
Lecture #23: The Mean-Value Theorem of Differential 

Calculus 

 23.1 The Mean-Value Theorem (MVT) 

The Mean Value Theorem is one of the most important theorems in calculus. 

23.1.1 Fermat's theorem.  

Let’s start with Fermat's theorem (also known as interior extremum 

theorem). In essence, it is a method to find local extremum (i.e. local 

maximum or minimum) of differentiable functions on open sets by showing 

that every local extremum of the function is a stationary point (the function's 

derivative is zero at that point).  

 

Definition: A function 𝑓(𝑥) has a local maximum at 𝑥0 if there exists an 

open interval (𝑎, 𝑏) containing 𝑥0 such that (𝑎, 𝑏) is contained in the domain 

of 𝑓(𝑥) and 𝑓(𝑥0) ≥  𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏).  

A function 𝑓(𝑥) has a local minimum at 𝑥0 if there exists an open 

interval (𝑎, 𝑏) containing 𝑥0 such that (𝑎, 𝑏) is contained in the domain of 

𝑓(𝑥) and 𝑓(𝑥0) ≤  𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏).  

A function 𝑓(𝑥) has a local extremum at 𝑥0 if 𝑓(𝑥) has a local 

maximum at 𝑥0 or 𝑓(𝑥) has a local minimum at 𝑥0. 

 
We need to distinguish the global or absolute extrema (i.e. global maximum 

or minimum) of 𝑓(𝑥) which are the greatest (or the smallest) values the 

function 𝑓(𝑥) in the given domain of 𝑓(𝑥) and local extrema (i.e. local 



maximum or minimum) of 𝑓(𝑥) which are the local greatest (or the smallest) 

values the function 𝑓(𝑥) at a given point of the domain of 𝑓(𝑥).  

 

Theorem. Let a function  xf  be defined on a closed interval  ba,  and it 

takes the local greatest (or the smallest) value at an interior point 𝑥0 of the 

open interval (𝑎, 𝑏). Then if the function is differentiable at this point its 

derivative vanishes at this point, i.e.  

  00  xf . 

■ For the sake of definiteness let us assume that the function  xf  takes the 

greatest value at the point 0x . Then the ratio  

   
x

xfxxf



 00  

has a numerator which is always negative value (of course, if 

   baxx ,0  ). Therefore, if 0x , then 

   
000 





x

xfxxf
. 

Whence the limit of the negative variable is not a positive value, that is 
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 x
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x
.    (1) 

Hence  

  00  xf .     (2) 

If 0x , then 
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Hence 

   
0lim 00
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xfxxf

x
,    (3) 

that is 

  0
0
 xf *).    (4) 

We came to the situation that the relations (2) and (4) hold true 

                                                 
*) The passing from (1) to (2) and from (3) to (4) may be carried out because the function )(xf  is 

differentiable at the point 0x . 



simultaneously if and only if   00  xf . □ 

The proved theorem geometrically means that the line tangent to graph 

of function  xf  is parallel to axis Ox  at the point 𝑥0 (Fig. 1). 

 
 

Fig. 1 Fig. 2 

Notice: If function  xf  is not differentiable at the point 0x , then conditions 

of Fermat’s theorem are not fulfilled and its assertion is not true (Fig. 2). 

 

Definition: Let 𝑥0 be an interior point in the domain of 𝑓(𝑥). We say that 

𝑥0 is a critical point of 𝑓(𝑥) if 𝑥0 is a stationary point, i.e. 𝑓′(𝑥0) = 0 or 

𝑓′(𝑥0) is undefined. 

23.1.2 Rolle’s theorem 

Before formulation of the MVT we start with a special case of the Mean 

Value Theorem, called Rolle’s theorem. 

 

Theorem. Let a function  xf  be: 

1) continuous on the closed interval  ba, ; 

2) differentiable at all interior points of the open interval  ba, ; 

3) such that it takes the same value at the end points    bfaf  . 

Then inside of the interval there exists at least one point at which the 

derivative of the function vanishes. That is   0f . 

■ Since the function is continuous on the closed interval  ba,  it has a 

maximum M and a minimum m values on that interval I accordance with 

Weierstrass’ Theorem.  
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If mM   the function  xf  is constant, that means that for all values 

of x of the segment  ba, , it has a constant value   mxf   (Fig. 3). As a 

consequence of this   0 xf  at any point  bax ,  and the theorem is 

proved. 

Suppose that mM  . Since    bfaf  , then the function takes on 

that value at least one of these values at the interior point  ba,  (Fig.4). 

Then due to theorem by Fermat   0f . □ 

Note 1. If function  xf  is continuous in the interval  ba,  (open interval), 

but it is not continuous on the closed interval, the segment  ba, , see Fig. 5, 

then one of conditions for the theorem is not fulfilled and the assertion of 

this theorem might be not fulfilled also. Thus, the condition to be continuous 

on the closed interval is necessary requirement of Rolle’s theorem. 

Note 2. On the contrary the requirement of the differentiability of the 

function on closed interval is optional, because the points A and B may be 

those at which ax   and bx   the function is not differentiable, (Fig. 6). 
 

Note 3. But at all interior points of the closed interval  ba,  function  xf  

has to been differentiable otherwise the point A may be singular point (for 

example see graph 7) and point   at which   0f  might not exist. 
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Note 4. It is obvious that points like to ξ may be several ones (Fig.8). 

Note 5. Let     0 bfaf  (in this case the numbers a and b are called the 

roots of the functions  xf ).  

Then this particular case follows from Rolle’s theorem (Fig. 9). 

Theorem*. Between two roots of the differentiable function there is at least 

one root of its derivative.  

 

Example. Let function be given      321  xxxxxf . It is polynomial 

of the fourth power, which has the following roots 

3,2,1,0 4321  xxxx . Then derivative  xf  , that is polynomial of 

the third power, has three roots. By virtue of theorem 2∗ all roots are real 

and lie (only one) on intervals    2,1,1,0  and  3,2 . 

23.1.3 Mean-Value Theorem (or Lagrange’s theorem) 

Theorem. Let a function  xf  be: 

1) continuous on the closed interval  ba, ; 

2) differentiable at all interior points of the open interval  ba, . 

Then there will be, at least one point ξ  ba   within  ba, , such that the 

following equality  

   
 




f

ab

afbf
 

is valid. 

■ To prove this theorem let us introduce into consideration the auxiliary 

function  

    xxfxF  . 

Here   is some a real number. Let us choose   so that equality    bFaF   
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holds true.  

It means that  

    bbfaaf  . 

Whence 

   
ab

afbf




 . 

So, the function    
   

x
ab

afbf
xfxF




  satisfies conditions of 

Rolle’s theorem. But it means that there is at least one point   ba, , such 

that the following equality   0F  is true. Or  
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afbf
f , 

hence 
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 .         (5) 

The theorem is thus proved. □ 

In geometric sense this theorem means that there is at least one point 

М on curve 


AB  at which the line tangent to the graph of function  xf  is 

parallel to chord АВ (Fig. 10). 

 

Note 1. If    afbf   then from (5) it follows that   0f . It means that 

mean-value (or Lagrange’s) theorem is reduced to Rolle’s theorem.  

Note 2. Let function  xf  be differentiable one. Let us add to x  increment 

x  and apply the mean-value (or Lagrange’s) theorem on the closed interval 

 xxx ,  (Fig. 11). Then we obtain equality  

 f(b)-f(a) 
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or 
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whence 

  xfy  .           (6) 

 

Actually it is another formulation of the mean-value (or Lagrange’s) 

theorem. Formula (6) is called the formula of finite increments.  

 

From the mean-value (or Lagrange’s) theorem it follows the other fact, 

which will be used further. Let us assume that the following identity  

  0 xf  

is fulfilled for a function  xf . Take arbitrary values 1x , 2x  and apply 

theorem by Lagrange on the closed interval  21, xx . Then we get  
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xfxf

21

21 . 

But   0f . It means that    21 xfxf  . Since the values 1x  and 2x  are 

arbitrary then   constxf   for all x. if   constxf  , then   0 xf . 

23.1. Extended Mean Value Theorem (or Cauchy’s theorem) 

Theorem. Let functions  xf  and  x  be: 

1) continuous on the closed interval  ba, ; 

2) differentiable within the open interval  ba, ; 

3)  x  does not vanish anywhere inside of the interval  ba, . 

Then there will be at least one point  ba, , such that the relation 
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holds true. 

■ To prove this theorem let us introduce into consideration the auxiliary 

function      xxfxF  . Choose the number   in such manner that the 



equality    bFaF  , that is 

       bbfaaf   

is fulfilled. 

Whence one can get  

   
   ab

afbf




 . 

At such value of   the function  xF  satisfies conditions of the 

Rolle’s theorem. Therefore there exists at least one point  ba, , such that 

  0F , that is  
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f . 

Whence it follows that 
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21 . □ 

Note: It is obvious that Lagrange’s theorem is particular case of Cauchy’s 

theorem if function xx  )( . 

Note: Cauchy's mean value theorem has the following geometric meaning. 

Suppose that a curve is described by the parametric equations 𝑥 = 𝑓(𝑡), 𝑦 =

𝑔(𝑡), where the parameter t ranges in the interval [𝑎, 𝑏]. When changing the 

parameter t the point of the curve in Figure runs from 𝐴(𝑓(𝑎), 𝑔(𝑎)) to 

𝐵(𝑓(𝑏), 𝑔(𝑏)). According to the theorem, there is a point (𝑓(𝑐), 𝑔(𝑐)) on 

the curve where the tangent is parallel to the chord joining the ends A and 

B of the curve. 

 



 23.2. L’Hospital’s Rule for Evaluating Indeterminate Forms 
0

0
 

 

Theorem. Let functions  xf  and  x  vanish at point ax   

    0 aaf  that is an indeterminate form of the type 
0

0
 occurs and the 

functions satisfy the conditions of the Cauchy theorem in some 

neighbourhood of this point, and the derivative of the function  x  does 

not vanish everywhere in this neighborhood,   0 x . Then if 
 
 x
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exists (finite or infinite), then 
 
 x
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lim  exists too and both the limits are 

equal: 
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■ Let 
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lim , where А is some number (or A ). We must prove 

that  
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Let us take some arbitrary х, which is near by а and apply the Cauchy 

theorem on the segment  xa, . We obtain 
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In accordance with the condition     0 aaf , we can write 
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Let ax  . Then a  (Fig. 12), so 
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. From this it follows that  

x x  a 

Fig. 12 
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that was to be proved. □ 

We considered the case when а is a finite number. If x  then the 

proof given above is inapplicable.  

Nevertheless, we can prove that in this case  
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■ Let us assign that 
t

x
1

 , where t is a new variable. Then from 

   0 tx  substitute the expression for x in the given ratio 
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that has to be proved. □ 

Example 1. Let us calculate limit 
xx
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0
lim . Direct substitution gives 

0

0
A , it is obvious that condition of the theorem is fulfilled so we can use 

L’Hospital’s rule: 
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Example 3. Calculate 
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Using L’Hospital’s rule we obtain 












 xx

x

x

x
x

x

xx
A

xxx 22

3

02

2

030 cos3

cos1
lim

3

cos
cos

1

lim
0

0sintan
lim  

  
0

0cos1
lim

cos

coscos1cos1
lim

3

1

0

0
2022

2








 x

x

xx

xxx

x
. 

As indetermination 
0

0
 is obtained, then we use L’Hospital’s rule again. 
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6

1

3

2lim
3

cos1
lim

0

0sin
lim

2

2

02030







 x

x

x

x

x

xx

xxx
. 

 

 23.3. L’Hospital’s Rule for Evaluating Indeterminate Forms 



  

Theorem. Let functions  xf  and  x  be differentiable in some 

neighborhood of the point ax  , except may be this point. Derivative of the 

function  x  does not vanish everywhere in this neighborhood, that is, 

  0 x  and functions   xf  and    x  as ax  . Then if 
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■ Let us take some 1x  which lies near by а 

and some arbitrary 2x  which lies between 1x  

and a (Fig. 13). 

Then by Lagrange’s theorem we obtain 
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where 12 xx  . Rewrite the last relation in the following form 
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i.e. 
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Let us fix the point 1x  and take 2x  however close by а. Taking into account 

that    x  and   xf  as ax  we make values 
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however small, i.е. we make first factor on the right of the last equality 

however close by 1. If we take 1x  however close by а, we make   however 

close by а that is 
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that has to be proved. 

 Taking points 1x  and 2x  such as axx  21  we can by the same way 

prove that 
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Note. As in the case of indeterminate form 
0

0
, it is easy to show that 

L’Hospital’s rule is true when x . 

Example 1. Let us consider 
n

x
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lim , where 1a , n is some natural number. 

Direct substitution gives indeterminate form 
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Example 3. Using L’Hospital’s rule we obtain 
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The last limit does not exist through previous limit exists and is equal to 1. 

But it does not contradict to L’Hospital’s rule, which states that if 
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 23.4. Evaluating Power-Exponential Indeterminate Forms 
 

Let us calculate    )(
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x
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 if one of three cases occur: 

1)     
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axax

lim,1lim  (indeterminate form 
1 ); 

2)     0lim,0lim 
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 (indeterminate form 00 ); 

3)     0lim,lim 
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 (indeterminate form 
0 ). 

In all cases we should do the same. Let us assign    yxf
x
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. Then 
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It is easy to see that in all the three cases we have on the right indeterminate 

form 0 , which can be reduced to forms 
0

0
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. Evaluating this 

indeterminate form by L’Hospital’s rule we obtain 
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