Arithmetic of Derivatives: The Basic Formulas and Rules of Differentiation

Example. $f(x)=5 x+4, a=-1 f^{\prime}(-1)-$?
According with the derivative definition:

$$
\begin{gathered}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \Rightarrow f^{\prime}(-1)=\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{x-(-1)} \\
=\lim _{x \rightarrow-1} \frac{(5 x+4)-(5(-1)+4)}{x-(-1)}=\lim _{x \rightarrow-1} \frac{5 x+5}{x+1}=\left\|\frac{0}{0}\right\| \\
=\lim _{x \rightarrow-1} \frac{5(x+1)}{x+1}=5
\end{gathered}
$$

$f^{\prime}(-1)=5$
Moreover, we need to remember that the derivative of the function at every point is a function itself:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f(x)}{\Delta x}
$$

Example 1. $\frac{d}{d x}\left(3 x^{2}+5 x+7\right)-$?

$$
\begin{gathered}
\frac{d}{d x}\left(3 x^{2}+5 x+7\right)=3 \frac{d}{d x}\left(x^{2}\right)+5 \frac{d}{d x}(x)+\frac{d}{d x}(7) \\
=3 \cdot 2 x+5 \cdot 1+0 \\
=6 x+5
\end{gathered}
$$

Hence, if a task exists: $f(x)=\left(3 x^{2}+5 x+7\right), f^{\prime}(2)-$?
then

$$
f^{\prime}(x)=6 x+5 \Rightarrow f^{\prime}(2)=6 \cdot 2+5=17
$$

Example 2. Find the derivative of the function $y=\frac{2}{3 x}+3 x^{4}, \frac{d y}{d x}=$ $\frac{d}{d x}\left(\frac{2}{3 x}+3 x^{4}\right)-?$ or $y^{\prime}=\left(\frac{2}{3 x}+3 x^{4}\right)^{\prime}-?$

$$
\begin{aligned}
& y^{\prime}(x)=\left(\frac{2}{3 x}+3 x^{4}\right)^{\prime}=\left(\frac{2}{3 x}\right)^{\prime}+\left(3 x^{4}\right)^{\prime}=\frac{2}{3}\left(\frac{1}{x}\right)^{\prime}+3\left(x^{4}\right)^{\prime} \\
&=\frac{2}{3} \cdot\left(-\frac{1}{x^{2}}\right)+3 \cdot 4 x^{3}=-\frac{2}{3 x^{2}}+12 x^{3}=12 x^{3}-\frac{2}{3 x^{2}}
\end{aligned}
$$

Example 3. $\frac{\mathrm{d}}{\mathrm{d} x}\left\{(3 x+9)\left(x^{2}+4 x^{3}\right)\right\}-$? or $y^{\prime}=\left((3 x+9)\left(x^{2}+4 x^{3}\right)\right)^{\prime}-$?

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{(3 x+9)\left(x^{2}+4 x^{3}\right)\right\} \\
=\frac{\mathrm{d}}{\mathrm{~d} x}(3 x+9)\left(x^{2}+4 x^{3}\right)+(3 x+9) \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+4 x^{3}\right) \\
=\left(\frac{\mathrm{d}}{\mathrm{~d} x}(3 x)+\frac{\mathrm{d}}{\mathrm{~d} x}(9)\right)\left(x^{2}+4 x^{3}\right)+(3 x+9)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}\right)+\frac{\mathrm{d}}{\mathrm{~d} x}\left(4 x^{3}\right)\right) \\
=(3+0)\left(x^{2}+4 x^{3}\right)+(3 x+9)\left(2 x+12 x^{2}\right) \\
=\left(3 x^{2}+12 x^{3}\right)+\left(18 x+6 x^{2}+114 x^{2}+36 x^{3}\right) \\
=18 x+117 x^{2}+48 x^{3}
\end{gathered}
$$

Example 4. $y=x^{2} \sin x, y^{\prime}=\left(x^{2} \sin x\right)^{\prime}-$?

$$
\begin{aligned}
& y^{\prime}(x)=\left(x^{2} \sin x\right)^{\prime}=\left(x^{2}\right)^{\prime} \sin x+x^{2}(\sin x)^{\prime}=2 x \sin x+x^{2} \cos x \\
& =x(2 \sin x+x \cos x)
\end{aligned}
$$

Example 5. $\frac{\mathrm{d}}{\mathrm{d} x}\left\{\frac{4 x^{3}-7 x}{4 x^{2}+1}\right\}$? or $y^{\prime}=\left(\frac{4 x^{3}-7 x}{4 x^{2}+1}\right)^{\prime}-$?

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\frac{4 x^{3}-7 x}{4 x^{2}+1}\right\}=\frac{\frac{\mathrm{d}}{\mathrm{~d} x}\left(4 x^{3}-7 x\right)\left(4 x^{2}+1\right)-\left(4 x^{3}-7 x\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(4 x^{2}+1\right)}{\left(4 x^{2}+1\right)^{2}} \\
=\frac{\left(12 x^{2}-7\right)\left(4 x^{2}+1\right)-\left(4 x^{3}-7 x\right)(8 x)}{\left(4 x^{2}+1\right)^{2}} \\
=\frac{\left(48 x^{4}-16 x^{2}-7\right)-\left(32 x^{4}-56 x^{2}\right)}{\left(4 x^{2}+1\right)^{2}}=\frac{16 x^{4}+40 x^{2}-7}{\left(4 x^{2}+1\right)^{2}}
\end{gathered}
$$

Example 6. Find the derivative of the function $y=\frac{2 x+1}{2 x-1}$ at $x=1$

$$
\begin{gathered}
y^{\prime}=\left(\frac{2 x+1}{2 x-1}\right)^{\prime}=\frac{2 \cdot(2 x-1)-(2 x+1) \cdot 2}{(2 x-1)^{2}}=\frac{4 x-2-4 x-2}{(2 x-1)^{2}} \\
=-\frac{4}{(2 x-1)^{2}}
\end{gathered}
$$

At $x=1$

$$
y^{\prime}(1)=-\frac{4}{(2 \cdot 1-1)^{2}}=-\frac{4}{1^{2}}=-4
$$

Using the Derivative
Example 7. A tangent line and a line normal to the curve $y=\sqrt{x}$ at $x=4$;

By the geometrical meaning of the derivative, the tangent line to the curve $y=f(x)$ at $x=a$ is given by

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

provided $f^{\prime}(a)$ exists.
So, the derivative of \sqrt{x} at $x=a$ is

$$
f^{\prime}(a)=\frac{1}{2 \sqrt{a}}
$$

If $a=4$ then

$$
f^{\prime}(a)=f^{\prime}(4)=\left.\frac{1}{2 \sqrt{a}}\right|_{a=4}=\frac{1}{2 \sqrt{4}}=\frac{1}{4}
$$

and

$$
f(a)=f(4)=\left.\sqrt{x}\right|_{x=4}=\sqrt{4}=2
$$

Hence, the equation of the tangent line is

$$
y=2+\frac{1}{4}(x-4) \text { or } y=\frac{x}{4}+1
$$

Then, the slope of the line normal to the tangent line is calculated as

$$
k_{\text {normal }}=-\frac{1}{k_{\text {tangent }}}
$$

That is the equation of the normal

$$
y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right) \text {, where } k_{\text {normal }}=-\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Hence,

$$
k_{\text {normal }}=-\frac{1}{1 / 4}=-4
$$

Finally, the equation of the normal is

$$
y=2-4(x-4) \text { or } y=-4 x+18
$$

Example 8. Find the angle of the intersection of the curves $y=x^{2}$ and $y=\sqrt{x}$ at the point $M(1,1)$.

Obvious the angle between curves is equal to the angle between their tangent lines. From the equations of the given lines we find the derivatives

$$
y^{\prime}=2 x, y^{\prime}=\frac{1}{2 \sqrt{x}},
$$

Calculate the slopes of the lines tangent to the given curves at the point $M(1,1)$

$$
k_{1}=2, \quad k_{2}=\frac{1}{2} .
$$

To find a sought angle α we can use the following formula $\tan \alpha=\frac{k_{2}-k_{1}}{1+k_{1} k_{2}}$
(tangent of an angle between two straight lines with slopes k_{1} and k_{2}). Then

$$
\tan \alpha=\frac{2-\frac{1}{2}}{1+\frac{1}{2} \cdot 2}=\frac{3}{4}
$$

Example 9. Find the equation of the line tangent to the curve $y=2 x^{2}+4 x-1$ if it is known that the tangent line is parallel to the straight line $x+2 y-3=0$

In the given case, a point $\left(x_{0}, y_{0}\right)$ at which the line tangent to the given curve is not known. But it is known the slope of the line parallel to the tangent line, i.e. $k=-\frac{1}{2}$.

Therefore we can determine the derivative of the given curve and equite it to the value $-\frac{1}{2}$. So, $y^{\prime}=4 x+4$, then

$$
4 x_{0}+4=-\frac{1}{2}
$$

whence

$$
x_{0}+1=-\frac{1}{8}
$$

It follows on that

$$
x_{0}=-\frac{9}{8}, y_{0}=\frac{81}{32}-\frac{9}{2}-1=-\frac{95}{32} .
$$

So, the equation of the tangent line is:

$$
y+\frac{95}{32}=-\frac{1}{2}\left(x+\frac{9}{8}\right)
$$

or

$$
16 x+32 y+113=0
$$

The Chain Rule
If the composition of functions $f(x)$ and $g(x)$ occurs

$$
y(x)=f(g(x))
$$

(represents a "two-layer" composite function or a function of a function)

Also, if $f(x)$ and $g(x)$ are differentiable functions, then the composite function $y(x)$ is also differentiable in x and its derivative is given by

$$
\frac{d y}{d x}=\frac{d}{d x} f(g(x)) g^{\prime}(x) \text { or } \frac{d y}{d x}=\frac{d f}{d u} \frac{d u}{d x}
$$

where $u=g(x)$ is an inner function (intermediate argument), and $f(u)$ is an outer function

This rule is easily generalized for composite functions consisting of three and more "layers".

$$
y^{\prime}=[f(g(h(x)))]^{\prime}=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

Example 10. $y=\ln x^{2}, y^{\prime}-$?

$$
y^{\prime}(x)=\left(\ln x^{2}\right)^{\prime}=\frac{1}{x^{2}} \cdot\left(x^{2}\right)^{\prime}=\frac{1}{x^{2}} \cdot 2 x=\frac{2 x}{x^{2}}=\frac{2}{x}(x \neq 0)
$$

Example 11. $y=\ln ^{2} x, y^{\prime}-$?

$$
y^{\prime}(x)=\left(\ln ^{2} x\right)^{\prime}=2 \ln x \cdot(\ln x)^{\prime}=2 \ln x \cdot \frac{1}{x}=\frac{2 \ln x}{x}(x>0)
$$

Example 12. $y=\cos (3 x+2), y^{\prime}-$?

$$
y^{\prime}(x)=[\cos (3 x+2)]^{\prime}=-\sin (3 x+2) \cdot(3 x+2)^{\prime}=-3 \sin (3 x+2)
$$

Example 13. $y=\sin ^{3} x, y^{\prime}-$?

$$
y^{\prime}(x)=\left(\sin ^{3} x\right)^{\prime}=3 \sin ^{2} x \cdot(\sin x)^{\prime}=3 \sin ^{2} x \cos x
$$

Example 14. $y=3^{\cos x}, y^{\prime}$?

$$
y^{\prime}(x)=\left(3^{\cos x}\right)^{\prime}=3^{\cos x} \cdot \ln 3 \cdot(\cos x)^{\prime}=-3^{\cos x} \ln 3 \sin x
$$

Example 15. $f(x)=\cos (\tan (3 x))$.

$$
[f(g(h(x)))]^{\prime}=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

1) $f^{\prime}(x)=-\sin (\tan (3 x)) \times \cdots$
2) $f^{\prime}(x)=-\sin (\tan (3 x)) \cdot \sec ^{2}(3 x) \times \cdots$
3) $f^{\prime}(x)=-\sin (\tan (3 x)) \cdot \sec ^{2}(3 x) \cdot 3$

Example 16. $f(x)=\left(1+\sin ^{9}(2 x+3)\right)^{2}$.

1) $f^{\prime}(x)=2\left(1+\sin ^{9}(2 x+3)\right) \times \cdots$
2) $f^{\prime}(x)=2\left(1+\sin ^{9}(2 x+3)\right) \cdot\left(0+9[\sin (2 x+3)]^{8}\right) \times \cdots$

$$
\begin{aligned}
& =2\left(1+\sin ^{9}(2 x+3)\right) \cdot 9[\sin (2 x+3)]^{8} \times \cdots \\
& =2\left(1+\sin ^{9}(2 x+3)\right) \cdot 9 \sin ^{8}(2 x+3) \times \cdots
\end{aligned}
$$

3) $f^{\prime}(x)=2\left(1+\sin ^{9}(2 x+3)\right) \cdot 9 \sin ^{8}(2 x+3) \cdot \cos (2 x+3) \times \cdots$
4) $f^{\prime}(x)=2\left(1+\sin ^{9}(2 x+3)\right) \cdot 9 \sin ^{8}(2 x+3) \cdot \cos (2 x+3) \cdot 2$

Implicit Differentiation

The function can be defined in implicit form, that is by the equation

$$
F(x, y)=0
$$

We do not need to convert an implicitly defined function into an explicit form to find the derivative $y^{\prime}(x)$. In this case we proceed as follows:

Differentiate both sides of the equation $F(x, y)=0$ with respect to x, assuming that y is a differentiable function of x and using the chain rule. The derivative of zero (in the right side) will also be equal to zero.

Example 17. $x^{2}+y^{2}-2 x-4 y=4, y^{\prime}(x)-$?
We take the derivative of each term treating y as a function of x

$$
\left(x^{2}\right)^{\prime}+\left(y^{2}\right)^{\prime}-(2 x)^{\prime}-(4 y)^{\prime}=4^{\prime}, \Rightarrow 2 x+2 y y^{\prime}-2-4 y^{\prime}=0 .
$$

Solve this equation for y^{\prime}

$$
\begin{gathered}
2 y y^{\prime}-4 y^{\prime}=2-2 x, \Rightarrow y y^{\prime}-2 y^{\prime}=1-x, \Rightarrow y^{\prime}(y-2)=1-x, \Rightarrow \\
y^{\prime}=\frac{1-x}{y-2} .
\end{gathered}
$$

Example 18. Let the function $y=y(x)$ be given by equation $x y+e^{x}+\sin y=0$. In this case passing to explicit form of function is impossible. Then

$$
y+x y^{\prime}+e^{x}+\cos y \cdot y^{\prime}=0,
$$

whence

$$
y^{\prime}=-\frac{y+e^{x}}{x+\cos y} .
$$

Example 19. $x^{3}+\tan y=2$.
To find the derivative let us differentiate this equation as identity, regarding y as a function of x, i.e. $y=y(x)$. Then we obtain

$$
3 x^{2}+\frac{1}{\cos ^{2} y} y^{\prime}=0
$$

whence

$$
y^{\prime}=-3 x^{2} \cos ^{2} y .
$$

Obviously we can easy pass from implicit representation of the function to explicit form in this case. Indeed, we obtain that

$$
\tan y=2-x^{3}
$$

whence

$$
y=\arctan \left(2-x^{3}\right)+n \pi, n=0, \pm 1, \pm 2, \ldots
$$

then

$$
y^{\prime}=\frac{1}{1+\left(2-x^{3}\right)^{2}}\left(-3 x^{2}\right)=-\frac{3 x^{2}}{1+\left(2-x^{3}\right)^{2}},
$$

which coincides with previous result, because $\tan y=2-x^{3}$ and consequently

$$
\frac{1}{1+\left(2-x^{3}\right)^{2}}=\frac{1}{1+\tan ^{2} y}=\cos ^{2} y
$$

Example 20. Calculate the derivative at the point $(0,0)$ of the function given by the equation $x=y-2 \sin y$.
We differentiate both sides of the equation with respect to x and solve for y^{\prime} :

$$
x^{\prime}=y^{\prime}-(2 \sin y)^{\prime}, \Rightarrow 1=y^{\prime}-2 \cos y \cdot y^{\prime}, \Rightarrow y^{\prime}=\frac{1}{1-2 \cos y} .
$$

Substitute the coordinates $(0,0)$:

$$
y^{\prime}(0,0)=\frac{1}{1-2 \cos 0}=\frac{1}{1-2 \cdot 1}=-1 .
$$

Example 21. Find the equation of the tangent line to the curve $x^{4}+y^{4}=2$ at the point $(1,1)$

Differentiate both sides of the equation with respect to x :

$$
\frac{d}{d x}\left(x^{4}+y^{4}\right)=\frac{d}{d x}(2), \Rightarrow 4 x^{3}+4 y^{3} y^{\prime}=0, \Rightarrow x^{3}+y^{3} y^{\prime}=0
$$

Then

$$
y^{\prime}=-\frac{x^{3}}{y^{3}}
$$

At the point $(1,1)$ we have $y^{\prime}(1,1)=-1$
Hence, the equation of the tangent line is given by

$$
\frac{x-1}{y-1}=-1 \text { or } x+y=2
$$

Logarithmic Differentiation

This approach allows calculating derivatives of power, rational and some irrational functions in an efficient manner. The steps are the following:

1) Take natural logarithms of both sides: $\ln y=\ln f(x)$.
2) Next, we differentiate this expression as an implicit function, i.e. using the chain rule and keeping in mind that y is a function of x :

$$
(\ln y)^{\prime}=(\ln f(x))^{\prime}, \Rightarrow \frac{1}{y} y^{\prime}(x)=(\ln f(x))^{\prime}
$$

3) So, $y^{\prime}=y(\ln f(x))^{\prime}=f(x)(\ln f(x))^{\prime}$.

Example 22. Consider the function $y=(\sin x)^{\cos x}$. Then

$$
\ln y=\cos x \cdot \ln \sin x
$$

consequently

$$
\frac{1}{y} \cdot y^{\prime}=-\sin x \cdot \ln \sin x+\cos x \cdot \frac{1}{\sin x} \cdot \cos x
$$

whence
$y^{\prime}=\left(-\sin x \cdot \ln \sin x+\frac{\cos ^{2} x}{\sin x}\right) y=(\operatorname{ctg} x \cdot \cos x-\sin x \cdot \ln \sin x) \cdot(\sin x)^{\cos x}$

Example 23. Find derivative of the function $y=x^{x}$. Applying formula (4.25) we can obtain at once

$$
y^{\prime}=x^{x} \cdot \ln x+x \cdot x^{x-1}=x^{x}(\ln x+1) .
$$

We can also apply the method of logarithmic differentiation. Then,

$$
\begin{gathered}
\ln y=x \ln x \quad \Rightarrow \quad \frac{1}{y} y^{\prime}=\ln x+1 \\
y^{\prime}=x^{x} \cdot(\ln x+1)
\end{gathered}
$$

Example 24. Find the derivative of the function

$$
y=\frac{\sqrt[3]{1+x^{2}} \cdot 2^{\sin x}(\tan x-1)^{5}}{x^{3} \ln ^{2} x}
$$

Direct differentiation of this function is possible, but it is connected with difficulties, because of a large number of the multipliers. Therefore, it is easier, first, to take the logarithm of a given function, and then differentiate it. Indeed

$$
\ln y=\frac{1}{3} \ln \left(1+x^{2}\right)+\sin x \cdot \ln 2+5 \ln (\tan x-1)-3 \ln x-2 \ln (\ln x)
$$

Then

$$
\frac{1}{y} y^{\prime}=\frac{1}{3} \frac{2 x}{1+x^{2}}+\cos x \cdot \ln 2+\frac{5}{\tan x-1} \cdot \frac{1}{\cos ^{2} x}-\frac{3}{x}-\frac{2}{\ln x} \cdot \frac{1}{x},
$$

whence

$$
y^{\prime}=\left(\frac{2 x}{3\left(1+x^{2}\right)}+\cos x \cdot \ln 2+\frac{5}{(\tan x-1) \cos ^{2} x}-\frac{3}{x}-\frac{2}{x \ln x}\right) y,
$$

i. e.

$$
\begin{aligned}
y^{\prime}=\left(\frac{2 x}{3\left(1+x^{2}\right)}\right. & \left.+\cos x \cdot \ln 2+\frac{5}{(\tan x-1) \cos ^{2} x}-\frac{3}{x}-\frac{2}{x \ln x}\right) * \\
& * \frac{\sqrt[3]{1+x^{2}} \cdot 2^{\sin x}(\tan x-1)^{5}}{x^{3} \ln ^{2} x} .
\end{aligned}
$$

The relationship between the variables x and y as a function $y(x)$ can be defined in parametric form using two equations:

$$
\begin{cases}x & =x(t) \\ y & =y(t)\end{cases}
$$

Then its derivative is given by

$$
y_{x}^{\prime}=y_{t}^{\prime} \cdot t_{x}^{\prime}=y_{t}^{\prime} \cdot \frac{1}{x_{t}^{\prime}}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}
$$

Example 25. Find $y_{x}^{\prime}-$? if $x=e^{2 t}, y=e^{3 t}$
Hence, the derivative is given by

$$
\frac{d y}{d x}=y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{3 e^{3 t}}{2 e^{2 t}}=\frac{3}{2} e^{3 t-2 t}=\frac{3}{2} e^{t}
$$

Example 26. Find $y_{x}^{\prime}-$? if $x=\sin ^{2} t, y=\cos ^{2} t$.
Differentiate with respect to the parameter t

$$
\begin{gathered}
x_{t}^{\prime}=\left(\sin ^{2} t\right)^{\prime}=2 \sin t \cdot \cos t=\sin 2 t \\
y_{t}^{\prime}=\left(\cos ^{2} t\right)^{\prime}=2 \cos t \cdot(-\sin t)=-2 \sin t \cos t=-\sin 2 t
\end{gathered}
$$

Then

$$
\frac{d y}{d x}=y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{-\sin 2 t}{\sin 2 t}=-1 \text {, where } t \neq \frac{\pi n}{2}, n \in \mathbb{Z}
$$

Example 27. Find the derivative $y_{x}^{\prime}-$? for the function $x=\sin 2 t, y=-\cos t$ at the point $t=\frac{\pi}{6}$.
Compute the derivatives with respect to t

$$
x_{t}^{\prime}=(\sin 2 t)^{\prime}=2 \cos 2 t, y_{t}^{\prime}=(-\cos t)^{\prime}=\sin t
$$

So,

$$
\frac{d y}{d x}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{2 \cos 2 t}{\sin t}
$$

Compute the derivative at $t=\frac{\pi}{6}$:

$$
\frac{d y}{d x}\left(t=\frac{\pi}{6}\right)=\frac{2 \cos \left(2 \cdot \frac{\pi}{6}\right)}{\sin \frac{\pi}{6}}=\frac{2 \cos \frac{\pi}{3}}{\sin \frac{\pi}{6}}=\frac{2 \cdot \frac{1}{2}}{\frac{1}{2}}=2 .
$$

