
Lecture #23: The Mean-Value Theorem of Differential 

Calculus 

 23.1 The Mean-Value Theorem (MVT) 

The Mean Value Theorem is one of the most important theorems in calculus. 

23.1.1 Fermat's theorem.  

Let’s start with Fermat's theorem (also known as interior extremum 

theorem). In essence, it is a method to find local extremum (i.e. local 

maximum or minimum) of differentiable functions on open sets by showing 

that every local extremum of the function is a stationary point (the function's 

derivative is zero at that point).  

 

Definition: A function 𝑓(𝑥) has a local maximum at 𝑥0 if there exists an 

open interval (𝑎, 𝑏) containing 𝑥0 such that (𝑎, 𝑏) is contained in the domain 

of 𝑓(𝑥) and 𝑓(𝑥0) ≥  𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏).  

A function 𝑓(𝑥) has a local minimum at 𝑥0 if there exists an open 

interval (𝑎, 𝑏) containing 𝑥0 such that (𝑎, 𝑏) is contained in the domain of 

𝑓(𝑥) and 𝑓(𝑥0) ≤  𝑓(𝑥) for all 𝑥 ∈ (𝑎, 𝑏).  

A function 𝑓(𝑥) has a local extremum at 𝑥0 if 𝑓(𝑥) has a local 

maximum at 𝑥0 or 𝑓(𝑥) has a local minimum at 𝑥0. 

 
We need to distinguish the global or absolute extrema (i.e. global maximum 

or minimum) of 𝑓(𝑥) which are the greatest (or the smallest) values the 

function 𝑓(𝑥) in the given domain of 𝑓(𝑥) and local extrema (i.e. local 



maximum or minimum) of 𝑓(𝑥) which are the local greatest (or the smallest) 

values the function 𝑓(𝑥) at a given point of the domain of 𝑓(𝑥).  

 

Theorem. Let a function  xf  be defined on a closed interval  ba,  and it 

takes the local greatest (or the smallest) value at an interior point 𝑥0 of the 

open interval (𝑎, 𝑏). Then if the function is differentiable at this point its 

derivative vanishes at this point, i.e.  

  00  xf . 

■ For the sake of definiteness let us assume that the function  xf  takes the 

greatest value at the point 0x . Then the ratio  

   
x

xfxxf



 00  

has a numerator which is always negative value (of course, if 

   baxx ,0  ). Therefore, if 0x , then 

   
000 





x

xfxxf
. 

Whence the limit of the negative variable is not a positive value, that is 

   
0lim 00

0






 x

xfxxf

x
.    (1) 

Hence  

  00  xf .     (2) 

If 0x , then 

   
000 





x

xfxxf
 

Hence 

   
0lim 00

0






 x

xfxxf

x
,    (3) 

that is 

  0
0
 xf *).    (4) 

We came to the situation that the relations (2) and (4) hold true 

                                                 
*) The passing from (1) to (2) and from (3) to (4) may be carried out because the function )(xf  is 

differentiable at the point 0x . 



simultaneously if and only if   00  xf . □ 

The proved theorem geometrically means that the line tangent to graph 

of function  xf  is parallel to axis Ox  at the point 𝑥0 (Fig. 1). 

 
 

Fig. 1 Fig. 2 

Notice: If function  xf  is not differentiable at the point 0x , then conditions 

of Fermat’s theorem are not fulfilled and its assertion is not true (Fig. 2). 

 

Definition: Let 𝑥0 be an interior point in the domain of 𝑓(𝑥). We say that 

𝑥0 is a critical point of 𝑓(𝑥) if 𝑥0 is a stationary point, i.e. 𝑓′(𝑥0) = 0 or 

𝑓′(𝑥0) is undefined. 

23.1.2 Rolle’s theorem 

Before formulation of the MVT we start with a special case of the Mean 

Value Theorem, called Rolle’s theorem. 

 

Theorem. Let a function  xf  be: 

1) continuous on the closed interval  ba, ; 

2) differentiable at all interior points of the open interval  ba, ; 

3) such that it takes the same value at the end points    bfaf  . 

Then inside of the interval there exists at least one point at which the 

derivative of the function vanishes. That is   0f . 

■ Since the function is continuous on the closed interval  ba,  it has a 

maximum M and a minimum m values on that interval I accordance with 

Weierstrass’ Theorem.  
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If mM   the function  xf  is constant, that means that for all values 

of x of the segment  ba, , it has a constant value   mxf   (Fig. 3). As a 

consequence of this   0 xf  at any point  bax ,  and the theorem is 

proved. 

Suppose that mM  . Since    bfaf  , then the function takes on 

that value at least one of these values at the interior point  ba,  (Fig.4). 

Then due to theorem by Fermat   0f . □ 

Note 1. If function  xf  is continuous in the interval  ba,  (open interval), 

but it is not continuous on the closed interval, the segment  ba, , see Fig. 5, 

then one of conditions for the theorem is not fulfilled and the assertion of 

this theorem might be not fulfilled also. Thus, the condition to be continuous 

on the closed interval is necessary requirement of Rolle’s theorem. 

Note 2. On the contrary the requirement of the differentiability of the 

function on closed interval is optional, because the points A and B may be 

those at which ax   and bx   the function is not differentiable, (Fig. 6). 
 

Note 3. But at all interior points of the closed interval  ba,  function  xf  

has to been differentiable otherwise the point A may be singular point (for 

example see graph 7) and point   at which   0f  might not exist. 
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Note 4. It is obvious that points like to ξ may be several ones (Fig.8). 

Note 5. Let     0 bfaf  (in this case the numbers a and b are called the 

roots of the functions  xf ).  

Then this particular case follows from Rolle’s theorem (Fig. 9). 

Theorem*. Between two roots of the differentiable function there is at least 

one root of its derivative.  

 

Example. Let function be given      321  xxxxxf . It is polynomial 

of the fourth power, which has the following roots 

3,2,1,0 4321  xxxx . Then derivative  xf  , that is polynomial of 

the third power, has three roots. By virtue of theorem 2∗ all roots are real 

and lie (only one) on intervals    2,1,1,0  and  3,2 . 

23.1.3 Mean-Value Theorem (or Lagrange’s theorem) 

Theorem. Let a function  xf  be: 

1) continuous on the closed interval  ba, ; 

2) differentiable at all interior points of the open interval  ba, . 

Then there will be, at least one point ξ  ba   within  ba, , such that the 

following equality  

   
 




f

ab

afbf
 

is valid. 

■ To prove this theorem let us introduce into consideration the auxiliary 

function  

    xxfxF  . 

Here   is some a real number. Let us choose   so that equality    bFaF   
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holds true.  

It means that  

    bbfaaf  . 

Whence 

   
ab

afbf




 . 

So, the function    
   

x
ab

afbf
xfxF




  satisfies conditions of 

Rolle’s theorem. But it means that there is at least one point   ba, , such 

that the following equality   0F  is true. Or  

 
   

0





ab

afbf
f , 

hence 

 
   

ab

afbf
f




 .         (5) 

The theorem is thus proved. □ 

In geometric sense this theorem means that there is at least one point 

М on curve 


AB  at which the line tangent to the graph of function  xf  is 

parallel to chord АВ (Fig. 10). 

 

Note 1. If    afbf   then from (5) it follows that   0f . It means that 

mean-value (or Lagrange’s) theorem is reduced to Rolle’s theorem.  

Note 2. Let function  xf  be differentiable one. Let us add to x  increment 

x  and apply the mean-value (or Lagrange’s) theorem on the closed interval 

 xxx ,  (Fig. 11). Then we obtain equality  
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   
 




f

x

xfxxf
, 

or 

 



f

x

y
, 

whence 

  xfy  .           (6) 

 

Actually it is another formulation of the mean-value (or Lagrange’s) 

theorem. Formula (6) is called the formula of finite increments.  

 

From the mean-value (or Lagrange’s) theorem it follows the other fact, 

which will be used further. Let us assume that the following identity  

  0 xf  

is fulfilled for a function  xf . Take arbitrary values 1x , 2x  and apply 

theorem by Lagrange on the closed interval  21, xx . Then we get  

   
 




f

xx

xfxf

21

21 . 

But   0f . It means that    21 xfxf  . Since the values 1x  and 2x  are 

arbitrary then   constxf   for all x. if   constxf  , then   0 xf . 

23.1. Extended Mean Value Theorem (or Cauchy’s theorem) 

Theorem. Let functions  xf  and  x  be: 

1) continuous on the closed interval  ba, ; 

2) differentiable within the open interval  ba, ; 

3)  x  does not vanish anywhere inside of the interval  ba, . 

Then there will be at least one point  ba, , such that the relation 

   
   

 
 






 f

ab

afbf
 

holds true. 

■ To prove this theorem let us introduce into consideration the auxiliary 

function      xxfxF  . Choose the number   in such manner that the 



equality    bFaF  , that is 

       bbfaaf   

is fulfilled. 

Whence one can get  

   
   ab

afbf




 . 

At such value of   the function  xF  satisfies conditions of the 

Rolle’s theorem. Therefore there exists at least one point  ba, , such that 

  0F , that is  

 
   
   

  0





ab

afbf
f . 

Whence it follows that 

   
   

 
 






 f

xx

xfxf

21

21 . □ 

Note: It is obvious that Lagrange’s theorem is particular case of Cauchy’s 

theorem if function xx  )( . 

Note: Cauchy's mean value theorem has the following geometric meaning. 

Suppose that a curve is described by the parametric equations 𝑥 = 𝑓(𝑡), 𝑦 =

𝑔(𝑡), where the parameter t ranges in the interval [𝑎, 𝑏]. When changing the 

parameter t the point of the curve in Figure runs from 𝐴(𝑓(𝑎), 𝑔(𝑎)) to 

𝐵(𝑓(𝑏), 𝑔(𝑏)). According to the theorem, there is a point (𝑓(𝑐), 𝑔(𝑐)) on 

the curve where the tangent is parallel to the chord joining the ends A and 

B of the curve. 

 



 23.2. L’Hospital’s Rule for Evaluating Indeterminate Forms 
0

0
 

 

Theorem. Let functions  xf  and  x  vanish at point ax   

    0 aaf  that is an indeterminate form of the type 
0

0
 occurs and the 

functions satisfy the conditions of the Cauchy theorem in some 

neighbourhood of this point, and the derivative of the function  x  does 

not vanish everywhere in this neighborhood,   0 x . Then if 
 
 x

xf

ax 




lim  

exists (finite or infinite), then 
 
 x

xf

ax 
lim  exists too and both the limits are 

equal: 

 
 


 x

xf

ax 
lim

 
 x

xf

ax 




lim  

■ Let 
 
 

A
x

xf

ax







lim , where А is some number (or A ). We must prove 

that  

 
 

A
x

xf

ax



lim . 

Let us take some arbitrary х, which is near by а and apply the Cauchy 

theorem on the segment  xa, . We obtain 

   
   

 
 






 f

ax

afxf
. 

In accordance with the condition     0 aaf , we can write 

 
 

 
 






f

x

xf
 

Let ax  . Then a  (Fig. 12), so 
 
 

A
f





. From this it follows that  

x x  a 

Fig. 12 



 
 
 












 A

x

xf
ax , 

that was to be proved. □ 

We considered the case when а is a finite number. If x  then the 

proof given above is inapplicable.  

Nevertheless, we can prove that in this case  

 
 

 
 x

xf

x

xf

xx 




 
limlim . 

■ Let us assign that 
t

x
1

 , where t is a new variable. Then from 

   0 tx  substitute the expression for x in the given ratio 

 
 

 
 x

xf

t

t
f

tt

tt
f

t

t
f

x

xf

xtttx 






















































































 

lim
1

1

lim
11

11

lim
1

1

limlim
0

2

2

00
, 

that has to be proved. □ 

Example 1. Let us calculate limit 
xx

xx

x dc

ba
A






0
lim . Direct substitution gives 

0

0
A , it is obvious that condition of the theorem is fulfilled so we can use 

L’Hospital’s rule: 

d

c
b

a

dc

ba

ddcc

bbaa
A

xx

xx

x
ln

ln

lnln

lnln

lnln

lnln
lim

0













. 

Example 2. 





2
ctan

lim0
2

tan)(lim
x

xx
x

xx
 

2
2

sinlim2

2
sin2

1

1
lim

0

0 2

2










x

x

xx
. 



Example 3. Calculate 
30

sintan
lim

x

xx

x




. 

Using L’Hospital’s rule we obtain 












 xx

x

x

x
x

x

xx
A

xxx 22

3

02

2

030 cos3

cos1
lim

3

cos
cos

1

lim
0

0sintan
lim  

  
0

0cos1
lim

cos

coscos1cos1
lim

3

1

0

0
2022

2








 x

x

xx

xxx

x
. 

As indetermination 
0

0
 is obtained, then we use L’Hospital’s rule again. 

2

1

2

sin
lim

cos1
lim

020





 x

x

x

x
A

xx
. 

Example 4. 
6

1

3

2lim
3

cos1
lim

0

0sin
lim

2

2

02030







 x

x

x

x

x

xx

xxx
. 

 

 23.3. L’Hospital’s Rule for Evaluating Indeterminate Forms 



  

Theorem. Let functions  xf  and  x  be differentiable in some 

neighborhood of the point ax  , except may be this point. Derivative of the 

function  x  does not vanish everywhere in this neighborhood, that is, 

  0 x  and functions   xf  and    x  as ax  . Then if 

 
 x

xf

ax 




lim  exists then 

 
 x

xf

ax 
lim  exists and both the limits are equal: 

 
 


 x

xf

ax 
lim

 
 x

xf

ax 




lim  

■ Let us take some 1x  which lies near by а 

and some arbitrary 2x  which lies between 1x  

and a (Fig. 13). 

Then by Lagrange’s theorem we obtain 

   
   

 
 






 f

xx

xfxf

21

21 , 

x x1 x2 a 

Fig. 13 



where 12 xx  . Rewrite the last relation in the following form 

 
 

 
 
 
 

 
 














f

x

x

xf

xf

x

xf

1

1

2

1

2

1

2

2 , 

i.e. 

 
 

 
 
 
 

 
 














f

xf

xf

x

x

x

xf

2

1

2

1

2

2

1

1

. 

Let us fix the point 1x  and take 2x  however close by а. Taking into account 

that    x  and   xf  as ax  we make values 
 
 2

1

x

x




 and 

 
 2

1

xf

xf
 

however small, i.е. we make first factor on the right of the last equality 

however close by 1. If we take 1x  however close by а, we make   however 

close by а that is 

 
 

 
 x

xf

x

xf

axax 




  00
limlim , 

that has to be proved. 

 Taking points 1x  and 2x  such as axx  21  we can by the same way 

prove that 

 
 

A
x

xf

ax


 0
lim . □ 

Note. As in the case of indeterminate form 
0

0
, it is easy to show that 

L’Hospital’s rule is true when x . 

Example 1. Let us consider 
n

x

x x

a


lim , where 1a , n is some natural number. 

Direct substitution gives indeterminate form 



. Applying п times 

L’Hospital’s rule we obtain  

 
 
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
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Example 2.  



  0lim
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Example 3. Using L’Hospital’s rule we obtain 

2
tanlim

cos1
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sin
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lim 2 x

x

x
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
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
. 

The last limit does not exist through previous limit exists and is equal to 1. 

But it does not contradict to L’Hospital’s rule, which states that if 
 
 x

xf

ax 




lim  

exists then 
 
 x

xf

ax 
lim  exists and both the limits are equal.  

 

 23.4. Evaluating Power-Exponential Indeterminate Forms 
 

Let us calculate    )(
lim

x

ax
xf




 if one of three cases occur: 

1)     


xxf
axax

lim,1lim  (indeterminate form 
1 ); 

2)     0lim,0lim 


xxf
axax

 (indeterminate form 00 ); 

3)     0lim,lim 


xxf
axax

 (indeterminate form 
0 ). 

In all cases we should do the same. Let us assign    yxf
x


 )(
. Then 

     xfxy lnln  , so 

   xfxy
axax

lnlimlnlim 


. 

It is easy to see that in all the three cases we have on the right indeterminate 

form 0 , which can be reduced to forms 
0

0
 or 




. Evaluating this 

indeterminate form by L’Hospital’s rule we obtain 

    Axfx
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

lnlim , 

where А is some number, so Ay
ax




lnlim , i.e. Ay
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


limln . So 

A
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
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Example. Let us calculate  xx

x
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0
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
. Direct substitution gives 

indeterminate form 
1 . Let us assign  xx xey
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