Lecture \#22: Higher-Order Derivatives

22.1 Higher-Order Derivatives of an Explicit Function

Let the function $y=f(x)$ have a finite derivative $f^{\prime}(x)$ in a certain interval (a, b), i.e. the derivative $f^{\prime}(x)$ is also a function in this interval. If this function is differentiable, we can find the second derivative of the original function $y=f(x)$, which is denoted by various notations as

$$
f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}=\left(\frac{d y}{d x}\right)^{\prime}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
$$

So, the second derivative (or the second order derivative) of the function $f(x)$ may be denoted as

$$
\begin{array}{cccl}
\frac{d^{2} f}{d x^{2}} & \text { or } & \frac{d^{2} y}{d x^{2}} & \text { (Leibniz's notation) } \\
f^{\prime \prime}(x) & \text { or } & y^{\prime \prime}(x) & \text { (Lagrange's notation) }
\end{array}
$$

For example, if $y=x^{5}$, then

$$
y^{\prime}=5 x^{4}, y^{\prime \prime}=\left(5 x^{4}\right)^{\prime}=20 x^{3}
$$

Similarly, if $f^{\prime \prime}$ exists and is differentiable, we can calculate the third derivative of the function $f(x)$:

$$
f^{\prime \prime \prime}=\frac{d^{3} y}{d x^{3}}=y^{\prime \prime \prime}
$$

The result of taking the derivative n times is called the n-th derivative of $f(x)$ with respect to x and is denoted as

$$
\begin{gathered}
\frac{d^{n} f}{d x^{n}}=\frac{d^{n} y}{d x^{n}} \quad \text { (in Leibnitz's notation), } \\
f^{(n)}(x)=y^{(n)}(x) \quad \text { (in Lagrange's notation). }
\end{gathered}
$$

Thus, the notion of the n-th order derivative is introduced inductively by sequential calculation of n derivatives starting from the first order
derivative. Transition to the next higher-order derivative is performed using the recurrence formula

$$
y^{(n)}=\left(y^{(n-1)}\right)^{\prime}
$$

Notice: The order of the derivative is taken in parentheses so as to avoid confusion with the exponent of a power.

Also, derivatives of the fourth, fifth and higher orders are also denoted by Roman numerals: $y^{I V}, y^{V}, y^{V I}, \ldots$. Herein, the order of the derivative may be written without brackets.

For instance, if $y=x^{5}$, then
$y^{\prime}=5 x^{4}$,
$y^{\prime \prime}=20 x^{3}$,
$y^{\prime \prime \prime}=60 x^{2}$,
$y^{I V}=y^{(4)}=120 x$,
$y^{V}=y^{(5)}=120$,
$y^{(6)}=y^{(7)}=\ldots=0$.

In some cases, we can derive a general formula for the derivative of an arbitrary nth order without computing intermediate derivatives. Some examples are considered below.

Basic functions:

1. Let's consider the a function $y=e^{k x}$ ($k=$ const $)$. The expression of its derivative of any order n is calculated as follows

$$
y^{\prime}=k e^{k x}, y^{\prime \prime}=k^{2} e^{k x}, \ldots, y^{(n)}=k^{n} e^{k x}
$$

So, the general formula for the derivative of an arbitrary nth order without computing intermediate derivatives is

$$
y^{(n)}=k^{n} e^{k x}
$$

2. Consider the function $y=\sin x$. Then

$$
\begin{gathered}
y^{\prime}=\cos x=\sin \left(x+\frac{\pi}{2}\right) \\
y^{\prime \prime}=-\sin x=\sin \left(x+2 \frac{\pi}{2}\right) \\
y^{\prime \prime \prime}=-\cos x=\sin \left(x+3 \frac{\pi}{2}\right) \\
y^{I V}=\sin x=\sin \left(x+4 \frac{\pi}{2}\right)
\end{gathered}
$$

$$
y^{(n)}=\sin \left(x+n \frac{\pi}{2}\right)
$$

In similar manner we can also get the formulas for the derivatives of any order of the other elementary functions.
3. $y=x^{k}$,

$$
\left(x^{k}\right)^{(n)}= \begin{cases}\frac{k!}{n!} x^{k-n}, & n \leq k \\ 0, & n>k\end{cases}
$$

4. $y=\cos x$,

$$
(\cos x)^{(n)}=\cos \left(x+n \frac{\pi}{2}\right)
$$

5. $y=\ln x$,

$$
(\ln x)^{(n)}=\frac{(-1)^{n-1}(n-1)!}{x^{n}}
$$

The derivatives of constant multiplication and sum
The following linear relationships can be used for finding higher-order derivatives:

$$
\begin{aligned}
& (u+v)^{(n)}=u^{(n)}+v^{(n)}, \\
& (C u)^{(n)}=C u^{(n)}, C=\mathrm{const}
\end{aligned}
$$

Leibniz Formula
The Leibniz formula expresses the derivative on nth order of the product of
two functions. Suppose that the functions $u(x)$ and $v(x)$ have the derivatives up to nth order. Consider the derivative of the product of these functions.

The first derivative is described by the well known formula:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} .
$$

Differentiating this expression again yields the second derivative:

$$
\begin{aligned}
&(u v)^{\prime \prime}=\left[(u v)^{\prime}\right]^{\prime}=\left(u^{\prime} v+u v^{\prime}\right)^{\prime}=\left(u^{\prime} v\right)^{\prime}+\left(u v^{\prime}\right)^{\prime} \\
&=u^{\prime \prime} v+u^{\prime} v^{\prime}+u^{\prime} v^{\prime}+u v^{\prime \prime}=u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}
\end{aligned}
$$

Likewise, we can find the third derivative of the product $u v$:

$$
\begin{aligned}
(u v)^{\prime \prime \prime}= & {\left[(u v)^{\prime \prime}\right]^{\prime}=\left(u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}\right)^{\prime} } \\
& =\left(u^{\prime \prime} v\right)^{\prime}+\left(2 u^{\prime} v^{\prime}\right)^{\prime}+\left(u v^{\prime \prime}\right)^{\prime} \\
& =u^{\prime \prime \prime} v+u^{\prime \prime} v^{\prime}+2 u^{\prime \prime} v^{\prime}+2 u^{\prime} v^{\prime \prime}+u^{\prime} v^{\prime \prime}+u v^{\prime \prime \prime} \\
& =u^{\prime \prime \prime} v+3 u^{\prime \prime} v^{\prime}+3 u^{\prime} v^{\prime \prime}+u v^{\prime \prime \prime} .
\end{aligned}
$$

It is easy to see that these formulas are similar to the binomial expansion raised to the appropriate exponent. Assuming that the terms with zero exponent u^{0} and v^{0} correspond to the functions u and v themselves, we can write the general formula for the derivative of th order of the product of functions $u v$ as follows:

$$
(u v)^{(n)}=\sum_{i=0}^{n} C_{i}^{n} u^{(n-i)} v^{(i)}
$$

where C_{i}^{n} denotes the number of i-combinations of n elements, $C_{i}^{n}=\frac{n!}{i!(n-i)!}$ This formula is called the Leibniz formula.

Example 1. Find the 4-th derivative of the function $y=e^{x} \sin x$. Let $u=\sin x, v=e^{x}$. Using the Leibniz formula, we can write

$$
\begin{gathered}
y^{(4)}=\left(e^{x} \sin x\right)^{(4)}=\sum_{i=0}^{4} C_{i}^{4} u^{(4-i)} v^{(i)}=\sum_{i=0}^{4} C_{i}^{4}(\sin x)^{(4-i)}\left(e^{x}\right)^{(i)} \\
=C_{0}^{4}(\sin x)^{(4)} e^{x}+C_{1}^{4}(\sin x)^{\prime \prime \prime}\left(e^{x}\right)^{\prime}+C_{2}^{4}(\sin x)^{\prime \prime}\left(e^{x}\right)^{\prime \prime} \\
+C_{3}^{4}(\sin x)^{\prime}\left(e^{x}\right)^{\prime \prime \prime}+C_{4}^{4}(\sin x)\left(e^{x}\right)^{(4)} \\
=1 \cdot \sin x \cdot e^{x}+\frac{4 \cdot(-\cos x) \cdot e^{x}+6 \cdot(-\sin x) \cdot e^{x}+4 \cdot \cos x \cdot e^{x}}{+1 \cdot \sin x \cdot e^{x}=-4 e^{x} \sin x .}
\end{gathered}
$$

Example 2. Find the 3-rd derivative of the function $y=x \sin x$. Let $u=x, v=\sin x$. By the Leibniz formula, we can write:

$$
y^{\prime \prime \prime}=\sum_{i=0}^{3} C_{i}^{3} u^{(3-i)} v^{(i)}=\sum_{i=0}^{3} C_{i}^{3}(\sin x)^{(3-i)} x^{(i)}
$$

It is clear that

$$
x^{\prime}=1, x^{\prime \prime}=x^{\prime \prime \prime} \equiv 0 .
$$

Then the series expansion has only two terms:

$$
y^{\prime \prime \prime}=C_{0}^{3}(\sin x)^{\prime \prime \prime} x+C_{1}^{3}(\sin x)^{\prime \prime} x^{\prime} .
$$

Calculating the derivatives, we obtain

$$
y^{\prime \prime \prime}=1 \cdot(-\cos x) \cdot x+3 \cdot(-\sin x) \cdot 1=-x \cos x-3 \sin x
$$

Example 3. Find the third derivative of the function: $y=e^{2 x} \ln x$.
Let $u=e^{2 x}, v=\ln x$. By the Leibniz formula, we can write:

$$
\begin{aligned}
& u^{\prime}=\left(e^{2 x}\right)^{\prime} \\
&\left.\begin{array}{rl}
v^{\prime}=(\ln x)^{\prime} & \left.=\frac{1}{x}, v^{2 x}, u^{\prime \prime}=\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}, v^{2 x}\right)^{\prime}=4 e^{2 x}, u^{\prime \prime \prime}=\left(4 e^{2 x}\right)^{\prime}=8 e^{2 x}, \\
x^{2}
\end{array}\right)^{\prime}=-\left(x^{-2}\right)^{\prime}=2 x^{-3} \\
&=\frac{2}{x^{3}} .
\end{aligned}
$$

The third-order derivative of the original function is given by the Leibniz rule:

$$
\begin{gathered}
y^{\prime \prime \prime}=\left(e^{2 x} \ln x\right)^{\prime \prime \prime}=\sum_{i=0}^{3} C_{i}^{3} u^{(3-i)} v^{(i)}=\sum_{i=0}^{3} C_{i}^{3}\left(e^{2 x}\right)^{(3-i)}(\ln x)^{(i)} \\
=C_{0}^{3} \cdot 8 e^{2 x} \ln x+C_{1}^{3} \cdot 4 e^{2 x} \cdot \frac{1}{x}+C_{2}^{3} \cdot 2 e^{2 x} \cdot\left(-\frac{1}{x^{2}}\right)+C_{3}^{3} e^{2 x} \cdot \frac{2}{x^{3}} \\
=1 \cdot 8 e^{2 x} \ln x+3 \cdot \frac{4 e^{2 x}}{x}-3 \cdot \frac{2 e^{2 x}}{x^{2}}+1 \cdot \frac{2 e^{2 x}}{x^{3}} \\
=8 e^{2 x} \ln x+\frac{12 e^{2 x}}{x}-\frac{6 e^{2 x}}{x^{2}}+\frac{2 e^{2 x}}{x^{3}} \\
=2 e^{2 x} \cdot\left(4 \ln x+\frac{6}{x}-\frac{3}{x^{2}}+\frac{1}{x^{3}}\right) .
\end{gathered}
$$

22.2 Concept of Higher-Order Differentials

We consider a function $y=f(x)$, which is differentiable in the interval (a, b). The first-order differential of the function at the point $x \in(a, b)$ is defined by the formula

$$
d y=f^{\prime}(x) d x
$$

It can be seen that the differential $d y$ depends on two quantities - the variable x (through the derivative $y^{\prime}=f^{\prime}(x)$) and the differential of the independent variable $d x$.

Let us fix the increment $d x$, i.e. we assume that $d x$ is constant. Then the differential $d y$ becomes a function only of the variable x for which we can also define the differential by taking the same differential $d x$ as the increment Δx. As a result, we obtain the second differential or differential of the second order, which is denoted as $d^{2} y$ or $d^{2} f(x)$. Thus, by definition:

$$
d^{2} y=d(d y)=d\left[f^{\prime}(x) d x\right]=d f^{\prime}(x) d x=f^{\prime \prime}(x) d x d x=f^{\prime \prime}(x)(d x)^{2}
$$

It is commonly denoted $(d x)^{2}=d x^{2}$. Therefore, we get:

$$
d^{2} y=f^{\prime \prime}(x) d x^{2}
$$

In the same way, we can establish that the third differential or differential of the third order has the form

$$
d^{3} y=f^{\prime \prime \prime}(x) d x^{3}
$$

In the general case, the differential of an arbitrary order n is given by

$$
d^{n} y=f^{(n)}(x) d x^{n}
$$

which can be rigorously proved by mathematical induction. This formula leads in particular to the following expression for the nth order derivative:

$$
f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}
$$

Note that for the linear function $y=a x+b$, the second and subsequent higher-order differentials are zero. Indeed,

$$
d^{2}(a x+b)=(a x+b)^{\prime \prime} d x^{2}=0 \cdot d x^{2}=0, \ldots, d^{n}(a x+b)=0
$$

In this case, it is obvious that

$$
d^{n} x=0 \text { for } n>1
$$

Properties of Higher-Order Differentials

Let the functions u and v have the n-th order derivatives and α and β are arbitrary constants. Then the following properties are valid:

$$
\begin{gathered}
d^{n}(\alpha u+\beta v)=\alpha d^{n} u+\beta d^{n} v ; \\
d^{n}(u v)=\sum_{i=0}^{n} C_{n}^{i} d^{n-i} u d^{i} v .
\end{gathered}
$$

The last equality follows directly from the Leibniz formula.

Higher Order Differential of a Composite Function

Consider now the composition of two functions such that $y=f(u)$ and $u=$ $g(x)$. In this case, y is a composite function of the independent variable x :

$$
y=f(g(x))
$$

The first differential of y can be written as

$$
d y=[f(g(x))]^{\prime} d x=f^{\prime}(g(x)) g^{\prime}(x) d x
$$

Compute the second differential $d^{2} y$ (assuming $d x$ is constant by definition). Using the product rule, we obtain:

$$
\begin{aligned}
d^{2} y=\left[f^{\prime}\right. & \left.(g(x)) g^{\prime}(x)\right]^{\prime} d x^{2} \\
& =\left[f^{\prime \prime}(g(x))\left(g^{\prime}(x)\right)^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)\right] d x^{2} \\
\quad & =f^{\prime \prime}(g(x))\left(g^{\prime}(x) d x\right)^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x) d x^{2}
\end{aligned}
$$

Take into account that

$$
g^{\prime}(x) d x=d u \quad \text { and } \quad g^{\prime \prime}(x) d x^{2}=d^{2} u
$$

Consequently,

$$
d^{2} y=f^{\prime \prime}(u) d u^{2}+f^{\prime}(u) d^{2} u
$$

or in short form:

$$
d^{2} y=y^{\prime \prime} d u^{2}+y^{\prime} d^{2} u
$$

In the same way, we can obtain the expression for the third order differential of a composite function:

$$
d^{3} y=f^{\prime \prime \prime}(u) d u^{3}+3 f^{\prime \prime}(u) d u d^{2} u+f^{\prime}(u) d^{3} u
$$

It follows from the above that the higher order differentials $d^{2} y, d^{3} y, \ldots$,
$d^{n} y$ are generally not invariant.

Example 1. Find the differential $d^{4} y$ of the function $y=x^{5}$.
The 4-th order differential is given by

$$
d^{4} y=f^{(4)}(x) d x^{4}=\left(x^{5}\right)^{(4)} d x^{4}
$$

We find the fourth derivative of this function by successive differentiation:

$$
\begin{gathered}
\left(x^{5}\right)^{\prime}=5 x^{4}, \\
\left(x^{5}\right)^{\prime \prime}=\left(5 x^{4}\right)^{\prime}=20 x^{3}, \\
\left(x^{5}\right)^{\prime \prime \prime}=\left(20 x^{3}\right)^{\prime}=60 x^{2}, \\
\left(x^{5}\right)^{(4)}=\left(60 x^{2}\right)^{\prime}=120 x .
\end{gathered}
$$

Hence,

$$
d^{4} y=120 x d x^{4}
$$

Example 2. Find the differential $d^{5} y$ of the function $y=\sin 2 x$. It is known that the n th-order derivative of the sine function has the form

$$
(\sin x)^{(n)}=\sin \left(x+\frac{\pi n}{2}\right) .
$$

One can show that the n th-order derivative of the function $y=\sin 2 x$. is given by

$$
y^{(n)}=(\sin 2 x)^{(n)}=2^{n} \sin \left(2 x+\frac{\pi n}{2}\right) .
$$

Hence, the 5-th-order derivative is written as

$$
\begin{gathered}
y^{(5)}=(\sin 2 x)^{(5)}=2^{5} \sin \left(2 x+\frac{5 \pi}{2}\right)=32 \sin \left(2 x+2 \pi+\frac{\pi}{2}\right) \\
=32 \sin \left(2 x+\frac{\pi}{2}\right)=32 \cos 2 x .
\end{gathered}
$$

Hence,

$$
d^{5} y=32 \cos 2 x d x^{5}
$$

Example 3. Find the second differential of the function $y=x^{2} \cos 2 x$. Determine the second derivative of this function:

$$
\begin{aligned}
& y^{\prime}=\left(x^{2} \cos 2 x\right)^{\prime}=\left(x^{2}\right)^{\prime} \cos 2 x+x^{2}(\cos 2 x)^{\prime} \\
& \quad=2 x \cos 2 x+x^{2} \cdot(-2 \sin 2 x)=2 x \cos 2 x-2 x^{2} \sin 2 x, \\
& \begin{aligned}
& y^{\prime \prime}=\left(2 x \cos 2 x-2 x^{2} \sin 2 x\right)^{\prime}=2\left(x \cos 2 x-x^{2} \sin 2 x\right)^{\prime} \\
&=2\left[x^{\prime} \cos 2 x+x(\cos 2 x)^{\prime}\left(x^{2}\right)^{\prime} \sin 2 x-x^{2}(\sin 2 x)^{\prime}\right] \\
&=2\left[\cos 2 x-2 x \sin 2 x-2 x \sin 2 x-2 x^{2} \cos 2 x\right] \\
&=\left(2-2 x^{2}\right) \cos 2 x-4 x \sin 2 x .
\end{aligned}
\end{aligned}
$$

Then the second-order differential is written in the form:

$$
d^{2} y=y^{\prime \prime} d x^{2}=\left[\left(2-2 x^{2}\right) \cos 2 x-4 x \sin 2 x\right] d x^{2}
$$

22.3 Higher-Order Derivatives of a Parametric Function

Consider a function $y=f(x)$ given parametrically by the equations

$$
\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array}\right.
$$

The first derivative of this function is given by

$$
y^{\prime}=y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}
$$

Differentiating once more with respect to x we find the second derivative:

$$
y^{\prime \prime}=y_{x x}^{\prime \prime}=\frac{\left(y_{x}^{\prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}
$$

Herein

$$
\left(y_{x}^{\prime}\right)_{t}^{\prime}=\left(\frac{y_{t}^{\prime}}{x_{t}^{\prime}}\right)_{t}^{\prime}=\frac{\left(y_{t}^{\prime}\right)_{t}^{\prime} \cdot x_{t}^{\prime}-y_{t}^{\prime} \cdot\left(x_{t}^{\prime}\right)_{t}^{\prime}}{\left(x_{t}^{\prime}\right)^{2}}=\frac{y_{t t}^{\prime \prime} \cdot x_{t}^{\prime}-y_{t}^{\prime} \cdot x_{t t}^{\prime \prime}}{\left(x_{t}^{\prime}\right)^{2}}
$$

Finally,

$$
y^{\prime \prime}=y_{x x}^{\prime \prime}=\frac{y_{t t}^{\prime \prime} \cdot x_{t}^{\prime}-y_{t}^{\prime} \cdot x_{t t}^{\prime \prime}}{\left(x_{t}^{\prime}\right)^{2}}
$$

Similarly, we define the derivatives of the third and higher order:

$$
\begin{aligned}
& y^{\prime \prime \prime}=y_{x x x}^{\prime \prime \prime}=\frac{\left(y_{x x}^{\prime \prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}, \ldots, \\
& y^{(n)}=y_{x x \ldots x}^{(n)}=\frac{\left(y_{x x \ldots x}^{(n-1)}\right)_{t}^{\prime}}{n_{n-1}^{\prime}} \\
& x_{t}^{\prime \prime}
\end{aligned},
$$

where $\left(y_{x x}^{\prime \prime}\right)_{t}^{\prime}=\left(\frac{y_{t t}^{\prime \prime} \cdot x_{t}^{\prime}-y_{t}^{\prime} \cdot x_{t t}^{\prime \prime}}{\left(x_{t}^{\prime}\right)^{2}}\right)_{t}^{\prime}, \ldots$,
Example 1. The function $y=f(x)$ is given in parametric form by the equations

$$
x=t+\cos t, y=1+\sin t
$$

where $t \in(0,2 \pi)$. Find $y_{x x}^{\prime \prime}$.
Taking the first derivative of the parametric function, we have

$$
y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{(1+\sin t)_{t}^{\prime}}{(t+\cos t)_{t}^{\prime}}=\frac{\cos t}{1-\sin t} .
$$

Now we differentiate both sides of the expression for y_{x}^{\prime} with respect to x This yields:

$$
\begin{aligned}
y_{x x}^{\prime \prime}=\left(y_{x}^{\prime}\right)_{x}^{\prime} & =\left(y_{x}^{\prime}\right)_{t}^{\prime} \cdot t_{x}^{\prime}=\left(\frac{\cos t}{1-\sin t}\right)_{t}^{\prime} \cdot t_{x}^{\prime}=\left(\frac{\cos t}{1-\sin t}\right)_{t}^{\prime} \cdot \frac{1}{x_{t}^{\prime}} \\
& =\frac{(-\sin t)(1-\sin t)-\cos t(-\cos t)}{(1-\sin t)^{2}} \cdot \frac{1}{1-\sin t} \\
& =\frac{-\sin t+\sin ^{2} t+\cos ^{2} t}{(1-\sin t)^{3}}=\frac{1-\sin t}{(1-\sin t)^{3}}=\frac{1}{(1-\sin t)^{2}}
\end{aligned}
$$

Example 2. Find the 3-rd derivative of the function given by the parametric equations

$$
x=1+t^{2}, y=t-t^{3}
$$

at $t=1$
Take the first derivative:

$$
y^{\prime}=y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(t-t^{3}\right)^{\prime}}{\left(1+t^{2}\right)^{\prime}}=\frac{1-3 t^{2}}{2 t}=\frac{1}{2 t}-\frac{3 t}{2} .
$$

Continue differentiating:

$$
\begin{aligned}
y^{\prime \prime}=y_{x x}^{\prime \prime} & =\frac{\left(y_{x}^{\prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(\frac{1}{2 t}-\frac{3 t}{2}\right)^{\prime}}{\left(1+t^{2}\right)^{\prime}}=\frac{\frac{1}{2} \cdot\left(-t^{-2}\right)-\frac{3}{2}}{2 t}=-\frac{\frac{1}{2 t^{2}}+\frac{3}{2}}{2 t} \\
& =-\frac{1}{4 t^{3}}-\frac{3}{4 t} .
\end{aligned}
$$

Similarly we calculate the third derivative $y_{x x x}^{\prime \prime \prime}$:

$$
\begin{aligned}
y^{\prime \prime \prime}=y_{x x x}^{\prime \prime \prime} & =\frac{\left(y_{x x}^{\prime \prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(-\frac{1}{4 t^{3}}-\frac{3}{4 t}\right)^{\prime}}{\left(1+t^{2}\right)^{\prime}}=\frac{-\frac{1}{4} \cdot\left(-3 t^{-4}\right)-\frac{3}{4} \cdot\left(-t^{-2}\right)}{2 t} \\
& =\frac{\frac{3}{4 t^{4}}+\frac{3}{4 t^{2}}}{2 t}=\frac{3}{8 t^{5}}+\frac{3}{8 t^{3}} .
\end{aligned}
$$

At the point where $t=1$ the third derivative is equal to

$$
y_{x x x}^{\prime \prime \prime}(t=1)=\frac{3}{8 \cdot 1^{5}}+\frac{3}{8 \cdot 1^{3}}=\frac{3}{8}+\frac{3}{8}=\frac{3}{4} .
$$

22.4 Higher-Order Derivatives of an Implicit Function

The n-th order derivative of an implicit function can be found by sequential (n times) differentiation of the equation $F(x, y)=0$. At each step, after appropriate substitutions and transformations, we can obtain an explicit expression for the derivative, which depends only on the variables x and y, i.e. the derivatives have the form

$$
y^{\prime}=f_{1}(x, y), y^{\prime \prime}=f_{2}(x, y), \ldots, y^{(n)}=f_{n}(x, y) .
$$

Notice. We need to remember that it is assuming that y is a differentiable function of x and the chain rule for its differentiation should be used.

Example 1. Find the second derivative of the function given by the equation $x+y=e^{x-y}$.

Differentiating both sides in x we obtain:

$$
\begin{gathered}
(x+y)^{\prime}=\left(e^{x-y}\right)^{\prime}, \Rightarrow \\
1+y^{\prime}=e^{x-y} \cdot(x-y)^{\prime}, \Rightarrow \\
1+y^{\prime}=e^{x-y}\left(1-y^{\prime}\right)=e^{x-y}-e^{x-y} y^{\prime}, \Rightarrow \\
y^{\prime}+e^{x-y} y^{\prime}=e^{x-y}-1, \Rightarrow \\
y^{\prime}=\frac{e^{x-y}-1}{e^{x-y}+1}
\end{gathered}
$$

Continuing the differentiation, we find the second derivative:

$$
y^{\prime \prime}=\left(\frac{e^{x-y}-1}{e^{x-y}+1}\right)^{\prime}=\frac{2 e^{x-y}\left(1-y^{\prime}\right)}{\left(e^{x-y}+1\right)^{2}} .
$$

Substitute the expression for the first derivative:

$$
\begin{gathered}
y^{\prime \prime}=\frac{2 e^{x-y}\left(1-y^{\prime}\right)}{\left(e^{x-y}+1\right)^{2}}=\frac{2 e^{x-y}\left(1-\frac{e^{x-y}-1}{e^{x-y}+1}\right)}{\left(e^{x-y}+1\right)^{2}}= \\
\frac{2 e^{x-y} \cdot \frac{e^{x-y}+1-e^{x-y}+1}{e^{x-y}+1}}{\left(e^{x-y}+1\right)^{2}}=\frac{4 e^{x-y}}{\left(e^{x-y}+1\right)^{3}}
\end{gathered}
$$

We now use the original equation, according to which

$$
e^{x-y}=x+y
$$

As a result, we obtain the following expression for the derivative $y^{\prime \prime}$

$$
y^{\prime \prime}=\frac{4 e^{x-y}}{\left(e^{x-y}+1\right)^{3}}=\frac{4(x+y)}{(x+y+1)^{3}}
$$

Example 2. Find the third derivative of the function given by the equation $x^{2}-y^{2}=9$.

We differentiate both sides of the equation with respect to x keeping in mind that y is a function of x

$$
\left(x^{2}-y^{2}\right)^{\prime}=9^{\prime}, \Rightarrow 2 x-2 y y^{\prime}=0, \Rightarrow x-y y^{\prime}=0, \Rightarrow y^{\prime}=y_{x}^{\prime}=\frac{x}{y} .
$$

Continue differentiating to obtain $y_{x x}^{\prime \prime}$:

$$
\begin{gathered}
x-y y^{\prime}=0, \Rightarrow\left(x-y y^{\prime}\right)^{\prime}=0, \Rightarrow \\
1-y^{\prime} y^{\prime}-y y^{\prime \prime}=0, \Rightarrow \\
y y^{\prime \prime}=1-\left(y^{\prime}\right)^{2}, \Rightarrow \\
y^{\prime \prime}=y_{x x}^{\prime \prime}=\frac{1-\left(y^{\prime}\right)^{2}}{y}=\frac{1-\left(\frac{x}{y}\right)^{2}}{y}=\frac{1-\frac{x^{2}}{y^{2}}}{y}=\frac{y^{2}-x^{2}}{y^{3}}=-\frac{x^{2}-y^{2}}{y^{3}} \\
=-\frac{9}{y^{3}} .
\end{gathered}
$$

Similarly we find the third derivative:

$$
y y^{\prime \prime}=1-\left(y^{\prime}\right)^{2}, \Rightarrow\left(y y^{\prime \prime}\right)^{\prime}=\left(1-\left(y^{\prime}\right)^{2}\right)^{\prime}, \Rightarrow
$$

$$
\begin{gathered}
y^{\prime} y^{\prime \prime}+y y^{\prime \prime \prime}=-2 y^{\prime} y^{\prime \prime}, \Rightarrow \\
y y^{\prime \prime \prime}=-3 y^{\prime} y^{\prime \prime}, \Rightarrow \\
y^{\prime \prime \prime}=y_{x x x}^{\prime \prime \prime}=-\frac{3 y^{\prime} y^{\prime \prime}}{y}=-\frac{3 \cdot \frac{x}{y} \cdot\left(-\frac{9}{y^{3}}\right)}{y}=\frac{\frac{27 x}{y^{4}}}{y}=\frac{27 x}{y^{5}} .
\end{gathered}
$$

