
Lecture #17: LIMITS AND CONTINUITY OF FUNCTIONS 

 

 17.1 Infinitesimals and Infinitely Large Functions 

 

Definition: The function 𝑓(𝑥)  is called infinitesimal (infinitely small) as 𝑥 

tends to a, where a is a number or one of the symbols (±∞) if  

  0lim 


xf
ax

 as ax   

We have the following properties for the infinitesimal functions: 

1. The sum of finite number of the infinitesimals is an infinitesimal.  

2. The product of an infinitesimal and bounded function is an infinitesimal. 

3. The product of infinitesimal functions is an infinitesimal function of the 

order smaller than the appropriate orders for the each of infinitesimal 

functions. 

 

Definition: The function  xf  is called infinitely large as 𝑥 tends to 

a, where a is a number or one of the symbols (±∞) if  

  


xf
ax

lim  as ax  . 

 

Note. In particular cases, the function  xf  can be infinitely large positive 

value or infinitely large negative value at the point ax  . 

We have the following properties for the infinitely large functions: 

1. The sum of infinitely large and bounded functions is infinitely large 

function.  

2. The sum of the infinitely large functions of the same sign is infinitely 

large function of the same sign.  

3. The product of infinitely large and bounded functions is an infinitely 

large function. 

0 a x 

y 

0 

a x 
y 



4. The product of infinitely large functions is an infinitely large function 

of the order higher than the appropriate orders for the each of infinitely large 

functions. 

 Evaluate: 𝑙𝑖𝑚
𝑥→2

𝑥−3

𝑥2−2𝑥
 

 After substituting in  𝑥 = 2 , we see that this limit has the form  −
1

0
 . 

That is, as 𝑥 approaches 2, the numerator approaches −1; and the 

denominator approaches 0. Consequently, the magnitude of 
𝑥−3

𝑥2−2𝑥
 becomes 

infinite. To get a better idea of what the limit is, we need to factorize the 

denominator: 

𝑙𝑖𝑚
𝑥→2

𝑥 − 3

𝑥2 − 2𝑥
= 𝑙𝑖𝑚

𝑥→2

𝑥 − 3

𝑥(𝑥 − 2)
. 

We then separate  
1

𝑥−2
  from the rest of the function  

= 𝑙𝑖𝑚
𝑥→2

𝑥 − 3

𝑥
⋅

1

𝑥 − 2
. 

Here, 

𝑙𝑖𝑚
𝑥→2

𝑥−3

𝑥
= −

1

2
 (it means the function is bounded)  

and 

 𝑙𝑖𝑚
𝑥→2

1

𝑥−2
= −∞ (it means the function is negative infinitely large) 

Therefore, the product has the limit 

𝑙𝑖𝑚
𝑥→2−

𝑥 − 3

𝑥2 − 2𝑥
= +∞. 

 So, the function 
𝑥−3

𝑥2−2𝑥
 is positive infinitely large function.  

 

 Theorem (Connection between infinitesimal and infinitely large 

functions)  

1. If the function  xf  is infinitely large as ax   and  xf  does not vanish 

𝑓(𝑥) ≠ 0 in some neighborhood of 𝑥 = 𝑎 then the function  
 xf

x
1

  is 

an infinitesimal as ax  . 

■ Let us prove the theorem 1 taking an arbitrary sequence that converges to 



a, i.e. ax
n

n


 . Then the sequence   nxf  is an infinitely large value as 

n  and the value   
 









xf

x
1

 is an infinitesimal, i.е.   0



n
nx , 

since  nx  is arbitrary one then   0lim 


x
ax

.□ 

2. If the function  x  is an infinitesimal as ax   and it does not vanish 

𝛼(𝑥) ≠ 0 in some neighborhood of the point a , then the function 

 
 x

xf



1

 is infinitely large as ax  . 

 The concept of infinitesimal is closely connected with the concept of a 

limit of function. 

 Theorem. Let us suppose that   Axf
ax




lim . Then    xAxf   

where  x  is an infinitesimal function as ax  . Inversely if 

   xAxf   as ax   then  xfA
ax

 lim . 

■ Let us prove the first statement. Let  xfA
ax

 lim . It means that if ax
n

n


  

then   Axf
n

n


 , so   0



n

n Axf . Assigning  

   nn xAxf  , 

we obtain that   0



n
nx . So  x  is an infinitesimal function as ax   

so    xAxf  .□  

 

 17.2 The Indeterminate Forms 

 

Consider a limit of the quotient of two functions: 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
. 

If 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝐿1 and 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = 𝐿2 ≠ 0 then 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝐿1

𝐿2
. 

 However, what happens if 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 0 and 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = 0 ? We begin 

by attempting to apply the theorem and substituting 𝑎 for 𝑥  in the quotient. 



This gives: 
0

0
, i.e. we cannot apply the theorem. 

 We call this situation as the indeterminate form of type ||
0

0
||. This is 

considered an indeterminate form because we cannot determine the exact 

behavior of 
𝑓(𝑥)

𝑔(𝑥)
 as 𝑥 → 𝑎 without further analysis.  

 We have seen examples of this earlier in the lectures. For example,  

𝑙𝑖𝑚
𝑥→2

𝑥2 − 4

𝑥 − 2
=

22 − 4

2 − 2
= ||

0

0
|| =  

We can evaluate the limit by factoring the numerator and writing 

= 𝑙𝑖𝑚
𝑥→2

(𝑥 + 2)(𝑥 − 2)

𝑥 − 2
= 𝑙𝑖𝑚

𝑥→2
(𝑥 + 2) = 2 + 2 = 4. 

This operation is called the removing of indeterminacy 

 

 Problem-Solving Strategy: Calculating a Limit When 
𝑓(𝑥)

𝑔(𝑥)
 has the 

Indeterminate Form ||
0

0
||. 

1. First, we need to make sure that our function has the appropriate form 

and cannot be evaluated immediately using the limit laws. 

2. We then need to find a function that is equal to  ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
  for all  

𝑥 ≠ 𝑎  over some interval containing a. To do this, we may need to try 

one or more of the following steps: 

(a) If  𝑓(𝑥)  and  𝑔(𝑥)  are polynomials, we should factor each 

function and cancel out any common factors. 

(b) If the numerator or denominator contains a difference involving 

a square root, we should try multiplying the numerator and 

denominator by the conjugate of the expression involving the 

square root. 

(c) If  
𝑓(𝑥)

𝑔(𝑥)
  is a complex fraction, we begin by simplifying it. 

3. Last, we apply the limit laws. 

 

 Examples: 



 1) Find the limit: 𝑙𝑖𝑚
𝑥→3

𝑥3−2𝑥2−5𝑥+6

2𝑥3+3𝑥2−32𝑥+15
. 

By substituting 3 for 𝑥 returns the familiar indeterminate form of ||
0

0
||. 

Since the numerator and denominator are each polynomials, we know that 

(𝑥 − 3)  is factor of each. Using whatever method is most comfortable to 

you, factor out  (𝑥 − 3) from each (using polynomial division). We find that 

𝑥3 − 2𝑥2 − 5𝑥 + 6

2𝑥3 + 3𝑥2 − 32𝑥 + 15
=

(𝑥 − 3)(𝑥2 + 𝑥 − 2)

(𝑥 − 3)(2𝑥2 + 9𝑥 − 5)
. 

Then, we can cancel the  (𝑥 − 3)  terms as long as  𝑥 ≠ 3 . Using Theorem 

we conclude: 

𝑙𝑖𝑚
𝑥→3

𝑥3 − 2𝑥2 − 5𝑥 + 6

2𝑥3 + 3𝑥2 − 32𝑥 + 15
= 𝑙𝑖𝑚

𝑥→3

(𝑥 − 3)(𝑥2 + 𝑥 − 2)

(𝑥 − 3)(2𝑥2 + 9𝑥 − 5)
 

= 𝑙𝑖𝑚
𝑥→3

(𝑥2 + 𝑥 − 2)

(2𝑥2 + 9𝑥 − 5)
=

10

40
=

1

4
 

 2) Evaluate: 𝑙𝑖𝑚
𝑥→3

𝑥2−3𝑥

2𝑥2−5𝑥−3
 

In fact, if we substitute 3 into the function we get  ||
0

0
||, which is undefined. 

Factoring and canceling is a good strategy to remove this indeterminacy:  

𝑙𝑖𝑚
𝑥→3

𝑥2 − 3𝑥

2𝑥2 − 5𝑥 − 3
=

32 − 3 ∙ 3

2 ∙ 32 − 5 ∙ 3 − 3
= ||

0

0
|| = 𝑙𝑖𝑚

𝑥→3

𝑥(𝑥 − 3)

(𝑥 − 3)(2𝑥 + 1)
 

Therefore 

𝑙𝑖𝑚
𝑥→3

𝑥(𝑥 − 3)

(𝑥 − 3)(2𝑥 + 1)
= 𝑙𝑖𝑚

𝑥→3

𝑥

2𝑥 + 1
. 

Finally, 

𝑙𝑖𝑚
𝑥→3

𝑥

2𝑥 + 1
=

3

2 ∙ 3 + 1
=

3

7
. 

 

 Homework:   𝑙𝑖𝑚
𝑥→−3

𝑥2+4𝑥+3

𝑥2−9
 

 

 3) Evaluate: 𝑙𝑖𝑚
𝑥→−1

√𝑥+2−1

𝑥+1
 

The function has the indeterminate form  ||
0

0
||at −1.  



Let’s begin by multiplying by √𝑥 + 2 + 1, the conjugate of √𝑥 + 2 − 1, on 

the numerator and denominator: 

𝑙𝑖𝑚
𝑥→−1

√𝑥 + 2 − 1

𝑥 + 1
= 𝑙𝑖𝑚

𝑥→−1

√𝑥 + 2 − 1

𝑥 + 1
⋅

√𝑥 + 2 + 1

√𝑥 + 2 + 1
 

= 𝑙𝑖𝑚
𝑥→−1

𝑥 + 1

(𝑥 + 1)(√𝑥 + 2 + 1)
= 𝑙𝑖𝑚

𝑥→−1

1

√𝑥 + 2 + 1
=

1

√−1 + 2 + 1
=

1

2
 

 

 Homework:   𝑙𝑖𝑚
𝑥→5

√𝑥−1−2

𝑥−5
 

 

 4) 𝑙𝑖𝑚
𝑥→1

1

𝑥+1
−

1

2

𝑥−1
  

 The function has the indeterminate form ||0/0|| at 1 

We simplify the algebraic fraction by taking LCD in the numerator and, 

then, simplify the expression: 

𝑙𝑖𝑚
𝑥→1

1
𝑥 + 1 −

1
2

𝑥 − 1
=  𝑙𝑖𝑚𝑥→1

2 − (𝑥 + 1)

2(𝑥 − 1)(𝑥 + 1)
 = 𝑙𝑖𝑚

𝑥→1

−(𝑥 − 1)

2(𝑥 − 1)(𝑥 + 1)
 

= 𝑙𝑖𝑚
𝑥→1

−1

2(𝑥 + 1)
=

−1

2(1 + 1)
= −

1

4
 

 

 Homework:   𝑙𝑖𝑚
𝑥→−3

1

𝑥+2
+1

𝑥+3
  

 

In similar way one can identify indeterminate forms produced by quotients, 

products, subtractions, and powers: 

 

1. Indeterminate Form of Type ||
∞

∞
|| 

 Let 𝑓(𝑥) and 𝑔(𝑥) be two functions such that 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = ±∞  and 

𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = ±∞ where 𝑎 is a real number, or ±∞. It is said that the function 

𝑓(𝑥)

𝑔(𝑥)
  has the indeterminate form ||

∞

∞
|| at this point. 

1) Find the limit: 𝑙𝑖𝑚
𝑥→∞

3𝑥+5

2𝑥+1
 



Since 3𝑥 + 5 and 2𝑥 + 1  are first-degree polynomials with positive leading 

coefficients, 𝑙𝑖𝑚
𝑥→∞

(3𝑥 + 5) = ∞ and 𝑙𝑖𝑚
𝑥→∞

(2𝑥 + 1) = ∞. So, we have the 

form ||
∞

∞
|| 

 To evaluate this limit, we will divide the numerator and denominator 

by the highest power of 𝑥 in the numerator and denominator . In doing so, 

we saw that 

𝑙𝑖𝑚
𝑥→∞

3𝑥 + 5

2𝑥 + 1
= 𝑙𝑖𝑚

𝑥→∞

3 + 5/𝑥

2 + 1/𝑥
= {

𝑙𝑖𝑚
𝑥→∞

5

𝑥
→ 0

𝑙𝑖𝑚
𝑥→∞

1

𝑥
→ 0

} =
3

2
 

 2) Find the limit: 𝑙𝑖𝑚
𝑥→∞

𝑥3+3𝑥+5

2𝑥3−6𝑥+1
. 

This is of the form ||
∞

∞
||. Divide the numerator and denominator by 𝑥3 since 

it the highest degree in this expression. Thus, we obtain 

𝑙𝑖𝑚
𝑥→∞

𝑥3 + 3𝑥 + 5

2𝑥3 − 6𝑥 + 1
= [

∞

∞
] = 𝑙𝑖𝑚

𝑥→∞

𝑥3 + 3𝑥 + 5
𝑥3

2𝑥3 − 6𝑥 + 1
𝑥3

= 𝑙𝑖𝑚
𝑥→∞

𝑥3

𝑥3 +
3𝑥
𝑥3 +

5
𝑥3

2𝑥3

𝑥3 −
6𝑥
𝑥3 +

1
𝑥3

= 𝑙𝑖𝑚
𝑥→∞

1 +
3

𝑥2 +
5

𝑥3

2 −
6

𝑥2 +
1

𝑥3

=
𝑙𝑖𝑚
𝑥→∞

(1 +
3

𝑥2 +
5

𝑥3)

𝑙𝑖𝑚
𝑥→∞

(2 −
6

𝑥2 +
1

𝑥3)
=

𝑙𝑖𝑚
𝑥→∞

1 + 𝑙𝑖𝑚
𝑥→∞

3
𝑥2 + 𝑙𝑖𝑚

𝑥→∞

5
𝑥3

𝑙𝑖𝑚
𝑥→∞

2 − 𝑙𝑖𝑚
𝑥→∞

6
𝑥2 + 𝑙𝑖𝑚

𝑥→∞

1
𝑥3

=
1 + 0 + 0

2 − 0 − 0
=

1

2
. 

3) 𝑙𝑖𝑚
𝑥→∞

(2𝑥+3)10(3𝑥−2)20

(𝑥+5)30 . 

We divide both the numerator and denominator by 𝑥30 the highest power of 

the fraction: 

𝑙𝑖𝑚
𝑥→∞

(2𝑥 + 3)10(3𝑥 − 2)20

(𝑥 + 5)30
= [

∞

∞
] = 𝑙𝑖𝑚

𝑥→∞

(2𝑥 + 3)10(3𝑥 − 2)20

𝑥30

(𝑥 + 5)30

𝑥30

 

= 𝑙𝑖𝑚
𝑥→∞

(2𝑥 + 3)10

𝑥10 ⋅
(3𝑥 − 2)20

𝑥20

(𝑥 + 5)30

𝑥30

= 𝑙𝑖𝑚
𝑥→∞

(
2𝑥 + 3

𝑥 )10 ⋅ (
3𝑥 − 2

𝑥 )20

(
𝑥 + 5

𝑥 )30
 



= 𝑙𝑖𝑚
𝑥→∞

(2 +
3
𝑥)10 ⋅ (3 −

2
𝑥)20

(1 +
5
𝑥)30

=
210 ⋅ 320

130
= 210 ⋅ 310 ⋅ 310 = 1810. 

 

2. Indeterminate Form of Type  ||∞−∞|| 

1) Find the limit: 𝑙𝑖𝑚
𝑥→0

(
1

𝑥
+

5

𝑥(𝑥−5)
) 

As 𝑥 → 0, i.e. after substituting 𝑥 = 0 into 
1

𝑥
 the magnitude becomes 

infinite: 𝑓(𝑥) =
1

𝑥
=

1

0
→ ∞ and, also, 𝑔(𝑥) =  

5

𝑥(𝑥−5)
=

1

0
→ ∞. 

 We are interested in 𝑙𝑖𝑚
𝑥→0

 (𝑓(𝑥) − 𝑔(𝑥)). Depending on whether 𝑓(𝑥) 

grows faster, or 𝑔(𝑥)  grows faster, or they grow at the same rate, something 

can happen in this limit, but we do not say precisely in advance.  

 Since  𝑓(𝑥) → ∞  and  𝑔(𝑥) → ∞ , we write  ||∞ − ∞||  to denote the 

indeterminate form of this limit. As with our previous indeterminate form, 

||∞ − ∞||  has no meaning on its own and we must do more analysis to 

determine the value of the limit. 

 To remove this indeterminacy, we will perform addition and then apply 

our previous strategy. Observe that 

1

𝑥
+

5

𝑥(𝑥 − 5)
=

𝑥 − 5 + 5

𝑥(𝑥 − 5)
=

𝑥

𝑥(𝑥 − 5)
. 

Thus, 

𝑙𝑖𝑚
𝑥→0

(
1

𝑥
+

5

𝑥(𝑥 − 5)
) = ||∞ − ∞|| = 𝑙𝑖𝑚

𝑥→0

𝑥

𝑥(𝑥 − 5)
= 𝑙𝑖𝑚

𝑥→0

1

𝑥 − 5
= −

1

5
. 

 

 Homework:   𝑙𝑖𝑚
𝑥→3

(
1

𝑥−3
−

4

𝑥2−2𝑥−3
) 

 

2) Evaluate: 𝑙𝑖𝑚
𝑥→∞

(√𝑥2 + 1 − √𝑥2 − 1). 

If 𝑥 → ∞, then 

𝑙𝑖𝑚
𝑥→∞

√𝑥2 + 1 = ∞  and   𝑙𝑖𝑚
𝑥→∞

√𝑥2 − 1 = ∞. 

Thus, we deal here with an indeterminate form of type ||∞ − ∞|| Multiply 

this expression (both the numerator and the denominator) by the 



corresponding conjugate expression. 

𝑙𝑖𝑚
𝑥→∞

(√𝑥2 + 1 − √𝑥2 − 1) = 𝑙𝑖𝑚
𝑥→∞

(√𝑥2 + 1)2 − (√𝑥2 − 1)2

(√𝑥2 + 1 + √𝑥2 − 1)

= 𝑙𝑖𝑚
𝑥→∞

𝑥2 + 1 − (𝑥2 − 1)

(√𝑥2 + 1 + √𝑥2 − 1)
= 𝑙𝑖𝑚

𝑥→∞

𝑥2 + 1 − 𝑥2 + 1

(√𝑥2 + 1 + √𝑥2 − 1)

= 𝑙𝑖𝑚
𝑥→∞

2

(√𝑥2 + 1 + √𝑥2 − 1)
. 

By using the product and the sum rules for limits, we obtain 

= 𝑙𝑖𝑚
𝑥→∞

2

(√𝑥2 + 1 + √𝑥2 − 1)
=

𝑙𝑖𝑚
𝑥→∞

2

𝑙𝑖𝑚
𝑥→∞

√𝑥2 + 1 + 𝑙𝑖𝑚
𝑥→∞

√𝑥2 − 1
∼

2

∞ + ∞
∼

2

∞
= 0. 

3) 𝑙𝑖𝑚
𝑡→+∞

(√𝑡 + √𝑡 + 1 − √𝑡). 

Multiply and divide it by the conjugate expression, we get 

𝑙𝑖𝑚
𝑡→+∞

(√𝑡 + √𝑡 + 1 − √𝑡) = [∞ − ∞] = 𝑙𝑖𝑚
𝑡→+∞

(√𝑡 + √𝑡 + 1)2 − (√𝑡)2

√𝑡 + √𝑡 + 1 + √𝑡

= 𝑙𝑖𝑚
𝑡→+∞

𝑡 + √𝑡 + 1 − 𝑡

√𝑡 + √𝑡 + 1 + √𝑡
= 𝑙𝑖𝑚

𝑡→+∞

√𝑡 + 1

√𝑡 + √𝑡 + 1 + √𝑡
= [

∞

∞
]. 

Both the numerator and denominator now approach  as 𝑡 → +∞ Hence, we 

divide numerator and denominator by 𝑡1/2 the highest power of t in the 

denominator. Then 

= 𝑙𝑖𝑚
𝑡→+∞

√𝑡 + 1

√𝑡 + √𝑡 + 1 + √𝑡
= 𝑙𝑖𝑚

𝑡→+∞

√𝑡 + 1

√𝑡

√𝑡 + √𝑡 + 1 + √𝑡

√𝑡

= 𝑙𝑖𝑚
𝑡→+∞

√𝑡 + 1
𝑡

√𝑡 + √𝑡 + 1
𝑡 + 1

= 𝑙𝑖𝑚
𝑡→+∞

√1 +
1
𝑡

√1 + √1
𝑡 +

1
𝑡2 + 1

=
√1

√1 + 1
=

1

2
. 

 

3. Indeterminate Form of Type ||0⋅∞|| 

Suppose we want to evaluate  𝑙𝑖𝑚𝑥→𝑎(𝑓(𝑥) ⋅ 𝑔(𝑥)) , where  𝑓(𝑥) → 0  and  

𝑔(𝑥) → ∞ (or −∞ ) as  𝑥 → 𝑎 . Since one term in the product is approaching 



zero but the other term is becoming arbitrarily large (in magnitude), 

anything can happen to the product.  

 We use the notation  ||0⋅∞|| to denote the form that arises in this 

situation. The expression  ||0⋅∞|| is considered indeterminate because we 

cannot determine without further analysis the exact behavior of the product 

𝑓(𝑥) ∙ 𝑔(𝑥) as 𝑥 → 𝑎 . 

 

 17.3 The First Remarkable Limit 

 

 To evaluate limits of various trigonometric functions, first consider a 

limit: 

𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
 

Applying our theorems, we attempt to find the limit as  

𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
→

sin 0

0
→

"0"

0
. 

Therefore, we are still unable to evaluate this limit with tools we currently 

have at hand. 

 Use the Squeeze Theorem will allow us to show that  

𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
= 1 

This limit is called the first remarkable limit. 

 To prove it we begin by considering 

the unit circle. Each point on the unit 

circle has coordinates  (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃) for 

some angle  𝜃  as shown in Figure.  

 Using similar triangles, we can 

extend the line from the origin through 

the point to the point (1, 𝑡𝑎𝑛𝜃), as 

shown. (Here we are assuming that 0 ≤

𝜃 ≤ 𝜋/2. Later we will show that we 

can also consider  𝜃 ≤ 0) 

Figure shows three regions have been constructed in the first quadrant, two 

triangles and a sector of a circle, which are also drawn below. The area of 

the large triangle is ½ 𝑡𝑎𝑛𝜃 ; the area of the sector is  𝜃/2; the area of the 



triangle contained inside the sector is ½ 𝑠𝑖𝑛𝜃 . It is then clear from the 

diagram that 

 

Multiply all terms by  
2

𝑠𝑖𝑛𝜃
 , giving 

1

cos 𝜃
≥

𝜃

sin 𝜃
≥ 1. 

Taking reciprocals reverses the inequalities, giving 

cos 𝜃 ≤
sin 𝜃

𝜃
≤ 1. 

Now take limits. 

𝑙𝑖𝑚
𝜃→0

cos 𝜃 ≤ 𝑙𝑖𝑚
𝜃→0

sin 𝜃

𝜃
≤ 𝑙𝑖𝑚

𝜃→0
1 

cos 0 ≤ 𝑙𝑖𝑚
𝜃→0

sin 𝜃

𝜃
≤ 1 

1 ≤ 𝑙𝑖𝑚
𝜃→0

sin 𝜃

𝜃
≤ 1 

Clearly this means that 

𝑙𝑖𝑚
𝜃→0

sin 𝜃

𝜃
= 1 

Consider 𝑥 instead of 𝜃, as a result 𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
= 1 

 

Note: this limit tells us more than just that as 𝑥  approaches 0, 
𝑠𝑖𝑛(𝑥)

𝑥
 

approaches 1. Both 𝑥 and 𝑠𝑖𝑛𝑥  are approaching 0, but the ratio of  𝑥  and  

𝑠𝑖𝑛𝑥  approaches 1, meaning that they are approaching 0 in essentially the 

same way.  

Another way of viewing this is: for small  𝑥 , the functions  𝑦 = 𝑥  and  𝑦 =

𝑠𝑖𝑛𝑥  are essentially indistinguishable. 

 

 17.4 The Second Remarkable Limit 



 Consider the limit  𝑙𝑖𝑚
𝑥→∞

(1 +
1

𝑥
)𝑥  

One can see that inside the parentheses we have an expression that is 

approaching 1 (though never equaling 1), and we know that 1 raised to any 

power is still 1. At the same time, the power is growing toward infinity. 

What happens to a number near 1 raised to a very large power? In this case 

we deal with a new indeterminate forms ||1∞|| 

 

 One can prove that in this particular case, the result approaches Euler's 

number, 𝑒 , approximately 2.718. 

 The Number 𝑒 as a Limit of the Numerical Sequence 

Let us consider the numerical sequence  

  ...,
1

1,....,
3

1
1,

2

1
1,11

3

3

2

2

1

1

n

n
n

xxxx 

























  

and prove that it has a limit as n . 

Taking ,...,3,2,1n  we obtain that ,...;37,2;25,2;2 321  xxx  

so at increasing values n  the corresponding value nx  is increasing too. Let 

us prove that for all the values n  it will be nn xx 1 . 

Applying Newton’s binomial formula one can obtain: 

    
...

1

!3

211

!2

11
1

1
1

32

















n

nnn

n

nn

n
n

n

n

 

     
,

1

!

1...21
nnn

nnnnn 
  

that is, 















































nnnnnn
xn

2
1

1
1

!

1
...

2
1

1
1

!3

11
1

!2

1
2  








 


n

n 1
1... .        (*) 

Substituting instead of n  value 1n  we can obtain 1nx  

...
1

2
1

1

1
1

!3

1

1

1
1

!2

1
21 


































nnn
xn  



 


























1

2
1

1

1
1

!1

1
...

nnn
 














1

1
1...

n

n
. 

It is easy to note that each term beginning from the second one on the right 

side is increasing and besides there appears additional positive term, 

therefore nn xx 1 . 

On other hand, due to (*) we have  











12 2

1
...

2

1

2

1
2

...32

1
...

432

1

32

1

2

1
2

nn
n

x  

3

2

1
1

2

1

2...
2

1

2

1

2

1
2

32




 , 

that is, 3nx , n . 

So the sequence  nx  is monotone increasing and is bounded from 

above by the number 3 . Consequently there exists a n
n

x


lim , which is not 

exceeding the number 3 . Besides, since 2nx , then 2lim 


n
n

x . So,  

3
1

1lim2 











n

n n
. => e

n

n

n













1
1lim  

The 

n

n n












1
1lim  is called the number e 2.71828182... . 

 

 Then, 

the limit 𝑙𝑖𝑚
𝑥→∞

(1 +
1

𝑥
)𝑥 = ||1∞|| = 𝑒 is called the second remarkable limit  

■ Let x . Obviously that for every value x that lies between two 

positive integers number it will be 1 nxn , whence 
nxn

11

1

1



. So 

1
1

1
1

1
1

1
1

































nxn

nxn
     (**) 

Let us calculate the following limits 



e
e

n

n

n

n

n

n

n

n

n

n

n

n































































 1

1

1
1lim

1

1
1lim

1

1
1

1

1
1

lim
1

1
1lim

11

; 

ee
nnn

n

n

n

n




































1

1

1
1

1
1lim

1
1lim

11

. 

 Therefore, passing to the limit in relation (**) and using the Squeeze 

Theorem we obtain  

e
x

x

x













1
1lim .     

Let us prove that if x  then  

e
x

x

x













1
1lim .     

Let us fulfill the following substitution    11  txxt  

   









































11

1
lim

1

1
1lim

1
1lim

t

t

t

t

x

x t

t

tx
 

ee
tttx

t

t

t

t

t

t

t

t



































 











1

1
1lim

1
1lim

1
1lim

1
lim

11

. 

 

The another form second remarkable limit is 

𝑙𝑖𝑚
𝑥→0

(1 + 𝑥)
1
𝑥 = ||1∞|| = 𝑒 

 

 Note: The second remarkable limit can be used to remove an 

Indeterminate Form ||∞0|| as well 

 

17.5 Comparison of the Infinitesimals 

 

In order to compare two infinitesimal values it is necessary to calculate a 

limit of their ratio. Since we consider both the comparison of the 

infinitesimal of the numerical sequences  n , n  and infinitesimal 



functions  x  and  x  then instead of record 
n

n

n 




lim or 

 
 x

x

ax 




lim  we will 

write just 



lim .  

Let the values   and   be infinitesimals values.  

1. If 0lim 



, then it means that   approaches zero more quickly 

than  . In this case we will say that   is an infinitesimal value of the higher 

order than   and write:  

  o .  

Example 1. Let us compare two infinitesimals values 

1

1
,

1

1
2 





nn

nn  

as n . With this purpose we calculate the following limit 

0
1

1
limlim

2











 n

n

n
n

n

n
. 

It means that   o . 

2. If 



lim , then we will say that an infinitesimal   is a value 

of lower order than  . Obviously that in this case   o .  

3. If c



lim , where c  and 0c , then   and   are called 

infinitesimals values of the same order. In this case we will write down: 

  *O , or   *O .  

 

Example 2. Let values   ,11  xx    xx   be given as 0x . 

Then 

 
  2

111
limlim

00









 x

x

x

x

xx
, 

i. е., as 0x  then     xOx  * .  

 



Definition. An infinitesimal   is called an infinitesimal of the k -th order 

relative by to an infinitesimal  , if  kO  * , that is if c
k





lim , where 

c  is an arbitrary finite number which is not equal to zero  0c .  

 

Example 3. Let us compare two values   ,11 3  xx    xx   as 

0x . Define the order of smallness of the value  x  about  x . We 

have 

     
1111

11
11

3

3

3

3

3









x

x

x

x
xx  

Consequently 

 

     2

1

11

1
lim

11
limlim

3033

3

030












 xxx

x

x

x

xxx
,  

whence we get that      3* xOx  , i. е.  x  is the infinitesimal value 

of third order about  x .  

It is easy to check the following properties:  

1. If   *O  and   *O , then   *O  (property of transaction). 

2. If   *O  and   o , then   *O . 

3. If   *O    *O , then either   *O  or   o . 

For example, let us check the property 3. Due to condition we have 

,lim 1c



 2lim c




,  

where 1c  and 2c  are finite numbers which are not equal to zero. So  

21limlimlimlim cc 































. 

If 12 cc  , then 021  cc , therefore   *O . But if 12 cc  , then 

021  cc , hence   o . In general case 

      oO* .□ 

 

Equivalent Infinitesimals 



Definition. Infinitesimals values   and   are called equivalent ones if 

1lim 



. The equivalent infinitesimals are denoted by:  ~ . 

Example. Let us consider the variables 
1

1
,

1




nn
nn  as n . 

Then 

1
1

limlim 







 n

n

n
n

n

n
. 

Hence nn  ~  as n .  

 The properties of the equivalent infinitesimals 

1. If       ~~~  (Transitivity).  

■ Indeed 

111limlimlimlim 































, 

Which is what had to be proved. □ 

2. Тheorem. In order for two infinitesimals   and   to be equivalent it is 

necessary and sufficient that their difference be an infinitesimal of the 

higher order than each of them. 

■ Necessary. Let the infinitesimals   and   be equivalent, i.e.  ~ . 

Denote by  . Then 

,0111lim1limlimlim 



























 

So   o , but   *O , then  . o  

Sufficiency. Let us consider  , where   O . Then 

,101lim11limlimlim 


























 

hence  ~ .□ 

Theorem. The limit of the ratio of two infinitesimals does not change if this 

ratio is changed by equivalent values. 



■ Let us suppose that 11 ~,~  . Then 
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
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Which is what had to be proved.□ 

Example. Calculate 
 

x

x

x





1ln
lim

0
 

Solution.  

 
      1ln1limln1lnlim1ln

1
lim

1ln
lim

1

0

1

000





exxx

xx

x
x

x
x

xxx
. 

So 

  ,~1ln xx  as 0x . 

Obvious that  

 
a

x
xa

ln
~1log  , 0x . 

Example. Calculate 
ax

a x

x ln

1
lim

0




. 

Solution. 

 
1

ln

ln
lim

ln

ln
lim

ln

11ln
lim

ln

1
lim

0000







 ax

ax

ax

a

ax

a

ax

a

x

x

x

x

x

x

x
. 

So 

axa x ln~1 , 0x . 

Theorem. At adding of two infinitesimal values of the different order it is 

possible to ignore  by infinitesimal of higher order,  because remaining term 

will be equivalent to all sum.  

■ Let us suppose that  

  1lim0lim, 1 








 o . 

Which is what had to be proved.□ 

Consequence. While calculation of limits we can ignore in the numerator 

and denominator by infinitesimals of higher order because the limit does not 



change since remaining expressions are equivalent to initial ones. Later we 

will prove that values presented in Tables 1 and 2 are equivalent. 

 The consequences of the first remarkable limit 

There exist the following consequences from the 1-st remarkable 

limit. 

,~sin xx  0x  xx ~tan , 0x  

,~arcsin xx  0x  ,~arctan xx  0x  

2
~cos1

2x
x , 0x  

2
~ch1

2x
x , 0x  

 

 The consequences of the second remarkable limit 

 

There exist the following consequences from the 2-nd remarkable limit. 

axa x ln~1 , 0x  xe x ~1 , 0x  

`  
a

x
xa

ln
~1log  , 

0x  

  ,~1ln xx  0x  

  xx 


~11 , 0x   


 
x

x ~11
1

, 0x  

,~sh xx  0x  xx ~th , 0x  

 


