Lecture \#21: The DIFFERENTIAL

21.1 The Definition of the Deferential

We have built up most of the tools that we need to express derivatives. In this section we revise a basic idea of the derivative.

Recall that the derivative of a function $f(x)$ can be used to find the slopes of lines tangent to the graph of $f(x)$ at a point $x=a$. That is at $x=$ a, the tangent line to the graph of $f(x)$ is stated by the equation:

$$
l(x)=f^{\prime}(a)(x-a)+f(a)
$$

In doing so, the tangent line can be used to find good approximations of $f(x)$ for values of x near a.

For instance, we can approximate $\sin (1.1)$ using the tangent line to the graph of $f(x)=\sin x$ at $x=\frac{\pi}{3} \approx 1.05$. It is known that $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \approx$ 0.866, and $f^{\prime}(x)=\cos x$, then $f^{\prime}\left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$. Thus the tangent line to $f(x)=\sin x$ at $x=\frac{\pi}{3}$ is:

$$
l(x)=f^{\prime}\left(\frac{\pi}{3}\right)\left(x-\frac{\pi}{3}\right)+f\left(\frac{\pi}{3}\right) \Rightarrow l(x)=\frac{1}{2}\left(x-\frac{\pi}{3}\right)+0.866
$$

(a)
(b)

In Figure (a), we can see the plot of $f(x)=\sin x$ graphed along with its tangent line at $x=\frac{\pi}{3} \approx 1.05$. The small rectangle shows the region that is zoomed in Figure (b). In this figure, we see how we are approximating $\sin (1.1)$ with the tangent line $l(x)$, evaluated at $x=1.1$. Indeed, the two lines together show how close these values are. That is, using this tangent line to approximate $\sin (1.1)$, we have:
$\ell(1.1)=\frac{1}{2}(1.1-\pi / 3)+0.866=\frac{1}{2}(0.053)+0.866=0.8925$
We leave it for later to see how good of an approximation this is.
The linear approximation, or tangent line approximation is called the linearization of $f(x)$ at $x=a$

Now we generalize this concept:
Consider a function $f(x)$. At some point $x=a$, the tangent line is $\ell(x)=$ $f^{\prime}(a)(x-a)+f(a)$. Clearly, we can match $f(a)=\ell(a)$.
Let Δx be a small number, representing a small change in x-value (an increment of x). We can assert that

$$
f(a+\Delta x) \approx l(a+\Delta x)
$$

since the tangent line to a function approximates the values of that function near $x=a$.
As the x-value changes from a to $a+\Delta x$, the y-value of $f(x)$ changes from $f(a)$ to $f(a+\Delta x)$. We call this change of y-value as the increment of Δy. That is:

$$
\Delta y=f(a+\Delta x)-f(a)
$$

Replacing $f(a+\Delta x)$ with its tangent line approximation, we have

$$
\begin{gathered}
\Delta y \approx \ell(a+\Delta x)-f(a) \\
=f^{\prime}(a)((a+\Delta x)-a)+f(a)-f(a)=f^{\prime}(a) \Delta x
\end{gathered}
$$

So,

$$
\Delta y \approx f^{\prime}(a) \Delta x
$$

Definition: Let $y=f(x)$ be differentiable. The differential of $y(x)$, denoted by the symbol $d y$, is

$$
d y=d f(x)=f^{\prime}(x) \Delta x
$$

Moreover, if we consider the function $y=x$, then its differential is $d y=$ $d x=1 \cdot \Delta x$, i.e. $d x=\Delta x$ the differential and the increment of x are the same values.
Hence,

$$
d y=d f(x)=f^{\prime}(x) d x
$$

If follows from the formula:

$$
f^{\prime}(x)=\frac{d y}{d x}
$$

Note: This is not the alternate notation for the derivative due to Leibniz, but again, it is one symbol and not a fraction.

Therefore, it is useful to understand that

$$
\Delta y \approx d y
$$

Thereby, we use differentials to approximate the value of a function. This technique can sometimes be used to easily compute something that looks rather hard. Indeed,

$$
f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x \Rightarrow f(x+\Delta x) \approx f^{\prime}(x) \Delta x+f(x)
$$

Example. Use the linear approximation of $f(x)=\sqrt{x}$ at $x=9$ to estimate $\sqrt{9.1}$
Since we are looking for the linear approximation at $x=9$, using Equation we know the linear approximation is given by

$$
L(x)=f(9)+f^{\prime}(9)(x-9)
$$

We need to find $f(9)$ and $f^{\prime}(9)$

$$
\begin{gathered}
f(x)=\sqrt{x} \Rightarrow f(9)=\sqrt{9}=3 \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \Rightarrow f^{\prime}(9)=\frac{1}{2 \sqrt{9}}=\frac{1}{6}
\end{gathered}
$$

Therefore, the linear approximation is given by

$$
L(x)=3+\frac{1}{6}(x-9)
$$

Using the linear approximation, we can estimate $\sqrt{9.1}$ by writing

$$
\sqrt{9.1}=f(9.1) \approx L(9.1)=3+\frac{1}{6}(9.1-9) \approx 3.0167
$$

Any type of measurement is prone to a certain amount of error. Here we examine this type of error and study how differentials can be used to estimate the error.
Consider a function $y=f(x)$, which is continuous in the interval $[a, b]$, with an input that is a measured quantity. Suppose that at some point $x_{0} \in$ $[a, b]$ the independent variable is incremented by Δx. The increment of the
function Δy corresponding to the change of the independent variable Δx is given by

$$
\Delta y=\Delta f\left(x_{0}\right)=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)
$$

For any differentiable function, the increment Δy can be represented as a sum of two terms:

$$
\Delta y=A \Delta x+o(\Delta x)=f^{\prime}\left(x_{0}\right) \Delta x+o(\Delta x)
$$

where the first term (called the principal part of the increment) is linearly dependent on the increment Δx. The expression $A \Delta x$ is called the differential of function and is denoted by $d y$. The coefficient A in the principal part of the increment of a function Δy at a point x_{0} is equal to the value of the derivative $f^{\prime}\left(x_{0}\right)$ at this point. The second term has a higher order of smallness with respect to Δx. The latter is an error of the differential use to approximate the function increment.

Consider the idea of partition of the increment of the function Δy into two parts in the following simple example. Given a square with side $x_{0}=$ 1 m

Its area is obviously equal to

$$
S_{0}=x_{0}^{2}=1 \mathrm{~m}^{2} .
$$

If the side of the square is increased by $\Delta x=1 \mathrm{~cm}$, the exact value of the area of the square will be equal to

$$
S=x^{2}=\left(x_{0}+\Delta x\right)^{2}=1,01^{2}=1,0201 \mathrm{~m}^{2}
$$

that is the increment of the area ΔS is

$$
\Delta S=S-S_{0}=1,0201-1=0,0201 \mathrm{~m}^{2}=201 \mathrm{~cm}^{2}
$$

We now represent this increment ΔS as follows:

$$
\begin{aligned}
\Delta S=S-S_{0} & =\left(x_{0}+\Delta x\right)^{2}-x_{0}^{2}=x_{0}^{2}+2 x_{0} \Delta x+(\Delta x)^{2}-x_{0}^{2} \\
& =2 x_{0} \Delta x+(\Delta x)^{2}=A \Delta x+o(\Delta x)=d y+o(\Delta x)
\end{aligned}
$$

Thus, the increment ΔS consists of the principal part (the differential of the function), which is proportional to Δx and is equal to

$$
d y=A \Delta x=2 x_{0} \Delta x=2 \cdot 1 \cdot 0,01=0,02 \mathrm{~m}^{2}=200 \mathrm{~cm}^{2}
$$

and the term of a higher order of smallness (the error), which in turn is equal to

$$
o(\Delta x)=(\Delta x)^{2}=0,01^{2}=0,0001 \mathrm{~m}^{2}=1 \mathrm{~cm}^{2}
$$

In sum, both these terms comprise the full increment of the square area equal to $200+1=201 \mathrm{~cm}^{2}$.

Geometric Meaning of the Differential of a Function

Figure schematically shows splitting of the increment Δy into the principal part $d y$ (the differential of function) and the term of a higher order of smallness $o(\Delta x)$

The tangent $M N$ drawn to the curve of the function $y=f(x)$ at the point M as it is known, has the slope angle α, the tangent of which is equal to the derivative:

$$
\tan \alpha=f^{\prime}\left(x_{0}\right)
$$

When the independent variable changes by Δx, the tangent line increments by $d y=A \Delta x$. This linear increment formed by the tangent is just the differential of the function. The remaining part of the full increment $\Delta y=$ $M P$ (the segment $M_{1} N$) corresponds to the "nonlinear" additive of a higher order of smallness with respect to Δx.

Properties of the Differential

The differential has the following properties:

1. A constant can be taken out of the differential sign:

$$
d(C u)=C d u,
$$

where C is a constant number.
2. The differential of the sum (difference) of two functions is equal to the sum (difference) of their differentials:

$$
d(u \pm v)=d u \pm d v
$$

where u and v be functions of the variable x.
3. The differential of a constant is zero:

$$
d(C)=0
$$

4. Differential of the product of two functions:

$$
d(u v)=d u \cdot v+u \cdot d v
$$

5. Differential of the quotient of two functions:

$$
d\left(\frac{u}{v}\right)=\frac{d u \cdot v-u \cdot d v}{v^{2}}
$$

Form Invariance of the Differential

Consider a composition of two functions $y=f(u)$ and $u=g(x)$. Its derivative can be found by the chain rule:

$$
y_{x}^{\prime}=y_{u}^{\prime} \cdot u_{x}^{\prime}
$$

where the subindex denotes the variable of differentiation.

The differential of the "outer" function $y=f(u)$ can be written as

$$
d y=y_{u}^{\prime} d u
$$

The differential of the "inner" function $u=g(x)$ can be represented in a similar manner:

$$
d u=u_{x}^{\prime} d x
$$

If we substitute $d u$ in the last formula, we obtain

$$
d y=y_{u}^{\prime} d u=y_{u}^{\prime} u_{x}^{\prime} d x
$$

Since $y_{x}^{\prime}=y_{u}^{\prime} \cdot u_{x}^{\prime}$, then

$$
d y=y_{x}^{\prime} d x
$$

It can be seen that in the case of a composite function, we get an expression for the differential in the same form as for a "simple" function. This property is called the form invariance of the differential.

Example 1: Find the differential of the function $y=\sin x-x \cos x$.
Determine the derivative of the given function:

$$
\begin{aligned}
y^{\prime}=(\sin x & -x \cos x)^{\prime}=\cos x-\left(x^{\prime} \cos x+x(\cos x)^{\prime}\right) \\
& =\cos x-(\cos x+x(-\sin x))=\cos x-\cos x+x \sin x \\
& =x \sin x
\end{aligned}
$$

The differential has the following form:

$$
d y=y^{\prime} d x=x \sin x d x
$$

Example 2: Find the differential of the function $y=2 x^{2}+3 x+1$ at the point $x=1$ when $d x=0,1$.

$$
d y=f^{\prime}(x) d x=\left(2 x^{2}+3 x+1\right)^{\prime} d x=(4 x+3) d x
$$

Substituting the given values, we calculate the differential:

$$
d y=(4 \cdot 1+3) \cdot 0,1=0,7
$$

Example 3: Use differential to approximate the change in $y=x^{3}+x^{2}$ as x changes from 1 to 0.95 .
The differential $d y$ is defined by the formula

$$
d y=y^{\prime} d x=y^{\prime}(1) d x
$$

Take the derivative

$$
y^{\prime}=\left(x^{3}+x^{2}\right)^{\prime}=3 x^{2}+2 x
$$

So,

$$
y^{\prime}(1)=3 \cdot 1^{2}+2 \cdot 1=5 .
$$

Calculate the differential $d x$:

$$
d x=\Delta x=0,95-1=-0,05
$$

Hence,

$$
d y=y^{\prime}(1) d x=5 \cdot(-0,05)=-0,25
$$

The approximate value of the function at $x=0,95$ is

$$
y(0,95) \approx y(1)+d y=\left(1^{3}+1^{2}\right)-0,25=1,75
$$

