

9.1.
$$x-3y+5=0$$
, $2x-y+5z-16=0$.
9.2. $x-3y+z-1=0$, $x+z-1=0$.
9.3. $4x-5y+3z-1=0$, $x-4y-z+9=0$.
9.4. $3x-y+2z+15=0$, $5x+9y-3z-1=0$.
9.5. $6x+2y-4z+17=0$, $9x+3y-6z-4=0$.
9.6. $x-y\sqrt{2+z-1}=0$, $x+y\sqrt{2-z+3}=0$.
9.7. $3y-z=0$, $2y+z=0$.
9.8. $6x+3y-2z=0$, $x+2y+6z-12=0$.
9.9. $x+2y+2z-3=0$, $16x+12y-15z-1=0$.
9.10. $2x-y+5z+16=0$, $x+2y+3z+8=0$.
9.11. $2x+2y+z-1=0$, $x+z-1=0$.
9.12. $3x+y+z-4=0$, $y+z+5=0$.
9.13. $3x-2y-2z-16=0$, $x+y-3z-7=0$.
9.14. $2x+2y+z-3=0$, $2x-y+3z-1=0$.
9.15. $x+2y+2z-3=0$, $2x-y+2z+5=0$.

9.16.
$$3x+2y-3z-1=0$$
, $x+y+z-7=0$.
9.17. $x-3y-2z-8=0$, $x+y-z+3=0$.
9.18. $3x-2y+3z+23=0$, $y+z+5=0$.
9.19. $x+y+3z-7=0$, $y+z-1=0$.
9.20. $x-2y+2x+17=0$, $x-2y-1=0$.
9.21. $x+2y-1=0$, $x+y+6=0$.
9.22. $2x-z+5=0$, $2x+3y-7=0$.
9.23. $5x+3y+z-18=0$, $2y+z-9=0$.
9.24. $4x+3z-2=0$, $x+2y+2z+5=0$.
9.25. $x+4y-z+1=0$, $2x+y+4z-3=0$.

Task 10. Solve the problems related to a straight line in the plane:

10.1. A triangle *ABC* is given by the vertices A(-2; 3), B(4; 1), C(6; -5). Find the equation of the median passing through the vertex A.

10.2. The vertices of the triangle are A (4; 6), B (-4,0), C (-1, -4). Find the equation of the attitude dropped from the vertex A on the side BC.

10.3. Find the equation of the straight line passing through the point of intersection of the straight lines 5x-y + 10 = 0 and 8x + 4y + 9 = 0, and which is parallel to the straight line given by x + 3y = 0.

10.4. With known equations of the straight lines coinciding with the two sides pf the parallelogram: x-3y = 0 and 2x + 5y + 6 = 0, and given its vertex C (4, -1), find the equations of the straight lines coinciding with the other sides of the parallelogram

10.5. Given the middle points of the sides of a triangle M_1 (2,3), M_2 (-1,2), M_3 (4,5). Find the equation of the triangle sides.

10.6. The straight line is given by 2x + 3y + 4 = 0. Find an equation of the straight line passing through the point M (2, 1) at the angle 45° to the given straight line.

10.7. The vertices of the triangle ABC are A (-4; 2), B (2; -5), C (5,0). Find the equation of the attitude dropped from the vertex C.

10.8. Find the equation of the straight line parallel to the other two straight lines x + y-1 = 0, x + y-13 = 0 and which has the same distances from each of them.

10.9. The vertices of the triangle ABC are A (-6,3), B (1,5) and C (-2,0). Find the equation of the straight line passing through the vertex B parallel to the

side AC.

10.10. The vertices of the triangle ABC are A (-1; 2), B (3; 1), C (4; -2). Find the equation of the attitude dropped from the vertex A.

10.11. The vertices of the triangle ABC are A (-1, 2), B (3, -1) and C (0,4). Find the equation of the straight line passing through the vertex A parallel to the side BC.

10.12. Find the area of the square if its two sides coincide with the straight lines: 3x-2y + 3 = 0, 6x-4y + 5 = 0.

10.13. Find a point A symmetric to B (1, -3) with respect to the straight line x + 2y-5 = 0.

10.14. Two sides of the parallelogram coincide with the straight lines x-y-1 = 0, x-2y-10 = 0 and the diagonals intersect at the point M (3, -1). Find the equations of the straight lines coinciding with the other two sides of the parallelogram.

10.15. Find the angle between two straight lines: 4x + 6y + 5 = 0 and 5x-15y-7 = 0.

10.16. Find the point symmetrical to the point P (-2,9) with respect to the straight line x-y + 9 = 0.

10.17. The straight line 2x + 3y-6 = 0 coincides with a side of the rectangle and an intersection point of the diagonals of the rectangle is M (5, 7). Find the straight lines coinciding with the other sides of the rectangle if one of them is passing through the point B (2,1).

10.18. Find the point symmetrical to the point P (-2,9), with respect to the straight line 2x-3y+18 = 0.

10.19. The straight lines x + y = 4; 3x-2y = 12; 2x-y = 1 coincide with the sides of a triangle. Find the area of this triangle.

10.20. Скласти рівняння прямої, що проходить через точку перетину прямих: 5x-y + 10 = 0, 8x + 4y + 9 = 0 і паралельної прямої: x + 3y = 0.

10.21. Find an inner corner of the triangle whose sides are composted by the straight lines: 3x-y - 6 = 0; x-y + 4 = 0; x + 2y = 0.

10.22. Two points are P (2; 3), Q (-1; 0) Find the equation of the straight line passing through the point Q perpendicular to the segment PQ.

10.23. Find the angle between two straight lines: x + y-2 = 0, 6x - 6y + 1 = 0.

10.24. Find the projection of the point P (1, -3/2) on the straight line 2x - 3y +

5 = 0.

10.25. The vertices of the triangle ABC are A (-2; 0), B (2; 4), C (4; 0). Find the equation of the median dropped from the vertex A.

Task 12. Find the canonical equation of the straight line in the space.

12.1, 2x+y+z-2=0, 2x-y-3z+6=0. 12.2. x-3y+2z+2=0, x+3y+z+14=0. 12.3. x-2y+z-4=0, 2x+2y-z-8=0. 12.4. x+y+z-2=0, x-y-2z+2=0. 12.5. 2x+3y+z+6=0, x-3y-2z+3=0. 12.6. 3x+y-z-6=0, 3x-y+2z=0. 12.7. x+5y+2z+11=0, x-y-z-1=0. 12.8. 3x+4y-2z+1=0, 2x-4y+3z+4=0. 12.9. 5x+y-3z+4=0, x-y+2z+2=0. 12.10. x-y-z-2=0, x-2y+z+4=0. 12.11. 4x+y-3z+2=0, 2x-y+z-8=0. 12.12. 3x+3y-2z-1=0, 2x-3y+z+6=0. 12.13. 6x-7y-4z-2=0, x+7y-z-5=0. 12.14. 8x-y-3x-1=0, x+y+x+10=0. 12.15. 6x - 5y - 4z + 8 = 0, 6x + 5y + 3z + 4 = 0. 12.16. x+5y-z-5-0, 2x-5y+2z+5=0. 12.17. 2x-3y+z+6=0, x-3y-2z+3=0. 12.18. 5x+y+2z+4=0, x-y-3z+2=0. 12.19. 4x+y+z+2=0, 2x-y-3z-8=0. 12.20. 2x+y-3z-2=0, 2x-y+z+6=0. 12.21. x+y-2z-2=0, x-y+z+2=0. 12.22. x+5y-x+11=0, x-y+2x-1=0. 12.23. x-y+z-2=0, x-2y-z+4=0. 12.24. 6x-7y-z-2=0, x+7y-4z-5=0. 12.25. x+5y+2z-5=0, 2x-5y-z+5=0.

Task 13. Find the point of intersection of a line and a plane.

13.1. $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z+1}{4}$, x+2y+3z-14=0. 13.2. $\frac{x+1}{3} = \frac{y-3}{-4} = \frac{z+1}{5}$, x+2y-5z+20=0. 13.3. $\frac{x-1}{-1} = \frac{y+5}{4} = \frac{z-1}{2}, x-3y+7z-24=0.$ 13.4. $\frac{x-1}{1} = \frac{y}{0} = \frac{z+3}{2}, 2x-y+4z=0.$ 13.5. $\frac{x-5}{1} = \frac{y-3}{-1} = \frac{z-2}{0}$, 3x+y-5z-12=0. 13.6. $\frac{x+1}{2} = \frac{y+2}{2} = \frac{x-3}{-2}, x+3y-5x+9=0.$ 13.7. $\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z+1}{-1}, x-2y+5z+17=0.$ 13.8. $\frac{x-1}{2} = \frac{x-2}{0} = \frac{x-4}{1}$, x-2y+4z-19=0. 13.9. $\frac{x+2}{-1} = \frac{y-1}{1} = \frac{x+4}{-1}$, 2x-y+3x+23=0. 13.10. $\frac{x+2}{1} = \frac{y-2}{0} = \frac{z+3}{0}$, 2x-3y-5z-7=0. 13.11. $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{x+2}{3}, 4x+2y-x-11=0.$ 13.12. $\frac{x-1}{1} = \frac{y+1}{0} = \frac{x-1}{-1}$, 3x-2y-4x-8=0. 13.13. $\frac{x+2}{-1} = \frac{y-1}{1} = \frac{x+3}{2}, x+2y-x-2=0.$ 13.14. $\frac{x+3}{1} = \frac{y-2}{-5} = \frac{x+2}{3}$, 5x-y+4x+3=0. 13.15. $\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-4}{2}$, x+3y+5z-42=0. 13.16. $\frac{x-3}{-1} = \frac{y-4}{5} = \frac{x-4}{2}, 7x+y+4x-47=0.$ 13.17. $\frac{x+3}{2} = \frac{y-1}{3} = \frac{x-1}{5}$, 2x+3y+7z-52=0. 13.18. $\frac{x-3}{2} = \frac{y+1}{3} = \frac{x+3}{2}$, 3x+4y+7x-16=0.

Task 14. Find the point M_1 , symmetric to the point M with respect to the line (for tasks 1 -15) or to the plane (for tasks 16 - 31).

14.1. $M(0, -3, -2), \frac{x-1}{1} = \frac{y+1, 5}{1} = \frac{z}{1}$ 14.2. $M(2, -1, 1), \frac{x-4,5}{1} = \frac{y+3}{-0.5} = \frac{z-2}{1}.$ **14.3.** $M(1, 1, 1), \frac{x-2}{1} = \frac{y+1,5}{-2} = \frac{x-1}{1}.$ 14.4. M (1, 2, 3), $\frac{x-0.5}{0} = \frac{y+1.5}{-1} = \frac{z-1.5}{1}$ 14.5. $M(1, 0, -1), \frac{x-3,5}{2} = \frac{y-1,5}{2} = \frac{x}{2}$ 14.6. $M(2, 1, 0), \frac{x-2}{0} = \frac{y+1,5}{-1} = \frac{z+0,5}{-1}$ 14.7. $M(-2, -3, 0), \frac{x+0.5}{1} = \frac{y+1.5}{0} = \frac{z-0.5}{1}$ 14.8. $M(-1, 0, -1), \frac{x}{-1} = \frac{y-1, 5}{0} = \frac{x-2}{1}$ 14.9. $M(0, 2, 1), \frac{x-1,5}{2} = \frac{y}{-1} = \frac{z-2}{1}$ 14.10. $M(3, -3, -1), \frac{x-6}{5} = \frac{y-3,5}{4} = \frac{x+0,5}{0}.$ 14.11. M (3, 3, 3), $\frac{x-1}{-1} = \frac{y-1,5}{0} = \frac{x-3}{1}$. 14.12. $M(-1, 2, 0), \frac{x+0,5}{1} = \frac{y+0,7}{-0,2} = \frac{x-2}{2}.$ 14.13. $M(2, -2, -3), \frac{x-1}{-1} = \frac{y+0,5}{0} = \frac{x+1,5}{0}.$ 14.14. $M(-1, 0, 1), \frac{x+0,5}{0} = \frac{y-1}{0} = \frac{x-4}{2}.$ 14.15. $M(0, -3, -2), \frac{x-0,5}{0} = \frac{y+1,5}{-1} = \frac{z-1,5}{-1}$ 14.16. M (1, 0, 1), 4x+6y+4z-25=0. 14.17. M (-1, 0, -1), 2x+6y-2z+11=0. 14.18. M (0, 2, 1), 2x+4y-3=0.

14.19. M (2, 1, 0), y+z+2=0.

14.20. M(-1, 2, 0), 4x-5y-z-7=0.14.21. M(2, -1, 1), x-y+2z-2=0.14.22. M(1, 1, 1), x+4y+3z+5=0.14.23. M(1, 2, 3), 2x+10y+10z-1=0.14.24. M(0, -3, -2), 2x+10y+10z-1=0.14.25. M(1, 0, -1), 2y+4z-1=0.14.26. M(3, -3, -1), 2x-4y-4z-13=0.

Task 15. Reduce the equation of a line to the canonical form, draw this line and find, depending on the result:

a) the coordinates of the center of the circle and its radius;

b) the coordinates of the foci, the length of the semi-axes and the eccentricity of the ellipse;

c) the coordinates of the foci, the length of the semi-axes and the eccentricity of the hyperbola and the equation of its asymptote;

d) the coordinates of the vertex and focus of the parabola, the value of the parameter, as well as the equation of its directrix

15.1
$$x^{2} + y^{2} + 10x - 6y + 25 = 0$$

15.2 $4x^{2} + y^{2} + 2x - 14y + 14 = 0$
15.3 $5x^{2} - 4y^{2} + 16y - 36 = 0$
15.4 $4x^{2} + 3y^{2} + 18y + 15 = 0$
15.5 $y^{2} + 2x - 10y + 31 = 0$
15.6 $x^{2} - 2x + y = 0$
15.7 $x^{2} - 4y^{2} - 4x - 8y - 36 = 0$
15.8 $x^{2} + y^{2} - 2x + 6y + 1 = 0$
15.9 $4x - 3y^{2} + 12y - 12 = 0$
15.10 $x^{2} - 10x + y + 29 = 0$
15.11 $9x^{2} - 4y^{2} + 30x - 12y - 2 = 0$
15.12 $x^{2} - y^{2} - 4x + 2y + 7 = 0$
15.13 $3x^{2} + 2y^{2} - 6x - 12y - 9 = 0$
15.14 $x^{2} - 2y^{2} + 4y - 12 = 0$
15.15 $9x^{2} + 4y^{2} + 6x - 12y + 9 = 0$

15.16
$$3x^{2} + 3y^{2} - 6x + 8y = 0$$

15.17 $x^{2} + 2x + 4y - 7 = 0$
15.18 $4x^{2} - 8x + y + 7 = 0$
15.19 $9x^{2} + 16y^{2} - 90x + 32y + 97 = 0$
15.20 $x^{2} + 4y^{2} - 4x + 8y - 28 = 0$
15.21 $4x^{2} - y^{2} - 8x - 6y - 25 = 0$
15.22 $x^{2} + y^{2} + 4x - 5 = 0$
15.23 $4x^{2} + 3y^{2} - 8x + 12y - 32 = 0$
15.24 $9x^{2} - 16y^{2} + 90x + 32y - 367 = 0$
15.25 $y^{2} - 2x + 4y + 2 = 0$
15.26 $9x^{2} - 16y^{2} - 18x + 32y + 137 = 0$
15.27 $9x^{2} + 4y^{2} + 6x - 12y + 9 = 0$
15.28 $x^{2} + y^{2} - 2x + 6y + 1 = 0$
15.29 $4x^{2} - y^{2} - 8x - 6y - 25 = 0$
15.30 $4x^{2} - 8x + y + 7 = 0$
15.31 $9x^{2} - 16y^{2} + 90x + 32y - 367 = 0$