
Lecture #16: LIMITS AND CONTINUITY OF FUNCTIONS 

 

 16.1 Intuitive Definition of the limit of a single-valued function 

The limit of a function of variable 𝑥 which is a real number can be defined 

in the same way as the numeric sequence was. 

First, we could consider an intuitive limit definition.  

Let’s consider a function of x whose form 

is similar to the numerical sequence 

mentioned above. i.e. 
x

y
1

  for x > 0.  

As x gets larger, f(x) gets closer and closer 

to zero as shown in Fig.  

In fact, f(x) will get closer to zero than any 

small distance 𝜀 from 𝑦 = 0 we choose, 

and will stay closer.  

Finally, we can say that f(x) has limit zero as x tends to infinity, and we 

could write: 
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Another intuitive example of a function 

that has a limit as x tends to infinity is the 

function 
2

1
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x
xf   for x > 0.  

As x gets larger, f(x) gets closer and 

closer to 3.  

For any small distance 𝜀 from 𝑦 = 3, f(x) 

eventually gets closer to 3 than that 

distance 𝑦 = 3 ± 𝜀, and stays closer.  

So we say that f(x) has limit 3 as x tends 

to infinity, and we could write 
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 In general, we say that f(x) tends to a real limit A as x tends to infinity 

if, however small a distance 𝜀 from 𝑓(𝑥) = 𝐴 we choose, f(x) gets closer 

than that distance to A and stays closer as x increases.  

 

 Of course, not all functions have real limits as x tends to infinity. Let 

us look at some other types of behavior: 

 

1) If we take the function f(x) = x2, we see 

that f(x) does not get closer to any particular 

number as x increases.  

Instead, f(x) just gets larger and larger. At 

some point, f(x) will get larger than any 

number we choose, and will stay larger.  

In this case, we say that f(x) tends to infinity 

as x tends to infinity, and we could write 
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2) The function f(x) = −x does not have a real 

limit as x tends to infinity as well.  

As x gets larger, this function eventually gets 

more negative than any number we can 

choose, and it will stay more negative.  

In this case, we say that f(x) tends to minus 

infinity as x tends to infinity, and we could 

write 

 

xxf )(   - as x   or   


x
x
lim . 

 Some functions do not have any kind of limit as 𝑥 tends to infinity. 

3) For example, consider the function f(x) = x sin x. 

 This function does not get close to any particular real number as x gets 

large, because we can always choose a value of x to make f(x) larger than 



any number we choose. 

However, f(x) does not tend to infinity, 

because it does not stay larger than the 

number we have chosen, but instead 

returns to zero. For a similar reason, f(x) 

does not tend to minus infinity.  

So we cannot talk about the limit of this 

function as x tends to infinity. 

 

 

As well as defining the limit of a function as x tends to infinity, we can also 

define the limit as x tends to minus infinity.  

Consider the function 𝑓(𝑥) =  𝑒𝑥. As x 

becomes more and more negative, f(x) gets 

closer and closer to zero.  

However small a distance 𝜀 we choose, f(x) 

gets closer than that distance to zero, and it 

stays closer as x becomes more negative. 

We can say that f(x) has limit zero as x tends 

to minus infinity, and we could write:  
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 In general, we can write )(xf   A as x  - or Axf
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however small a distance we choose, )(xf  eventually gets closer to 𝐴 than 

that distance, and stays closer, as x becomes large and negative. 

 

If, as x gets more negative, a function gets larger and stays larger than 

any number we can choose, we write: )(xf    as x  -  or 


)(lim xf
x

 

For example, take the function 2)( xxf   again. 

 



 

We have already seen that it tends to 

infinity as x tends to infinity.  

But it also tends to infinity as x tends to 

minus infinity.  

As x gets large and negative, the function 

gets larger than any number we can 

choose, and stays larger. So, we could 

write:  
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If, instead, as x gets more negative, a function gets more negative and 

stays more negative than any number we can choose, we could write: 

)(xf   -  as x  -  or 
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)(lim xf
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As an example, consider the function 
3)( xxf  . You can see that, as x gets more and 

more negative, x3 becomes more negative 

than any number we can choose, and stays 

more negative.  

So )(xf  tends to minus infinity as x tends to 

minus infinity. So, we could write: 
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Some functions do not have any kind of limit as x tends to minus infinity. 

For example, consider the function xxxf sin)(  that we saw earlier. 

Thereby, the key points are the following:  

 The function f(x) has a real limit A as x tends to infinity if, however small 

a distance 𝜀 we choose, f(x) gets closer than this distance to A and stays 

closer, no matter how large x becomes. 

 The function f(x) tends to infinity as x tends to infinity if, however large 

a number we choose, f(x) gets larger than this number and stays larger, 

no matter how large x becomes. 

 The function f(x) tends to minus infinity as x tends to infinity if, however 

large and negative a number we choose, f(x) gets more negative than this 

number and stays more negative, no matter how large x becomes. 



There is one more type of limit that we can define for functions.  

Let us consider the function 3)(  xxf .  

If we choose a number, such as 1, then as x gets 

closer and closer to that number, )(xf  also gets 

closer and closer to a number, in this case 4.  

We could write:  
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Similarly, )(xf  gets closer and closer to 8 as x 

gets closer and closer to 5. So we could write:  
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 Now this definition of a limit might not look very useful. We know that 

when 𝑥 =  1 then the value of 𝑓(𝑥) is 4. And again, when 𝑥 =  5 then the 

value of 𝑓(𝑥) is 8. Why would we want to bother looking at what happens 

when x gets closer and closer to these numbers? 

 The reason is that we might sometimes have a function that is not 

defined at a point.  

For example, consider the graph of the function 

2
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This function is defined for every value apart 

from zero, because at 𝑥 =  0 we have a 

fraction with a zero denominator inside the 

exponent function.  

But if we look at the rest of the graph, we can 

see that f(x) gets closer and closer to zero as x gets closer and closer to zero. 

So we could write 
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 The limit of f(x) as x tends to a real number, is the value f(x) that it 

approaches as x gets closer to that real number. 

 Summarizing abovementioned examples, we can give a rigorous 

definition of the limit of a function. 



 16.2 Rigorous Definition of a Function Limit at a Point and on 

Infinity 

Let’s consider a function  xfy   defined in some neighbourhood of the 

point x=a, except for maybe the point a itself. The definition domain of the 

function fD  can be presented as an infinity sequence of numbers 

  ,...,...,, 21 nn xxxx   for which we can define that  

a) its terms nDx fn  , but naxn  ;  

b) it converges to a, that is, axn
n
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Because between the definition domain of the function and the range of 

function values there is one-to-one correspondence, then numerical 

sequence of the function values corresponding to sequence of  nx  can be 

constructed as the following         ,......,,, 21 nn xfxfxfxf   

Definition (by Heine). If the sequence of the function values   nxf  

corresponding to the sequence of its arguments, for which the mentioned 

conditions а) and b) are satisfied, converges to some number A, then this 

number is called a limit of function  xfy   as x tends to a (at the point 

ax  ), and is denoted by  
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Note that numbers nx  can approach a point a  in an 

arbitrary way but in each case it will be 

 lim n
n

f x A



. 

Geometrically it means that if abscises of points nx  approach a  then 

ordinates of these points approach number A. 

The definition of the limit, 
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 may be formulated in the other way 

without connection with sequences. The idea that if x  is enough close to a

, then  xf  will be close to A  can be stated by  
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Definition (by Cauchy). The number A is called a limit of a function 

 xfy   as x tends to a (at the point ax  ), i.e.
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0   there exists such number   0 , the 

value of which   depends on  , then if the 

inequality  ax  is valid, the inequality 

 f x A  
 is valid as well, i.е. 
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Obviously, that to smaller value  , there corresponds the smaller value of 

 .  

 This definition is known as 𝜀 − 𝛿 or Cauchy definition for limit. 

 

Example. Using 𝜀 − 𝛿 definition of limit, show that  

𝑙𝑖𝑚
𝑥→3

(3𝑥 − 2) = 7. 

Let 𝜀 > 0 be an arbitrary positive number. Choose 𝛿 =
𝜀

3
 . We see that if 

0 < |𝑥 − 3| < 𝛿, 

then 

|𝑓(𝑥) − 𝐴| = |(3𝑥 − 2) − 7| = |3𝑥 − 9| = 3|𝑥 − 3| < 3𝛿 = 3 ⋅
𝜀

3
= 𝜀. 

Thus, by Cauchy definition, the limit is proved. 

 

Example. Using 𝜀 − 𝛿 definition of limit, show that 1lim
0




x

x
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definiteness let us suppose that 1a .  

Assign an arbitrary 0  and require that  

1xa , i. е.   1xa     11 xa , 

Then  

    1log1log aa x . 

Since      1log1log aa , then let us put    1loga .  

So we can see that if x , then 1xa , what has to be proved.  
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Analogously, we can make a statement of the limit of a function at infinity.  

Definition. The number 𝐴 is a limit of a function  xfy   at infinity, i.e. 
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number 0M , the value of which 𝑀 depends on  , then if the inequality 

Mx   is valid, the inequality  f x A  
 is valid as well, i.е. 
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1) If x  +  then a limit Axf
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number 0   there exists such number 0M , the value of which depends 

on  , then if the inequality Mx   is valid, the inequality  f x A  
 is 

valid as well, i.е.  

 AxfMx )(  

2) If x  -  then a limit Axf
x


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number 0   there exists such number 0<N , the value of which depends 

on  , then if the inequality Nx   is valid, the inequality  f x A  
 is valid 

as well, i.е. 

 AxfNx )( . 

A graphical presentation of these two limit statements is presented in the 

Figure. It is important to notice that the line 𝑦 =  𝐴 is called a horizontal 

asymptote for the graph of 𝑓(𝑥). 

 

In such way we can give the definition of infinite limits at a point. Here are 

the two definitions that we need to cover both possibilities, limits that are 

positive infinity and limits that are negative infinity. 
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Definition. Let 𝑓(𝑥) be a function defined on an interval that contains 𝑥 =

𝑎, except possibly at 𝑥 = 𝑎. Then we say that, 

𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) = ∞ 

if for every number 𝑀 > 0 there is some number 𝛿 > 0 such that 𝑓(𝑥) >

𝑀 whenever 0 < |𝑥 − 𝑎| < 𝛿  

 

Here is a quick sketch illustrating Definition. 

 
What Definition is telling us is that no matter how large we choose 𝑀  to be 

we can always find an interval around 𝑥 = 𝑎, given by 0 < |𝑥 − 𝑎| < 𝛿  for 

some number 𝛿, so that as long as we stay within that interval the graph of 

the function will be above the line 𝑦 = 𝑀 as shown in the graph above. Also 

note that we don’t need the function to actually exist at 𝑥 = 𝑎 in order for 

the definition to hold. This is also illustrated in the graph above. 

 

Analogously, 

Definition. Let 𝑓(𝑥) be a function defined on an interval that contains 𝑥 =

𝑎, except possibly at 𝑥 = 𝑎. Then we say that, 

𝑙𝑖𝑚
𝑥→𝑎

 𝑓(𝑥) = −∞ 

if for every number 𝑁 < 0 there is some number 𝛿 > 0 such that 𝑓(𝑥) < 𝑁 

whenever 0 < |𝑥 − 𝑎| < 𝛿  

In these two definitions note that 𝑀 must be a positive number and that 𝑁 

must be a negative number. That’s an easy distinction to miss if you aren’t 

paying close attention. 



For our final limit definition let’s look at limits at infinity that are also 

infinite in value. There are four possible limits to define here. We’ll do one 

of them and leave the other three to you to write down if you’d like to. 

 

Definition. Let 𝑓(𝑥) be a function defined on 𝑥 > 𝐾 for some 𝐾. Then we 

say that, 

𝑙𝑖𝑚
𝑥→∞

 𝑓(𝑥) = ∞ 

if for every number 𝑁 > 0 there is some number 𝑀 > 0 such that 

𝑓(𝑥) > 𝑁 

whenever 

𝑥 > 𝑀 

The other three definitions are almost identical. The only differences are the 

signs of 𝑀 and/or 𝑁  and the corresponding inequality directions. 

 

Next, let’s give the precise definitions for the right- and left-handed limits 

(One Sided Limits). 

Definition For the right-hand limit we say that, 

𝑙𝑖𝑚
𝑥→𝑎+

 𝑓(𝑥) = 𝐴 

if for every number 𝜀 > 0 there is some number 𝛿 > 0 such that 

|𝑓(𝑥) − 𝐴| < 𝜀  

whenever 0 < 𝑥 − 𝑎 < 𝛿(or 𝑎 < 𝑥 < 𝑎 + 𝛿) 

 

Definition For the left-hand limit we say that, 

𝑙𝑖𝑚
𝑥→𝑎−

 𝑓(𝑥) = 𝐴 

if for every number 𝜀 > 0 there is some number 𝛿 > 0 such that 

|𝑓(𝑥) − 𝐴| < 𝜀  

whenever −𝛿 < 𝑥 − 𝑎 < 0(or 𝑎 − 𝛿 < 𝑥 < 𝑎) 

 

𝐴 𝐴 

𝑥 → 𝑎+
 𝑥 → 𝑎−

 



Note Practically speaking, when evaluating a left-hand limit, we consider 

only values of  𝑥  "to the left of  𝑎 ,'' i.e., where  𝑥 < 𝑎 . The admittedly 

imperfect notation  𝑥 → 𝑎−  is used to imply that we look at values of  𝑥  to 

the left of  𝑎 . The notation has nothing to do with positive or negative values 

of either  𝑥  or  𝑎 .  

A similar statement holds for evaluating right-hand limits; there we consider 

only values of  𝑥  to the right of  a , i.e.,  𝑥 > 𝑎 . We can use the theorems 

from previous sections to help us evaluate these limits; we just restrict our 

view to one side of  𝑎 . 

 

Example: Let 𝑓(𝑥) = {
𝑥 0 ≤ 𝑥 ≤ 1

3 − 𝑥 1 < 𝑥 < 2
,  as shown in Figure.  

Find each of the following: 

 

 
 

  



 16.3 Finding Limits Analytically 

  

 In Subsection 1 we explored the concept of the limit without a strict 

definition, meaning we could only make some approximations.  

 In the previous subsection we gave the strict definition of the limit and 

demonstrated how to use it to verify our approximations by using 1) the 

Heine definition and 2) the Cauchy definition or a 𝜖 −  𝛿 proof or 

 

However, this process has its shortcomings, not the least of which is the fact 

that they are cumbersome. This section gives a series of theorems which 

allow us to find limits much more quickly and analytically. 

 

The following theorem states that already established limits do behave in a 

well-known manner.  

 Basic Limit Properties:  

Let  𝑏 ,  𝑎 ,  𝐿  and  𝐾  be real numbers, let  𝑛  be a positive integer, and let  

𝑓(𝑥)  and  𝑔(𝑥)  be functions with the following limits: 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝐿     and      𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = 𝐾. 

The following limits hold: 

 

1. Constants: 𝑙𝑖𝑚
𝑥→𝑎

𝑏 = 𝑏 

The limit of a constant function is the constant 

2. Identity: 𝑙𝑖𝑚
𝑥→𝑎

𝑥 = 𝑎 

3. Sums/Differences: 𝑙𝑖𝑚
𝑥→𝑎

(𝑓(𝑥) ± 𝑔(𝑥)) = 𝐿 ± 𝐾 

Note: This rule states that the limit of the sum of two functions is equal 

to the sum of their limits: 𝑙𝑖𝑚
𝑥→𝑎

[𝑓(𝑥) ± 𝑔(𝑥)] = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) ± 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥). 

Extended Sum Rule:  

𝑙𝑖𝑚
𝑥→𝑎

[𝑓1(𝑥) + ⋯ + 𝑓𝑛(𝑥)] = 𝑙𝑖𝑚
𝑥→𝑎

𝑓1(𝑥) + ⋯ + 𝑙𝑖𝑚
𝑥→𝑎

𝑓𝑛(𝑥). 

4. Scalar Multiples: 𝑙𝑖𝑚
𝑥→𝑎

𝑏 ⋅ 𝑓(𝑥) = 𝑏𝐿 

Note: This rule states: 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑏𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) 



5. Products: 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) ⋅ 𝑔(𝑥) = 𝐿𝐾 

Note: This rule says that the limit of the product of two functions is 

the product of their limits (if they exist): 

𝑙𝑖𝑚
𝑥→𝑎

[𝑓(𝑥)𝑔(𝑥)] = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) ⋅ 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥). 

  Extended Product Rule:  

𝑙𝑖𝑚
𝑥→𝑎

[𝑓1(𝑥)𝑓2(𝑥) ⋯ 𝑓𝑛(𝑥)] = 𝑙𝑖𝑚
𝑥→𝑎

𝑓1(𝑥) ⋅ 𝑙𝑖𝑚
𝑥→𝑎

𝑓2(𝑥) ⋯ 𝑙𝑖𝑚
𝑥→𝑎

𝑓𝑛(𝑥). 

6. Quotients: 
𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝐿

𝐾
 for 𝐾 ≠ 0 

Note: The limit of quotient of two functions is the quotient of their 

limits, provided that the limit in the denominator function is not zero: 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥)
, if 𝑙𝑖𝑚

𝑥→𝑎
𝑔(𝑥) ≠ 0. 

7. Powers: 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)𝑛 = 𝐿𝑛 

Note: 𝑙𝑖𝑚
𝑥→𝑎

[𝑓(𝑥)]𝑛 = [𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)]𝑛, 

8. Roots: 𝑙𝑖𝑚
𝑥→𝑎

√𝑓(𝑥)𝑛 = √𝐿
𝑛

 

Note: 𝑙𝑖𝑚
𝑥→𝑎

√𝑓(𝑥)𝑛 = √𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)𝑛 . 

We make a note about Property #8: when 𝑛  is even,  𝐿  must be greater than 

0. If  𝑛  is odd, then the statement is true for all  𝐿 . 

9. Limit of an Exponential Function: 

𝑙𝑖𝑚
𝑥→𝑎

𝑏𝑓(𝑥) = 𝑏
𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)
, 

where the base 𝑏 > 0 

10. Limit of a Logarithm of a Function: 

𝑙𝑖𝑚
𝑥→𝑎

[log𝑏 𝑓(𝑥)] = log𝑏 [𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)], 

where the base 𝑏 > 0 

11. Compositions: Adjust our previously given limit situation to: 

𝑙𝑖𝑚
𝑥→𝑐

𝑓(𝑥) = 𝐿, 𝑙𝑖𝑚
𝑥→𝐿

𝑔(𝑥) = 𝐾 and   𝑔(𝐿) = 𝐾. 

  Then  

 𝑙𝑖𝑚
𝑥→𝑐

𝑔(𝑓(𝑥)) = 𝐾. 

12. The Squeeze Theorem:  

Suppose that 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ(𝑥) for all 𝑥 close to 𝑎 except perhaps 



for 𝑥 = 𝑎. If 

𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = 𝑙𝑖𝑚
𝑥→𝑎

ℎ(𝑥) = 𝐿, then 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝐿. 

The idea here is that the function 𝑓(𝑥) is squeezed between two other 

functions having the same limit 𝐿 

 

We apply the theorem to an example.  

Let 

𝑙𝑖𝑚
𝑥→2

𝑓(𝑥) = 2, 𝑙𝑖𝑚
𝑥→2

𝑔(𝑥) = 3 and 𝑝(𝑥) = 3𝑥2 − 5𝑥 + 7. 

Find the limits:  

1. 𝑙𝑖𝑚
𝑥→2

(𝑓(𝑥) + 𝑔(𝑥)) = 𝑙𝑖𝑚
𝑥→2

𝑓(𝑥) + 𝑙𝑖𝑚
𝑥→2

𝑔(𝑥) = 2 + 3 = 5  

Note: Use the Sum/Difference rule 

2. 𝑙𝑖𝑚
𝑥→2

(5𝑓(𝑥) + 𝑔(𝑥)2) = 𝑙𝑖𝑚
𝑥→2

 5𝑓(𝑥) + 𝑙𝑖𝑚
𝑥→2

(𝑔(𝑥)2) = 5 ⋅ 𝑙𝑖𝑚
𝑥→2

𝑓(𝑥) +

(𝑙𝑖𝑚
𝑥→2

𝑔(𝑥))2 = 5 ⋅ 2 + 32 = 19. 

Use the Scalar Multiple and Sum/Difference rules 

3. 𝑙𝑖𝑚
𝑥→2

𝑝(𝑥) = 𝑙𝑖𝑚
𝑥→2

(3𝑥2 − 5𝑥 + 7) = 𝑙𝑖𝑚
𝑥→2

3𝑥2 − 𝑙𝑖𝑚
𝑥→2

5𝑥 + 𝑙𝑖𝑚
𝑥→2

7 = 3 ⋅ 22 −

5 ⋅ 2 + 7 = 9 

Note: Combine the Power, Scalar Multiple, Sum/Difference and Constant 

Rules 

4. Find the limit:  𝑙𝑖𝑚
𝑥→9

4𝑥2

1+√𝑥
. 

Using the properties of limits (the sum rule, the power rule, and the quotient 

rule), we get 

𝑙𝑖𝑚
𝑥→9

4𝑥2

1 + √𝑥
=

𝑙𝑖𝑚
𝑥→9

4𝑥2

𝑙𝑖𝑚
𝑥→9

(1 + √𝑥)
=

4𝑙𝑖𝑚
𝑥→9

𝑥2

𝑙𝑖𝑚
𝑥→9

1 + 𝑙𝑖𝑚
𝑥→9

√𝑥
=

4 ⋅ 92

1 + √9
= 81. 

 

Note that in task 3 the limit at 𝑥 = 2 is found just by plugging 𝑥 = 2 into the function 

𝑝(𝑥). This holds true for all polynomials, and also for rational functions (which are 

quotients of polynomials), as stated in the following theorem. 

 

Theorem. Limits of Polynomial and Rational Functions 

Let  𝑝(𝑥)  and  𝑞(𝑥)  be polynomials and  𝑐  a real number. Then: 



1. 𝑙𝑖𝑚
𝑥→𝑐

𝑝(𝑥) = 𝑝(𝑐) 

2. 𝑙𝑖𝑚
𝑥→𝑐

𝑝(𝑥)

𝑞(𝑥)
=

𝑝(𝑐)

𝑞(𝑐)
, 𝑞(𝑐) ≠ 0 

 

Example Evaluate 𝑙𝑖𝑚
𝑥→−1

3𝑥2−5𝑥+1

𝑥4−𝑥2+3
. 

Using condition 2 of Theorem, find 

𝑙𝑖𝑚
𝑥→−1

3𝑥2 − 5𝑥 + 1

𝑥4 − 𝑥2 + 3
=

3(−1)2 − 5(−1) + 1

(−1)4 − (−1)2 + 3
=

9

3
= 3 

 

 Evaluating a Limit by Factoring and Canceling 

 Finding the limit of a function expressed as a quotient can be more 

complicated. We often need to rewrite the function algebraically before 

applying the properties of a limit. If the denominator evaluates to 0 when 

we apply the properties of a limit directly, we must rewrite the quotient in a 

different form. One approach is to write the quotient in factored form and 

simplify. 

 

Example: Evaluate 𝑙𝑖𝑚
𝑥→2

(
𝑥2−6𝑥+8

𝑥−2
). 

Factor where possible, and simplify. 

𝑙𝑖𝑚
𝑥→2

(
𝑥2 − 6𝑥 + 8

𝑥 − 2
) = 𝑙𝑖𝑚

𝑥→2
(
(𝑥 − 2)(𝑥 − 4)

𝑥 − 2
) Factor the numerator.

= 𝑙𝑖𝑚
𝑥→2

(
(𝑥 − 2)(𝑥 − 4)

𝑥 − 2
) Cancel the common factors.

= 𝑙𝑖𝑚
𝑥→2

(𝑥 − 4) Evaluate.

= 2 − 4 = −2

 

Note: When the limit of a rational function cannot be evaluated directly, factored forms 

of the numerator and denominator may simplify to a result that can be evaluated. 

 Notice, the function 𝑓(𝑥) =
𝑥2−6𝑥+8

𝑥−2
 is equivalent to the function 

𝑓(𝑥) = 𝑥 − 4, 𝑥 ≠ 2, but it does not the same as the function 𝑓(𝑥) = 𝑥 − 4 

 Notice that the limit exists even though the function is not defined at 

𝑥 = 2 . 

Homework: 𝑙𝑖𝑚
𝑥→7

(
𝑥2−11𝑥+28

7−𝑥
). 



 Evaluating the Limit of a Quotient by Finding the least common 

denominator (LCD)  

 Evaluate: 𝑙𝑖𝑚
𝑥→5

(
1

𝑥
−

1

5

𝑥−5
) 

Find the LCD for the denominators of the two terms in the numerator, and 

convert both fractions to have the LCD as their denominator. 

𝑙𝑖𝑚
𝑥→5

(
1

𝑥
−

1

5

𝑥−5
) =  𝑙𝑖𝑚

𝑥→5
(

5−𝑥

5𝑥

𝑥−5
) =  𝑙𝑖𝑚

𝑥→5
(

−(𝑥−5)

5𝑥(𝑥−5)
) = −𝑙𝑖𝑚

𝑥→5
(

1

5𝑥
) = −

1

25
  

 

When determining the limit of a rational function that has terms added or subtracted in 

either the numerator or denominator, the first step is to find the common denominator 

of the added or subtracted terms; then, convert both terms to have that denominator, or 

simplify the rational function by multiplying numerator and denominator by the least 

common denominator. Then check to see if the resulting numerator and denominator 

have any common factors. 

 

Homework: (a) 𝑙𝑖𝑚
𝑥→−5

(
1

5
+

1

𝑥

10+2𝑥
); (b) 𝑙𝑖𝑚

𝑥→1

1

𝑥+1
−

1

2

𝑥−1
;  

 

 Evaluating a Limit Containing a Root Using a Conjugate (Recall that 

𝑎 ± √𝑏 are conjugates) 

 Evaluate: 𝑙𝑖𝑚
𝑥→0

(
√25−𝑥−5

𝑥
). 

1 Multiply numerator and denominator by the conjugate 

𝑙𝑖𝑚
𝑥→0

(
√25 − 𝑥 − 5

𝑥
) = 𝑙𝑖𝑚

𝑥→0
(

(√25 − 𝑥 − 5)

𝑥
⋅

(√25 − 𝑥 + 5)

(√25 − 𝑥 + 5)
) 

2 Multiply: √(25 − 𝑥) − 5) ⋅ (√(25 − 𝑥) + 5) = (25 − 𝑥) − 25 

3 Combine like terms and simplify: 

 = 𝑙𝑖𝑚
𝑥→0

(
(25−𝑥)−25

𝑥(√25−𝑥+5)
) = 𝑙𝑖𝑚

𝑥→0
(

−𝑥

𝑥(√25−𝑥+5)
) =

−1

√25−0+5
=

−1

5+5
= −

1

10
 

 

When determining a limit of a function with a root as one of two terms where we cannot 

evaluate directly, think about multiplying the numerator and denominator by the 

conjugate of the terms. 

Homework: 𝑙𝑖𝑚
𝑥→5

√𝑥−1−2

𝑥−5
 



 Evaluating the Limit of a Quotient of a Function by Factoring 

Evaluate 𝑙𝑖𝑚
𝑥→4

(
4−𝑥

√𝑥−2
) 

1 Factorize the numerator  

𝑙𝑖𝑚
𝑥→4

(
4 − 𝑥

√𝑥 − 2
) = 𝑙𝑖𝑚

𝑥→4
(

(2 + √𝑥)(2 − √𝑥)

√𝑥 − 2
) 

2 Factor -1 out of the denominator. Simplify 

= 𝑙𝑖𝑚
𝑥→4

(
(2 + √𝑥)(2 − √𝑥)

−(2 − √𝑥)
) = 𝑙𝑖𝑚

𝑥→4
− (2 + 𝑥) = −(2 + √4) = −4 

Multiplying by a conjugate would expand the numerator; look instead for factors in the numerator. 

Four is a perfect square so that the numerator is in the form 

𝑎2 − 𝑏2 

and may be factored as 

(𝑎 + 𝑏)(𝑎 − 𝑏). 

Homework: 𝑙𝑖𝑚
𝑥→3

(
𝑥−3

√𝑥−√3
) 

 

Key Concepts 

1. The properties of limits can be used to perform operations on the 

limits of functions rather than the functions themselves. 

2. The limit of a polynomial function can be found by finding the sum 

of the limits of the individual terms. 

3. The limit of a function that has been raised to a power equals the 

same power of the limit of the function. Another method is direct 

substitution.  

4. The limit of the root of a function equals the corresponding root of 

the limit of the function. 

5. One way to find the limit of a function expressed as a quotient is to 

write the quotient in factored form and simplify.  

6. Another method of finding the limit of a complex fraction is to find 

the LCD.  

7. A limit containing a function containing a root may be evaluated 

using a conjugate.  

8. The limits of some functions expressed as quotients can be found by 

factoring.  

 


