
Lecture #21: The DIFFERENTIAL  

 

 21.1 The Definition of the Deferential 

 We have built up most of the tools that we need to express derivatives. 

In this section we revise a basic idea of the derivative. 

 Recall that the derivative of a function 𝑓(𝑥) can be used to find the 

slopes of lines tangent to the graph of 𝑓(𝑥) at a point 𝑥 = 𝑎. That is at 𝑥 =

𝑎 , the tangent line to the graph of  𝑓(𝑥)  is stated by the equation: 

𝑙(𝑥)  =  𝑓′(𝑎)(𝑥 − 𝑎) + 𝑓(𝑎) 

 In doing so, the tangent line can be used to find good approximations 

of  𝑓(𝑥)  for values of  𝑥  near 𝑎. 

 For instance, we can approximate sin(1.1) using the tangent line to the 

graph of 𝑓(𝑥) = sin 𝑥 at 𝑥 =
𝜋

3
≈ 1.05. It is known that sin (

𝜋

3
) =

√3

2
≈

0.866, and 𝑓′(𝑥) = cos 𝑥, then 𝑓′(
𝜋

3
) = 𝑐𝑜𝑠 (

𝜋

3
) =

1

2
 . Thus the tangent line 

to 𝑓(𝑥) = sin 𝑥 at  𝑥 =
𝜋

3
  is:  

𝑙(𝑥) = 𝑓′ (
𝜋

3
) (𝑥 −

𝜋

3
) +  𝑓 (

𝜋

3
) ⇒ 𝑙(𝑥) =  

1

2
 (𝑥 −  

𝜋

3
) +  0.866 

  
(a) (b) 

In Figure (a), we can see the plot of 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 graphed along with its 

tangent line at  𝑥 =
𝜋

3
≈ 1.05. The small rectangle shows the region that is 

zoomed in Figure (b). In this figure, we see how we are approximating 

sin(1.1) with the tangent line 𝑙(𝑥), evaluated at 𝑥 =  1.1. Indeed, the two 

lines together show how close these values are. That is, using this tangent 

line to approximate sin(1.1) , we have: 



ℓ(1.1)  =
1

2
(1.1 − 𝜋/3) + 0.866 =

1

2
(0.053) + 0.866 = 0.8925 

We leave it for later to see how good of an approximation this is.  

 The linear approximation, or tangent line approximation is called the 

linearization of 𝑓(𝑥) at 𝑥 = 𝑎 

 

 Now we generalize this concept:  

Consider a function 𝑓(𝑥). At some point 𝑥 = 𝑎, the tangent line is ℓ(𝑥) =

𝑓′(𝑎)(𝑥 − 𝑎) + 𝑓(𝑎). Clearly, we can match 𝑓(𝑎) = ℓ(𝑎).  

Let 𝛥𝑥 be a small number, representing a small change in 𝑥-value (an 

increment of 𝑥). We can assert that 

𝑓(𝑎 + ∆ 𝑥)  ≈  𝑙(𝑎 + ∆𝑥) 

since the tangent line to a function approximates the values of that function 

near 𝑥 = 𝑎.  

As the 𝑥-value changes from 𝑎  to 𝑎 + 𝛥𝑥 , the 𝑦-value of  𝑓(𝑥) changes 

from 𝑓(𝑎) to 𝑓(𝑎 + 𝛥𝑥). We call this change of 𝑦-value as the increment 

of 𝛥𝑦. That is: 

∆𝑦 =  𝑓(𝑎 + ∆ 𝑥) − 𝑓(𝑎) 

Replacing 𝑓(𝑎 + 𝛥𝑥)  with its tangent line approximation, we have  

Δ𝑦 ≈ ℓ(𝑎 + Δ𝑥) − 𝑓(𝑎) 

= 𝑓′(𝑎)((𝑎 + Δ𝑥) − 𝑎) + 𝑓(𝑎) − 𝑓(𝑎)  = 𝑓′(𝑎)Δ𝑥 

So, 

Δ𝑦 ≈ 𝑓′(𝑎)Δ𝑥 

 

Definition: Let 𝑦 = 𝑓(𝑥) be differentiable. The differential of 𝑦(𝑥), 

denoted by the symbol 𝑑𝑦 , is 

𝑑𝑦 = 𝑑𝑓(𝑥) = 𝑓′(𝑥)Δ𝑥 

Moreover, if we consider the function 𝑦 =  𝑥, then its differential is 𝑑𝑦 =

𝑑𝑥 = 1 ∙  Δ𝑥, i.e. 𝑑𝑥 = Δ𝑥 the differential and the increment of 𝑥 are the 

same values. 

Hence, 

𝑑𝑦 = 𝑑𝑓(𝑥) = 𝑓′(𝑥)𝑑𝑥 

If follows from the formula: 



𝑓′(𝑥) =
𝑑𝑦

𝑑𝑥
 

Note: This is not the alternate notation for the derivative due to Leibniz, but 

again, it is one symbol and not a fraction. 

 

Therefore, it is useful to understand that 

Δ𝑦 ≈ 𝑑𝑦 

Thereby, we use differentials to approximate the value of a function. This 

technique can sometimes be used to easily compute something that looks 

rather hard. Indeed, 

𝑓(𝑥 + ∆ 𝑥) − 𝑓(𝑥) ≈ 𝑓′(𝑥)Δ𝑥 ⇒ 𝑓(𝑥 + ∆ 𝑥) ≈ 𝑓′(𝑥)Δ𝑥 + 𝑓(𝑥) 

 

Example. Use the linear approximation of  𝑓(𝑥) = √𝑥 at 𝑥 = 9 to estimate 

√9.1 

Since we are looking for the linear approximation at  𝑥 = 9,  using Equation 

we know the linear approximation is given by 

𝐿(𝑥) = 𝑓(9) + 𝑓′(9)(𝑥 − 9) 

We need to find 𝑓(9) and 𝑓′(9) 

𝑓(𝑥) = √𝑥 ⇒ 𝑓(9) = √9 = 3 

𝑓′(𝑥) =
1

2√𝑥
⇒ 𝑓′(9) =

1

2√9
=

1

6
 

Therefore, the linear approximation is given by 

𝐿(𝑥) = 3 +
1

6
(𝑥 − 9) 

Using the linear approximation, we can estimate √9.1 by writing 

√9.1 = 𝑓(9.1) ≈ 𝐿(9.1) = 3 +
1

6
(9.1 − 9) ≈ 3.0167. 

 

Any type of measurement is prone to a certain amount of error. Here we 

examine this type of error and study how differentials can be used to 

estimate the error. 

Consider a function  𝑦 =  𝑓(𝑥), which is continuous in the interval [𝑎, 𝑏], 

with an input that is a measured quantity. Suppose that at some point 𝑥0 ∈

 [𝑎, 𝑏] the independent variable is incremented by 𝛥𝑥. The increment of the 



function 𝛥𝑦 corresponding to the change of the independent variable 𝛥𝑥 is 

given by 

Δ𝑦 = Δ𝑓(𝑥0) = 𝑓(𝑥0 + Δ𝑥) − 𝑓(𝑥0) 

For any differentiable function, the increment 𝛥𝑦 can be represented as a 

sum of two terms: 

Δ𝑦 = 𝐴Δ𝑥 + 𝜊(Δ𝑥) = 𝑓′(𝑥0)Δ𝑥 + 𝜊(Δ𝑥) 

where the first term (called the principal part of the increment) is linearly 

dependent on the increment Δ𝑥. The expression 𝐴Δ𝑥 is called the 

differential of function and is denoted by 𝑑𝑦. The coefficient 𝐴 in the 

principal part of the increment of a function Δ𝑦 at a point 𝑥0 is equal to the 

value of the derivative 𝑓′(𝑥0) at this point. The second term has a higher 

order of smallness with respect to Δ𝑥. The latter is an error of the differential 

use to approximate the function increment.  

 Consider the idea of partition of the increment of the function Δ𝑦 into 

two parts in the following simple example. Given a square with side 𝑥0 =

1m 

 
Its area is obviously equal to 

𝑆0 = 𝑥0
2 = 1m2. 

If the side of the square is increased by Δ𝑥 = 1cm, the exact value of the 

area of the square will be equal to 

𝑆 = 𝑥2 = (𝑥0 + Δ𝑥)2 = 1, 012 = 1,0201m2, 

that is the increment of the area Δ𝑆 is 

Δ𝑆 = 𝑆 − 𝑆0 = 1,0201 − 1 = 0,0201m2 = 201cm2. 

We now represent this increment Δ𝑆 as follows: 

Δ𝑆 = 𝑆 − 𝑆0 = (𝑥0 + Δ𝑥)2 − 𝑥0
2 = 𝑥0

2 + 2𝑥0Δ𝑥 + (Δ𝑥)2 − 𝑥0
2

= 2𝑥0Δ𝑥 + (Δ𝑥)2 = 𝐴Δ𝑥 + 𝜊(Δ𝑥) = 𝑑𝑦 + 𝑜(Δ𝑥). 

Thus, the increment Δ𝑆 consists of the principal part (the differential of the 

function), which is proportional to Δ𝑥 and is equal to 



𝑑𝑦 = 𝐴Δ𝑥 = 2𝑥0Δ𝑥 = 2 ⋅ 1 ⋅ 0,01 = 0,02m2 = 200cm2, 

and the term of a higher order of smallness (the error), which in turn is equal 

to 

𝜊(Δ𝑥) = (Δ𝑥)2 = 0, 012 = 0,0001m2 = 1cm2. 

In sum, both these terms comprise the full increment of the square area equal 

to 200 + 1 = 201cm2. 

 

Geometric Meaning of the Differential of a Function 

 

Figure schematically shows splitting of the increment Δ𝑦 into the principal 

part 𝑑𝑦 (the differential of function) and the term of a higher order of 

smallness 𝜊(Δ𝑥) 

 
The tangent 𝑀𝑁 drawn to the curve of the function 𝑦 = 𝑓(𝑥) at the point 𝑀 

as it is known, has the slope angle 𝛼, the tangent of which is equal to the 

derivative: 

tan 𝛼 = 𝑓′(𝑥0). 

When the independent variable changes by Δ𝑥, the tangent line increments 

by 𝑑𝑦 = 𝐴∆𝑥. This linear increment formed by the tangent is just the 

differential of the function. The remaining part of the full increment Δ𝑦 =

𝑀𝑃 (the segment 𝑀1𝑁) corresponds to the "nonlinear" additive of a higher 

order of smallness with respect to ∆𝑥.  

 

Properties of the Differential 

The differential has the following properties: 



1. A constant can be taken out of the differential sign: 

𝑑(𝐶𝑢) = 𝐶𝑑𝑢, 

where C is a constant number. 

2. The differential of the sum (difference) of two functions is equal to 

the sum (difference) of their differentials: 

𝑑(𝑢 ± 𝑣) = 𝑑𝑢 ± 𝑑𝑣, 

 where 𝑢 and 𝑣 be functions of the variable 𝑥. 

3. The differential of a constant is zero: 

𝑑(𝐶) = 0. 

4. Differential of the product of two functions: 

𝑑(𝑢𝑣) = 𝑑𝑢 ⋅ 𝑣 + 𝑢 ⋅ 𝑑𝑣. 

5. Differential of the quotient of two functions: 

𝑑 (
𝑢

𝑣
) =

𝑑𝑢 ⋅ 𝑣 − 𝑢 ⋅ 𝑑𝑣

𝑣2
. 

 

Form Invariance of the Differential 

 

Consider a composition of two functions 𝑦 = 𝑓(𝑢) and 𝑢 = 𝑔(𝑥). Its 

derivative can be found by the chain rule: 

𝑦𝑥
′ = 𝑦𝑢

′ ⋅ 𝑢𝑥
′ , 

where the subindex denotes the variable of differentiation. 

 

The differential of the "outer" function 𝑦 = 𝑓(𝑢) can be written as 

𝑑𝑦 = 𝑦𝑢
′ 𝑑𝑢. 

The differential of the "inner" function 𝑢 = 𝑔(𝑥) can be represented in a 

similar manner: 

𝑑𝑢 = 𝑢𝑥
′ 𝑑𝑥. 

If we substitute 𝑑𝑢 in the last formula, we obtain  

𝑑𝑦 = 𝑦𝑢
′ 𝑑𝑢 = 𝑦𝑢

′ 𝑢𝑥
′ 𝑑𝑥. 

Since 𝑦𝑥
′ = 𝑦𝑢

′ ⋅ 𝑢𝑥
′ , then 

𝑑𝑦 = 𝑦𝑥
′ 𝑑𝑥. 

It can be seen that in the case of a composite function, we get an expression 

for the differential in the same form as for a "simple" function. This property 

is called the form invariance of the differential. 



Example 1: Find the differential of the function 𝑦 = sin 𝑥 − 𝑥cos 𝑥. 

Determine the derivative of the given function: 

𝑦′ = (sin 𝑥 − 𝑥cos 𝑥)′ = cos 𝑥 − (𝑥′cos 𝑥 + 𝑥(cos 𝑥)′)

= cos 𝑥 − (cos 𝑥 + 𝑥(−sin 𝑥)) = cos 𝑥 − cos 𝑥 + 𝑥sin 𝑥

= 𝑥sin 𝑥. 

The differential has the following form: 

𝑑𝑦 = 𝑦′𝑑𝑥 = 𝑥sin 𝑥𝑑𝑥. 

 

Example 2: Find the differential of the function 𝑦 = 2𝑥2 + 3𝑥 + 1 at the 

point 𝑥 = 1 when 𝑑𝑥 = 0,1. 

𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥 = (2𝑥2 + 3𝑥 + 1)′𝑑𝑥 = (4𝑥 + 3)𝑑𝑥. 

Substituting the given values, we calculate the differential: 

𝑑𝑦 = (4 ⋅ 1 + 3) ⋅ 0,1 = 0,7 

 

Example 3: Use differential to approximate the change in 𝑦 = 𝑥3 + 𝑥2 as 𝑥 

changes from 1 to 0.95. 

The differential 𝑑𝑦 is defined by the formula 

𝑑𝑦 = 𝑦′𝑑𝑥 = 𝑦′(1)𝑑𝑥. 

Take the derivative 

𝑦′ = (𝑥3 + 𝑥2)′ = 3𝑥2 + 2𝑥, 

So, 

𝑦′(1) = 3 ⋅ 12 + 2 ⋅ 1 = 5. 

Calculate the differential 𝑑𝑥: 

𝑑𝑥 = ∆𝑥 = 0,95 − 1 = −0,05. 

Hence, 

𝑑𝑦 = 𝑦′(1)𝑑𝑥 = 5 ⋅ (−0,05) = −0,25. 

The approximate value of the function at 𝑥 = 0,95 is  

𝑦(0,95) ≈ 𝑦(1) + 𝑑𝑦 = (13 + 12) − 0,25 = 1,75. 

 


