
Lecture #20: DIFFERENTIAL CALCULUS OF FUNCTIONS OF 

ONE VARIABLE  

 

 19.4 The Derivative of Composite Functions 

 We have built up most of the tools that we need to express derivatives 

of complicated functions in terms of derivatives of simpler known functions 

by using the derivatives of sums, products and quotients. 

 The final tool we add is called the chain rule. It tells us how to take the 

derivative of a composition of two functions. That is if we know 𝑓(𝑥) and 

𝑔(𝑥) and their derivatives, then the chain rule tells us the derivative of 

𝑓(𝑔(𝑥)). 

 

Theorem: The chain rule 

If a function  xu   is differentiable at the point 0x , and a function 

 ufy   is differentiable at the point 0u , where  00 xu  , then the 

composite function     xfxF   will be differentiable at the point 0x  and 

its derivative is calculated by the following formula: 

     000 xufxF  . 

■ Let us determine the increment in the function  xu   and  ufy   

       0000 , ufuufyxxxu  . 

Since the considered functions are differentiable ones then the following 

relation   uuufy  
0

, where 0 as u0 is valid. Hence, 
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Since the function  xu   is differentiable at the point 0x , then it is 

continuous at this point, therefore    00  ux . Consequently 

0limlim
00


 ux

. So we obtain  

           000000 0 xufxuxufxF  .□ 

 Here, as was the case earlier, we have been very careful to give the point 

at which the derivative is evaluated a special name (i.e. 𝑥0 ). But of course 



this evaluation point can really be any point (where the derivative is 

defined). So it is very common to just call the evaluation point “ 𝑥 ” rather 

than give it a special name like “ 𝑥0 ”, i.e. 

 Let  𝑓  and  𝜑  be differentiable functions then 

𝑑

𝑑𝑥
𝑓(𝜑(𝑥)) = 𝑓′(𝜑(𝑥)) ⋅ 𝜑′(𝑥) or 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
⋅

𝑑𝑢

𝑑𝑥
 (or 

xux uyy   ) 

This latter particular form is easy to remember because it looks like we can 

just “cancel” the  𝑑𝑢  between the two terms. 

𝑑𝑦

𝑑𝑥
=

d𝑦

d𝑢
⋅

d𝑢

d𝑥
 

Notice that when we form the composition  𝑓(𝜑(𝑥))  there is an “outside” 

function (namely  𝑓(𝑥) ) and an “inside” function (namely  𝜑(𝑥) ). The 

chain rule tells us that when we differentiate a composition that we have to 

differentiate the outside and then multiply by the derivative of the inside. 

𝑑

𝑑𝑥
𝑓(𝜑(𝑥)) = 𝑓′(𝜑(𝑥))

⏟

differentiate outside

⋅ 𝜑′(𝑥)
⏟

differentiate inside

 

Example. 
𝑑

𝑑𝑥
(sin(𝑥))5? 

Let define 𝑓(𝑢) = 𝑢5 and 𝑢 = 𝜑(𝑥) = sin 𝑥. Then set 𝐹(𝑥) = 𝑓(𝜑(𝑥)) =

(sin(𝑥))5.  

 To find the derivative of  𝐹(𝑥)  we can simply apply the chain rule — 

the pieces of the composition have been laid out for us. Here they are 

𝑓(𝑢) = 𝑢5 𝑓′(𝑢) = 5𝑢4

𝜑(𝑥) = sin (𝑥) 𝜑′(𝑥) = cos 𝑥
 

We now just put them together as the chain rule tells us 

𝑑𝐹

𝑑𝑥
= 𝑓′(𝜑(𝑥)) ⋅ 𝜑′(𝑥) 

= 5(𝜑(𝑥))4 ⋅ cos (𝑥) since 𝑓′(𝑢) = 5𝑢4 

= 5(sin (𝑥))4 ⋅ cos (𝑥) 

Example. Let the function xy tan3  be given. It means that uy 3 , where 



xu tan , thus 
xx

y xu

2

tan

2 cos

1
3ln3

cos

1
3ln3  . 

Example. Consider the function  1003 2 xy . It means that 100uy  , 

where 23  xu . So we obtain   2993299 23003100 xxxuy  . 

 

 Notice that it is quite easy to extend this rule to any basic formula we 

derived. Thereby, 

1.   )()()( 1 xuxauxu aa 
   

2.   )()()( xuee xuxu 


 

3.   )(ln)()( xuaaa xuxu 
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6.   )()(cos)(sin xuxuxu 


 

7.   )()(sin)(cos xuxuxu 


 

8.   )()(sec)(
)(cos

1
)(tan 2

2
xuxuxu

xu
xu 
  

9.   )()(csc)(
)(sin

1
)(cot 2

2
xuxuxu

xu
xu 
  

10.   )()(ch)(sh xuxuxu 


 

11.   )()(sh)(ch xuxuxu 
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 Derivative of a double-composition 

 Find the derivative of 
𝑑

𝑑𝑥
𝑓(𝑔(ℎ(𝑥))). 

This is very similar to the previous example. Let us set  𝐹(𝑥) = 𝑓(𝑔(ℎ(𝑥))) 

with 𝑢 = 𝑔(ℎ(𝑥)). Then the chain rule tells us 

𝑑𝐹

𝑑𝑥
=

𝑑𝑓

𝑑𝑢
⋅

𝑑𝑢

𝑑𝑥
= 𝑓′ (𝑔(ℎ(𝑥))) ⋅

𝑑

𝑑𝑥
𝑔(ℎ(𝑥)) = 

We now just apply the chain rule again 

= 𝑓′(𝑔(ℎ(𝑥))) ⋅ 𝑔′(ℎ(𝑥)) ⋅ ℎ′(𝑥). 

 

Indeed, it is not too hard to generalize further (in the manner of previous 

example) to find the derivative of the composition of 4 or more functions 

(though things start to become tedious to write down): 

𝑑

𝑑𝑥
𝑓1(𝑓2(𝑓3(𝑓4(𝑥))))  = 𝑓1

′(𝑓2(𝑓3(𝑓4(𝑥)))) ⋅
𝑑

𝑑𝑥
𝑓2(𝑓3(𝑓4(𝑥))) 

= 𝑓1
′(𝑓2(𝑓3(𝑓4(𝑥)))) ⋅ 𝑓2

′(𝑓3(𝑓4(𝑥))) ⋅
𝑑

𝑑𝑥
𝑓3(𝑓4(𝑥)) 

= 𝑓1
′(𝑓2(𝑓3(𝑓4(𝑥)))) ⋅ 𝑓2

′(𝑓3(𝑓4(𝑥))) ⋅ 𝑓3
′(𝑓4(𝑥)) ⋅ 𝑓4

′(𝑥) 

 

Example. Let the function 
xey arcsin  be given. 

Here uey  , where vu  , xv arcsin . 
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Example. Consider the function   xy  1lnch 2 . Its derivative is 

defined as 
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 19.5 The Derivative of Implicit Functions 

Implicit differentiation is a simple trick that is used to compute derivatives 

of functions either 

- when you don't know an explicit formula for the function, but you know 

an equation that the function obeys or 

- even when you have an explicit, but complicated, formula for the 

function, and the function obeys a simple equation. 

The trick is just to differentiate both sides of the equation and then solve for 

the derivative we are seeking. 

 

 Let the values of two variables х and у be defined by the equation 

  0, yxf .  

 If the function  xy   defined on the interval  ba,  is such that the 

equation   0, yxf  becomes an identity after substituting the expression 

 xy   in place of y . Then the function  xy   is assumed to be an 

implicit function defined by equation   0, yxf .  

Let us suppose that the equation   0, yxf  determines an implicit 

function. We will give the rule for finding the derivative of an implicit 

function without transforming it into its explicit form, i.e. without 

representing it in the explicit form  xy  .  

In order to find the derivative xy  it is required to differentiate the 

equation   0, yxf  as identity, taking into account that у is the function of 

x, i.e.  xy  . In this case the variable у should be considered as “inside” 

function of the composite function.  

 

Example. Let us consider the equation 2tan3  yx . To find the derivative 

let us differentiate this equation as identity, regarding y as a function of x, 

i.e.  xyy  . Then we obtain 

0
cos

1
3

2

2  y
y

x , 

whence 



yxy 22 cos3 . 

 Obviously in the given case we can easy pass from implicit 

representation of the function to explicit form. Indeed we obtain that  
32tan xy  , 

whence 

   nxy 32arctan , ...,,2,1,0 n  

then 
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which coincides with previous result, because 32tan xy   and 

consequently 
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Example. Let the function  xyy   be given by equation 0sin  yexy x

. In this case passing to explicit form of function is impossible. Then 

0cos  yyeyxy x , 

whence 

yx

ey
y

x

cos


   

Example. Finding a tangent line using implicit differentiation. 

Find the equation of the tangent line to 𝑦 = 𝑦3 + 𝑥𝑦 + 𝑥3 at 𝑥 = 1 

- First notice that when 𝑥 = 1 the equation 𝑦 = 𝑦3 + 𝑥𝑦 + 𝑥3 of the curve 

simplifies to 𝑦 = 𝑦3 + 𝑦 + 1 or 𝑦3 = −1, which we can solve:  𝑦 = −1.  

So we know that the curve passes through  (1, −1)  when  𝑥 = 1.  

- Now, to find the slope of the tangent line at  (1,−1),  pretend that our 

curve is  𝑦 = 𝑓(𝑥)  so that  𝑓(𝑥)  obeys 

𝑓(𝑥) = 𝑓(𝑥)3 + 𝑥𝑓(𝑥) + 𝑥3 

for all  𝑥.  Differentiating both sides gives 

𝑓′(𝑥) = 3𝑓(𝑥)2𝑓′(𝑥) + 𝑓(𝑥) + 𝑥𝑓′(𝑥) + 3𝑥2 

or  

𝑦′ = 3𝑦2𝑦′ + 𝑥𝑦′ + 𝑦 + 3𝑥2 



- At this point we could isolate for  𝑓′(𝑥)  and write it in terms of  𝑓(𝑥)  

and  𝑥,  but since we only want answers when  𝑥 = 1, let us substitute in  

𝑥 = 1 and  𝑓(1) = −1  (since the curve passes through  (1, −1) ) and 

clean things up before doing anything else. 

- Substituting in  𝑥 = 1, 𝑓(1) = −1  gives 

𝑓′(1) = 3𝑓′(1) − 1 + 𝑓′(1) + 3  and so 𝑓′(1) = −
2

3
 

- The equation of the tangent line is 

𝑦 = 𝑦0 + 𝑓′(𝑥0)(𝑥 − 𝑥0) = −1 −
2

3
(𝑥 − 1) = −

2

3
𝑥 −

1

3
 

We can further clean up the equation of the line to write it as 

2𝑥 + 3𝑦 = −1. 

 

 19.6 Logarithmic Differentiation 

The method of differentiating functions by first taking logarithms and then 

differentiating is called logarithmic differentiation. We use logarithmic 

differentiation in situations where it is easier to differentiate the logarithm 

of a function than to differentiate the function itself. This approach allows 

calculating derivatives of power, rational and some irrational functions in 

an efficient manner. 

 Consider this method in more detail. Let 𝑦 =  𝑓 (𝑥). Take natural 

logarithms of both sides: 

ln 𝑦 = ln 𝑓(𝑥). 

Next, we differentiate this expression using the chain rule and keeping in 

mind that 𝑦 is a function of 𝑥. 

(ln 𝑦)′ = (ln 𝑓(𝑥))′, ⇒
1

𝑦
𝑦′(𝑥) = (ln 𝑓(𝑥))′. 

It's seen that the derivative is 

𝑦′ = 𝑦(ln 𝑓(𝑥))′ = 𝑓(𝑥)(ln 𝑓(𝑥))′. 

 

The derivative of the logarithmic function is called the logarithmic 

derivative of the initial function 𝑦 =  𝑓 (𝑥). This differentiation method 



allows to effectively compute derivatives of power-exponential functions, 

that is functions of the form. 

𝑦 = 𝑢(𝑥)𝑣(𝑥), 

where 𝑢(𝑥) and 𝑣(𝑥) are differentiable functions of 𝑥. 

 

In the examples below, find the derivative of the function 𝑦 =  𝑓 (𝑥).  using 

logarithmic differentiation. 

 

Example. 𝑦 = 𝑥𝑥 , 𝑥 > 0, 𝑦’−? 

 First we take logarithms of the left and right side of the equation: 

ln 𝑦 = ln 𝑥𝑥 , ⇒ ln 𝑦 = 𝑥ln 𝑥. 

Now we differentiate both sides meaning that 𝑦 is a function of 𝑥 

(ln 𝑦)′ = (xln 𝑥)′, ⇒
1

𝑦
⋅ 𝑦′ = 𝑥′ ln 𝑥 + 𝑥(ln 𝑥)′, ⇒

𝑦′

𝑦
= 1 ⋅ ln 𝑥 + 𝑥 ⋅

1

𝑥
,

⇒
𝑦′

𝑦
= ln 𝑥 + 1, ⇒ 𝑦′ = 𝑦(ln 𝑥 + 1), 

⇒ 𝑦′ = 𝑥𝑥(ln 𝑥 + 1),where𝑥 > 0. 

 

Example. 𝑦 = (𝑥 − 1)
2
(𝑥 − 3)

5
, 𝑦’−? 

First we take logarithms of both sides: 

ln 𝑦 = ln [(𝑥 − 1)2(𝑥 − 3)5], ⇒ ln 𝑦 = ln (𝑥 − 1)2 + ln (𝑥 − 3)5, ⇒ ln 𝑦

= 2ln (𝑥 − 1) + 5ln (𝑥 − 3). 

Now it is easy to find the logarithmic derivative: 

(ln 𝑦)′ = [2 ln(𝑥 − 1) + 5 ln(𝑥 − 3)]′, ⇒
1

𝑦
⋅ 𝑦′ = 2 ⋅

1

𝑥 − 1
+ 5 ⋅

1

𝑥 − 3
,

⇒ 𝑦′ = 𝑦 (
2

𝑥 − 1
+

5

𝑥 − 3
) , ⇒ 

𝑦′ = (𝑥 − 1)2(𝑥 − 3)5 ⋅ (
2

𝑥 − 1
+

5

𝑥 − 3
). 

 

 19.7 Derivatives of Parametric Functions 

 



The relationship between the variables 𝑥 and 𝑦 can be defined in parametric 

form using two equations: 

{
𝑥 = 𝑥(𝑡)

𝑦 = 𝑦(𝑡)
 

where the variable 𝑡 is called a parameter. 

 Find an expression for the derivative of a parametrically defined 

function. Suppose that the functions 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) are 

differentiable in the interval 𝛼 < 𝑡 < 𝛽 and 𝑥′(𝑡) ≠ 0. Moreover, we 

assume that the function 𝑥 = 𝑥(𝑡) has an inverse function 𝑡 = 𝜑(𝑥). 

 By the inverse function theorem we can write: 

𝑑𝑡

𝑑𝑥
= 𝑡𝑥

′ =
1

𝑥𝑡
′ . 

The original function  𝑦(𝑥) can be considered as a composite function: 

𝑦(𝑥) = 𝑦(𝑡(𝑥)). 

Then its derivative is given by 

𝑦𝑥
′ = 𝑦𝑡

′ ⋅ 𝑡𝑥
′ = 𝑦𝑡

′ ⋅
1

𝑥𝑡
′ =

𝑦𝑡
′

𝑥𝑡
′ . 

This formula allows to find the derivative of a parametrically defined 

function without expressing the function 𝑦(𝑥)  in explicit form. 

 In the examples below, find the derivative of the parametric function. 

 

Example. 𝑥 = 𝑡2, 𝑦 = 𝑡3. 𝑦𝑥
′ −? 

We find the derivatives of 𝑥 and 𝑦 with respect to 𝑡: 

𝑥𝑡
′ = (𝑡2)′ = 2𝑡, 𝑦𝑡

′ = (𝑡3)′ = 3𝑡2. 

Hence 

𝑑𝑦

𝑑𝑥
= 𝑦𝑥

′ =
𝑦𝑡

′

𝑥𝑡
′ =

3𝑡2

2𝑡
=

3𝑡

2
(𝑡 ≠ 0). 

Example. 𝑥 = 𝑒2𝑡 , 𝑦 = 𝑒3𝑡 . 𝑦𝑥
′ −? 

𝑥𝑡
′ = (𝑒2𝑡)′ = 2𝑒2𝑡, 𝑦𝑡

′ = (𝑒3𝑡)′ = 3𝑒3𝑡 . 

Hence, the derivative 𝑦𝑥
′   is given by 

𝑑𝑦

𝑑𝑥
= 𝑦𝑥

′ =
𝑦𝑡

′

𝑥𝑡
′ =

3𝑒3𝑡

2𝑒2𝑡
=

3

2
𝑒3𝑡−2𝑡 =

3

2
𝑒𝑡 . 


