
Lecture #19: DIFFERENTIAL CALCULUS OF FUNCTIONS OF 

ONE VARIABLE  

 

 19.1 The Definition of the Derivative  

Let us start with the “tangent line” problem. Of course, we need to define 

“tangent”, but we won't do this formally. Instead let us draw some pictures. 

 

To find the equation of a line we either need 

- the slope of the line and a point on the line (𝑥1, 𝑦1), or 

- two points on the line (𝑥1, 𝑦1) and (𝑥2, 𝑦2),  from which we can compute 

the slope via the formula 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

and then write down the equation for the tangent line at the point (𝑥1, 𝑦1) 

via a formula such as 

𝑦 = 𝑚 ⋅ (𝑥 − 𝑥1) + 𝑦1. 

We cannot use this formula because we do not know what the slope of the 

tangent line should be. To work out the slope we need calculus — so we'll 

be able to use this method once we get to the definition of “differentiation”. 

 Let's approximate the tangent line, by drawing a line that passes through 

P(1,1) and some nearby point — call it 𝑄 whose 𝑥 -coordinate is equal to  

 



that of P plus a little bit — where the little bit is some small number ℎ.  And 

since this point lies on the curve 𝑦 = 𝑥2, and Q's 𝑥-coordinate is 1 + ℎ, Q's 

𝑦-coordinate must be (1 + ℎ)2. 

 This line that passes through the curve in two places P and Q is called 

a “secant line”. The slope of the line is then 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

=
(1 + ℎ)2 − 1

(1 + ℎ) − 1
=

1 + 2ℎ + ℎ2 − 1

ℎ
=

2ℎ + ℎ2

ℎ
= 2 + ℎ

 

It is obvious that this isn't our tangent line because it passes through 2 nearby 

points on the curve — however it is a reasonable approximation of it.  

 Now we can make that approximation better and so obtain the tangent 

line by considering what happens when we move this point  Q  closer and 

closer to  P,  i.e. make the number  ℎ  closer and closer to zero. 

 
 The original choice of  Q  is on the left, while on the right we have 

drawn what happens if we choose  ℎ′  to be some number a little smaller 

than  ℎ,  so that our point  Q  becomes a new point  Q′  that is a little closer 

to  P.  The new approximation is better than the first. So as we make  ℎ  

smaller and smaller, we bring  Q  closer and closer to  P,  and make our 

secant line a better and better approximation of the tangent line. 

 Thereby, our tangent line can be thought of as the end of this process 

— namely as we bring  Q  closer and closer to  P,  the slope of the secant 

line comes closer and closer to that of the tangent line we want. Given this, 

we can work out the equation for the tangent line more mathematically as 

  

𝑚 = 𝑙𝑖𝑚
ℎ→0

(1 + ℎ)2 − 1

ℎ
= 𝑙𝑖𝑚

ℎ→0
(2 + ℎ) = 2. 



That is our tangent line is 

𝑦 = 2𝑥 − 1. 

 

 As we go further and learn more about limits and derivatives we will be 

able to get closer to real problems and their solutions. For instance, consider 

the following problem:  

 If an object is moving at a constant velocity in the positive direction, 

then that velocity is just the distance travelled divided by the time taken. 

That is 

𝑣 =
distance moved

time taken
 

When velocity is constant everything is easy. 

 

 However, if the object is being moved with its definitely not constant 

speed. Instead of asking for the velocity, let us examine the “average 

velocity” of the object over a certain window of time. In this case the 

formula is very similar 

average velocity =
distance moved

time taken
 

We can rewrite it as — the distance moved is the difference in position, and 

the time taken is just the difference in time — and the latter is more 

mathematically precise, and is easy to translate into the following equation 

average velocity =
𝑠(𝑡2) − 𝑠(𝑡1)

𝑡2 − 𝑡1
. 

 If we sketch a graph of the function 𝑠(𝑡), we can see that this task is 

reduced to the “tangent line” problem. Indeed, the differences in position 

and time, and the line joining the two points on the graph of 𝑠(𝑡) is the same 

as the previous problem. 

 



Remember that the slope of this line is 

slope =
change in 𝑦

change in 𝑥
=

difference in 𝑠

difference in 𝑡
 

 Squeezing the window between 𝑡2 and 𝑡1 down towards zero, the 

average velocity becomes the “instantaneous velocity” — just as the slope 

of the secant line becomes the slope of the tangent line. 

 Thereby, we define the instantaneous velocity at time  𝑡 = 𝑎  to be the 

second limit as 

𝑣(𝑎) = 𝑙𝑖𝑚
ℎ→0

𝑠(𝑎 + ℎ) − 𝑠(𝑎)

ℎ
 

 

 It is clear that in all similar problems the limit is used to analyze 

instantaneous rate of change or the “derivative, based on the limiting slope 

ideas of the previous two problems.  

 

 Let us now generalize what we did as to find “the slope of the curve 

𝑦 = 𝑓(𝑥) at (𝑥0, 𝑦0) ” for any continuous function 𝑓(𝑥).  

 

 As before, let (𝑥0, 𝑦0) be any point on the curve 𝑦 = 𝑓(𝑥).  So we must 

have 𝑦0 = 𝑓(𝑥0). Now let (𝑥1, 𝑦1) be any other point on the same curve. 

So, 𝑦1 = 𝑓(𝑥1) and 𝑥1 ≠ 𝑥0. Think of (𝑥1, 𝑦1) as being pretty close to 

(𝑥0, 𝑦0) as a result the difference 

Δ𝑥 = 𝑥1 − 𝑥0 

in 𝑥 –coordinates is pretty small.  

 In terms of this  𝛥𝑥  we have  

𝑥1 = 𝑥0 + Δ𝑥   and    𝑦1 = 𝑓(𝑥0 + Δ𝑥) 

 We can construct a secant line through (𝑥0, 𝑦0) and (𝑥1, 𝑦1)  just as we 

have done above. It has a slope 

𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

𝑓(𝑥0 + Δ𝑥) − 𝑓(𝑥0)

Δ𝑥
 

 If 𝑓(𝑥) is continuous, then as 𝑥1 approaches 𝑥0, i.e. as 𝛥𝑥 approaches 

0, we would expect the secant through (𝑥0, 𝑦0) and (𝑥1, 𝑦1) to approach the 

tangent line to the curve 𝑦 = 𝑓(𝑥) at (𝑥0, 𝑦0), just as previous cases. So, the 

slope of the secant through (𝑥0, 𝑦0) and (𝑥1, 𝑦1) should approach the slope 



of the tangent line to the curve  𝑦 = 𝑓(𝑥) at (𝑥0, 𝑦0), which is to be 

𝑙𝑖𝑚
Δ𝑥→0

𝑓(𝑥0 + Δ𝑥) − 𝑓(𝑥0)

Δ𝑥
 

 This limit defines the derivative of function 𝑓(𝑥) at the point 𝑥 = 𝑥0. A 

more rigorous formulation of this definition is sound as: 

 

Definition: Derivative at a point. 

Let  𝑎 ∈ 𝑅  and let  𝑓(𝑥)  be defined on an open interval  that contains  𝑥0.  

 The derivative of  𝑓(𝑥)  at  𝑥 = 𝑥0  is denoted 𝑓′(𝑥0) and is defined by 

𝑓′(𝑥0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

if the limit exists. 

 When the above limit exists, the function 𝑓(𝑥) is said to be 

differentiable at 𝑥 = 𝑥0.  When the limit does not exist, the function 𝑓(𝑥) 

is said to be not differentiable at 𝑥 = 𝑥0. 

 We can equivalently define the derivative  𝑓′(𝑥0)  by the limit 

𝑓′(𝑥0) = 𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑙𝑖𝑚

∆𝑥→0

∆𝑓(𝑥0)

∆𝑥
 

To see that these two definitions are the same, we set ℎ ≡ ∆𝑥  and 𝑥 = 𝑥0 +

∆𝑥 and then the limit as ∆𝑥  goes to 0 is equivalent to the limit as 𝑥 goes to 

𝑥0. 

 The important thing here is that we can move from the derivative being 

computed at a specific point to the derivative being a function itself — input 

any value of  𝑎  and it returns the slope of the tangent line to the curve at the 

point 𝑥 = 𝑎, 𝑦 = 𝑓(𝑎). The variable 𝑎 is a dummy variable. We can rename 

𝑎 to anything we want, like 𝑥, for example, which gives us the following 

definition. 

 

Definition: Derivative as a function 

Let  𝑓(𝑥)  be a function. 

 The derivative of 𝑓(𝑥)  with respect to 𝑥 is 



𝑓′(𝑥) = 𝑙𝑖𝑚
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
= 𝑙𝑖𝑚

∆𝑥→0

∆𝑓(𝑥)

∆𝑥
 

provided the limit exists. 

 If the derivative 𝑓′(𝑥) exists for all 𝑥 ∈ (𝑎, 𝑏) we say that 𝑓(𝑥) is 

differentiable on (𝑎, 𝑏).  

 

Note: As the derivative was discovered independently by Newton and 

Leibniz in the late 17th century. Because their discoveries were 

independent, Newton and Leibniz did not have exactly the same notation. 

Stemming from this, and from the many different contexts in which 

derivatives are used, there are quite a few alternate notations for the 

derivative - “the derivative of 𝑓(𝑥) with respect to 𝑥 ”:  

𝑓′(𝑥), 
d𝑓(𝑥)

d𝑥
, 𝑓̇(𝑥),𝐷𝑓(𝑥), 𝐷𝑥𝑓(𝑥) 

while the following notations are for “the derivative of  𝑓(𝑥)  at  𝑥 = 𝑎 ” 

𝑓′(𝑎), 
d𝑓(𝑎)

d𝑥
, 𝑓̇(𝑎),𝐷𝑓(𝑎), 𝐷𝑥𝑓(𝑎) 

We will generally use the first three, but you should recognize them all.  

- The notation  𝑓′(𝑎)  is due to Lagrange, while the notation  
𝑑𝑓(𝑎)

𝑑𝑥
  is due 

to Leibniz. They are both very useful. Neither can be considered “better”. 

- Leibniz notation writes the derivative as a “fraction” — however it is 

definitely not a fraction and should not be thought of in that way. It is 

just shorthand, which is read as “the derivative of  𝑓  with respect to  𝑥”. 

- You read  𝑓′(𝑥)  as “ 𝑓 –prime of  𝑥 ”, and  
𝑑𝑓

𝑑𝑥
  as “dee– f –dee– x ”, and  

𝑑𝑓(𝑥)

𝑑𝑥
  as “dee-by-dee– x  of  f ”. 

- Similarly you read  
𝑑𝑓(𝑎)

𝑑𝑥
  as “dee– f –dee– x  at  a ”, and  

𝑑𝑓(𝑥)

𝑑𝑥
∣𝑥=𝑎  as 

“dee-by-dee- x  of  f  of  x  at  x  equals  a ”. 

- The notation  𝑓̇  is due to Newton. In physics, it is common to use  𝑓̇(𝑡)  

to denote the derivative of  𝑓  with respect to time t. 

 

Following the Theorem on Limits a connection between continuity and 



differentiability of a function occurs.  

 Let a function  xfy   be differentiable at a point 0x . It means that 

there exists the following limit  

 
x

y
xf

x 




 0
0 lim . 

Whence it follows that the value 




x

y
differs from its limit by infinitesimal 

value, that is, 

  



0xf

x

y
,      

where 0lim
0


 x

. So, 

  xxxfy  0 .    (*) 

 

Theorem. If a function is differentiable at a point, then it is continuous at 

this point. 

■ Indeed by virtue of theorem condition the value  0xf   is a finite number. 

But on the base of equality (*), we can write 

   0limlim 0
00




xxfy
xx

, 

which is what had to be proved. □ 

 The contrary statement is not always true. For example, the function 
3 xy   is continuous at the point 0x , but it is not differentiable at this 

point. 

 Let us calculate the derivative of the function 3 xy   at the point 

0x . It is obvious that  

333 00 xxy  , 

consequently  

 










 3 20

3

0

1
limlim

xx

x
y

xx
. 

So the function 3 xy   is not differentiable at the point 0x , 
x

y

x 



 0
lim  

does not exist. 



 19.2 Interpretations of the Derivative 

In the previous sections we defined the derivative as the slope of a tangent 

line, using a particular limit. This allows us to compute “the slope of a 

curve” and provides us with one interpretation of the derivative so-called its 

geometrical meaning. 

 Suppose that 𝑦 = 𝑓(𝑥) is the equation of a curve in the 𝑥𝑦 –plane. That 

is, 𝑓(𝑥) is the  𝑦 –coordinate of the point on the curve whose 𝑥 –coordinate 

is 𝑥.   

 

Then, as we have already seen that the slope of the tangent line to 𝑦 = 𝑓(𝑥) 

at 𝑥 = 𝑎, as we do this, when during the limiting procedure the secant 

through (𝑎, 𝑓(𝑎)) and (𝑎 + ℎ, 𝑓(𝑎 + ℎ)) approaches the tangent line to 𝑦 =

𝑓(𝑥) at 𝑥 = 𝑎, is  

[the slope of the tangent line to 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑎] ≡ 𝑘 = tan 𝛼 

= 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
= 𝑓′(𝑎) 

 Thereby, the geometrical meaning of the derivative is that the tangent 

line passing through the point  (𝑎, 𝑓(𝑎)) has slope defined by  𝑓′(𝑎). 

 Hence, the equation of the tangent line to curve 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑎 is 

𝑦 − 𝑓(𝑎) = 𝑓′(𝑎)(𝑥 − 𝑎)      or      𝑦 = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) 

 Also, the equation of the line normal to curve 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑎 is 

𝑦 − 𝑓(𝑎) = −
1

𝑓′(𝑎)
(𝑥 − 𝑎)      or      𝑦 = 𝑓(𝑎) −

1

𝑓′(𝑎)
(𝑥 − 𝑎) 

 



However, the main importance of derivatives does not come from this 

application. Instead, (arguably) it comes from the interpretation of the 

derivative as the instantaneous rate of change of a quantity.  

 For instance, the instantaneous rate of change of a function 𝑓(𝑥) at a 

point 𝑥 = 𝑎 is its slope 𝑘 = tan 𝛼 defined by the derivative 𝑓′(𝑎) at this 

point. 

 

 The mechanical (physical) meaning of the derivative is the 

instantaneous rate of change of a mechanical (physical) value (for example, 

velocity at a given time). 

 

 19.3 Arithmetic of Derivatives 

So far, we know derivatives only by applying Definition to the function at 

hand and then computing the required limits directly.  

 It is quite obvious that as the function being differentiated becomes 

even a little complicated, this procedure quickly becomes extremely 

unwieldy. It is many orders of magnitude more efficient if we will be 

equipped by  

1. a list of derivatives of some simple functions and 

2. a collection of rules for breaking down complicated derivative 

computations into sequences of simple derivative computations. 

We started with limits of simple functions and then used “arithmetic of 

limits” to computed limits of complicated functions. 

 

 19.3.1 A list of derivatives of some simple functions 

 

The Derivatives of Exponential Function 
xay  . 

  xf aa
x

a
a

x

aa x

x

x
x

xxx

x
ln

1
limlim

0

0
















     

(𝑎𝑥)′ = 𝑎𝑥 ln 𝑎 

In particular case, 𝑦 = 𝑒𝑥, we have (𝑒𝑥)′ = 𝑒𝑥 



The Derivatives of Trigonometric Function xy sin , then 

 
x

x

x
x

x

x

xxx
y

xx
cos

2
cos

2
sin2

lim
sinsin

lim
00











 








 








, 

so 

      

Analogously we can show, that  

  xx sincos 


       

The Derivatives of Logarithmic Function xy ln . Then 

   
x

x

x

x

x

xx

x

xxx
y

xxx 








 












 









1ln

lim

ln

lim
lnln

lim
000

, 

since 
x

x

x

x 







 
 ~1ln , as 0x , then we obtain 

xx

x

x

y
x

1
lim

0









, 

So 

 
 

Note. If xy alog , then 
ax

y
ln

1
  or 

 

 
 

The Derivatives of the Power Function 

 Let us consider the power function 
axy  , where а is any real number. 

Then  

 











 








 x

x

x

x
x

xxx
y

a

x

a
aa

x

11

limlim
00

 

  xx cossin 


 

 
x

x
1

ln 


 

 
ax

xa
ln

1
log 


 



x

xa

x

x
a










 
 ~11 1

0
lim 







 a

x

a ax
xx

x
ax . 

So 

      . 

 The derivative of other simple function we will calculate later. First, a 

collection of differentiation rules has to be deduced. 

 

  19.3.2 A Collection of Differentiation Rules 

We have to consider derivatives of sums, differences, products and 

quotients of functions. These theorems are not too difficult to prove from 

the definition of the derivative (which we know) and the arithmetic of limits 

(which we also know). Now we show how to construct these rules. 

 

Theorem 1. The derivative of a constant is equal to zero.  

■ Let Cy  , where constC  . Then for any increament in argument x 

corresponding increament in the function will be equal to zero, that is 

0y , so 

0lim
0







 x

y
y

x
,   0


C .□     

Theorem 2. The derivative of the sum of a finite number of differentiable 

functions is equal to the corresponding sum of the derivatives of these 

functions. 

■ Let us prove this theorem for two functions. Consider the sum 

   xvxuy  . Then 

xx

u

xx

u

x

u

x

y
y

xxxxx 





































 00000
limlimlimlimlim . 

It means 

vuy   

or 

  vuvu 


 .      

Which is what had to be proved.□ 

1 aaxy  



Example. If 2
1

3

4 
x

xy . 

Then 

3

33
4

3

3

1
40

3

1
4

xx
xxxy 


. 

Theorem 3. The derivative of a product of two differentiable functions is 

equal to the product of the derivative of the first function by the second one 

plus the product of the first function by the derivative of the second function, 

that is, if 

   xvxuy  , 

then 

uuy  . 

■ Let    xvxuy  , then 

       xxuxxxxuy  . 

Due to relation 

    uxuxxu   

we can write that 

    uxuxxu   

and analogously 

    vxvxxv   

Therefore 

           uuuxxuxuxuy . 
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Since the function is differentiable then it is continuous, therefore  
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Corollary 1. A constant factor may be taken outside the derivative sign, i.e. 

if  xCfy  , then  xfCy   or 

    xfCxCf 


.       

Corollary 2: The Linearity of Differentiation: 

d

d𝑥
{𝛼𝑓(𝑥) + 𝛽𝑔(𝑥)} = 𝛼𝑓′(𝑥) + 𝛽𝑔′(𝑥) 
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Theorem 5. The derivative of a fraction is equal to a fraction whose 

denominator is the square of the denominator of the given fraction and the 

numerator is the difference between the product of the denominator by the 

derivative of the numerator, and the product of the numerator by the 

derivative of the denominator, i.e., if 
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consequently 
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Since the function is differentiable then it is continuous, therefore  
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So we obtain finally 
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Example. Let the function 
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 The Derivatives of Trigonometric Function 𝑦 = tan 𝑥 =
sin 𝑥

cos 𝑥
, then  
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Analogously, if xy toc , then 
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 The Derivatives of the Hyperbolic Functions 

Let us consider the function 
2
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Therefore 
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In the similar way we can show that if 
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 19.3.3 Derivative of the Inverse Functions 

 

Theorem. If a function  xfy   is continuous and strictly monotonic on 

some interval Е and there exists the derivative   000  xfy  at some point 

Ex 0 , then the inverse function  yx   has the derivative  00 yx   at 

the corresponding point  00 xfy  , which is defined as 
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
 .       

■ Let us determine the increment in the function 

   00 xfxxfy  . 

We had shown that if function is differentiable at the point then its increment 

may be presented in the form   xxxfy  0 , where is 



infinitesimal value as x0. Whence it follows that 
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From continuity of the function  xfy   it follows that 

(x0)(y0). 

Therefore 
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Proved formula is written as  
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 Derivatives of the Inverse Trigonometric Functions 

 Let us find the derivative of the function xy arcsin . Determine the 

inverse function to the given one yx sin . Then 

22 1
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In the given case yy 2sin1cos  , because the function xy arcsin  has 
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 (Fig.). So 
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 Analogously we can find the derivative of the 

function xy arccos . But more simply if take into 

account the following relation  
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Hence 
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Let us find the derivative of the function xy arctan . From this it follows 

that yx tan , consequently 
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 By virtue of identity 
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 19.3.4 The Basic Formulas and Rules of Differentiation 

Summarizing all the formulas we have deduced above, we collect them 

below as Table (a list) of Rules: 

 Rules of Differentiation 

1.   0


Const  

2.   vuvu 


  

3.   vuvuvu 


  

4.     xfCxCf 


 

5. 
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 Basic Formulas 

1.   1
 aa axx  

2.   xx ee 


 

3.   aaa xx ln


 

4.  
x

x
1

ln
/
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5.  
ax
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1
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/


  

6.   xx cossin 


 

7.   xx sincos 

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2
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1

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10.   xx chsh 


 

11.   xx shch 
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12.  
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Example 1. 
d

d𝑥
{(3𝑥 + 9)(𝑥2 + 4𝑥3)} ? 



d

d𝑥
{(3𝑥 + 9)(𝑥2 + 4𝑥3)}  

=
d

d𝑥
(3𝑥 + 9) (𝑥2 + 4𝑥3) + (3𝑥 + 9)

d

d𝑥
(𝑥2 + 4𝑥3) 

= 18𝑥 + 117𝑥2 + 48𝑥3  

Example 2. 
d

d𝑥
{

4𝑥3−7𝑥

4𝑥2+1
} ? 

d

d𝑥
{

4𝑥3 − 7𝑥

4𝑥2 + 1
} =

(12𝑥2 − 7)(4𝑥2 + 1) − (4𝑥3 − 7𝑥)(8𝑥)

(4𝑥2 + 1)2
 

=
(48𝑥4 − 16𝑥2 − 7) − (32𝑥4 − 56𝑥2)

(4𝑥2 + 1)2
=

16𝑥4 + 40𝑥2 − 7

(4𝑥2 + 1)2
 

Example 3. A tangent line to the curve 𝑦 = √𝑥 at 𝑥 = 4; 

 By the geometrical meaning of the derivative, the tangent line to the 

curve  𝑦 = 𝑓(𝑥)  at  𝑥 = 𝑎  is given by 

𝑦 = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) 

provided  𝑓′(𝑎)  exists. 

 So, the derivative of √𝑥 at  𝑥 = 𝑎  is 

𝑓′(𝑎) =
1

2√𝑎
 

If 𝑎 = 4 then  

𝑓′(𝑎) = 𝑓′(4) =
1

2√𝑎
|𝑎=4 =

1

2√4
=

1

4
 

and 

𝑓(𝑎) = 𝑓(4) = √𝑥|𝑥=4 = √4 = 2 

Hence, the equation of the tangent line is 

𝑦 = 2 +
1

4
(𝑥 − 4)   or    𝑦 =

𝑥

4
+ 1 

 


