
Lecture #24: Taylor & Maclaurin polynomials 

A Taylor polynomial illustrates the first steps in the process of 

approximating complicated functions with polynomials. Using this process 

we can approximate trigonometric, exponential, logarithmic, and other non-

polynomial functions as closely as we like (for certain values of  x ) with 

polynomials. This is extraordinarily useful in that it allows us to calculate 

values of these functions to whatever precision we like using only the 

operations of addition, subtraction, multiplication, and division, which are 

operations that can be easily programmed in a computer. 

 

 Idea of a Taylor polynomial 

Polynomials are simpler than most other functions. This leads to the idea of 

approximating a complicated function by a polynomial. Taylor realized that 

this is possible provided there is an “easy” point at which you know how to 

compute the function and its derivatives. Given a function 𝑓(𝑥) and a value 

𝑎, we will define for each degree 𝑛 a polynomial 𝑃𝑛(𝑥) which is the “best 

n-th degree polynomial approximation to 𝑓(𝑥) near 𝑥 =  𝑎.” 

 

It pays to start very simply. A zero-degree polynomial is a constant. What 

is the best constant approximation to 𝑓(𝑥) near 𝑥 =  𝑎? Clearly, the 

constant 𝑓(𝑎). What is the best linear approximation? We already know 

this, and have given it the notation 𝐿(𝑥). It is the tangent line to the graph 

of 𝑓(𝑥) at 𝑥 =  𝑎 and its equation is 

L(𝑥)  =  𝑓(𝑎)  +  𝑓′(𝑎)(𝑥 −  𝑎) 

So now we know now that zero- and first-degree polynomials are: 

𝑃0(𝑥) =  𝑓(𝑎) 

𝑃1(𝑥) =  𝑓(𝑎) +  𝑓′(𝑎)(𝑥 −  𝑎) 

Just one more idea is needed to bust this wide open, that is to figure out 

𝑃𝑛(𝑥) for all n: the polynomial 𝑃𝑛(𝑥) matches all the derivatives of 𝑓(𝑥) at 

a up to the nth derivative. As n grows, notice how 𝑃𝑛 should become a better 

approximation and stays close to 𝑓(𝑥) for longer. Find the form of 𝑃𝑛(𝑥)? 

 Let the general form of a n-degree polynomial used to approximate a 



function 𝑓(𝑥)  be  

𝑓(𝑥)  ≈ 𝑃𝑛(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 – 𝑥0)2 +  … +  𝑎𝑛(𝑥 − 𝑥0)𝑛 

Find the derivatives of the polynomial at a point 𝑥 = 𝑎:  

𝑓′(𝑥) = 𝑎1 + 2𝑎2(𝑥 − 𝑥0) + 3𝑎3(𝑥 – 𝑥0)2 +  … + 𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1 

𝑓′′(𝑥) = 2𝑎2 + 3 ∙ 2𝑎3(𝑥 − 𝑥0) +  … + 𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2 

𝑓′′′(𝑥) = 3 ∙ 2𝑎3 +  … + 𝑛(𝑛 − 1)(𝑛 − 2)𝑎𝑛(𝑥 − 𝑥0)𝑛−3 

………. 

𝑓(𝑛)(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2) ∙ … ∙ 3 ∙ 2𝑎𝑛 

Plugging 𝑥 = 𝑎 in the equalities we get 

𝑓(𝑎) = 𝑎0  𝑎0 = 𝑓(𝑎) 

𝑓′(𝑎) = 𝑎1  𝑎1 =
𝑓′(𝑎)

1!
 

𝑓′′(𝑎) = 2𝑎2  𝑎2 =
𝑓′′(𝑎)

2!
 

𝑓′′′(𝑎) = 3 ∙ 2𝑎3  𝑎3 =
𝑓′′′(𝑎)

3!
 

………. 

𝑓(𝑛)(𝑎) = 𝑛(𝑛 − 1)(𝑛 − 2) ∙ … ∙ 3 ∙ 2𝑎𝑛  𝑎𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
 

Therefore, we have  

𝑓(𝑥)  ≈ 𝑃𝑛(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 – 𝑎)2 +  … +

 
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛  

Definition: Let 𝑎 be any real number and let 𝑓(𝑥) be a function that can be 

differentiated at least 𝑛 times at the point 𝑥 = 𝑎. The Taylor polynomial for 

𝑓(𝑥) of order 𝑛 about the point 𝑎 is the polynomial 𝑃𝑛(𝑥) defined by  

𝑃𝑛(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 – 𝑎)2 +  … +  

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 =  

  = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛𝑛

𝑘=1  (1) 



A special case of the Taylor polynomial is the Maclaurin polynomial, where 

𝑎 = 0. That is, the Maclaurin polynomial of degree 𝑛 of 𝑓 (𝑥) is 

𝑃𝑛(𝑥) = 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 +  … +  

𝑓(𝑛)(0)

𝑛!
𝑥𝑛 = ∑

𝑓(𝑛)(0)

𝑛!
𝑥𝑛𝑛

𝑘=1   (2) 

 

 

 
Taylor polynomials are used to approximate functions  𝑓(𝑥)  in mainly two 

situations: 

𝑒𝑥 

𝑃3(𝑥) 



1) When 𝑓(𝑥) is known, but perhaps "hard'' to compute directly. For 

instance, we can define  𝑦 = cos 𝑥  as either the ratio of sides of a right 

triangle ("adjacent over hypotenuse'') or with the unit circle. However, 

neither of these provides a convenient way of computing cos 2 . A 

Taylor polynomial of sufficiently high degree can provide a 

reasonable method of computing such values using only operations 

usually hard-wired into a computer ( + ,  − ,  ×  and  ÷ ). 

2) When  𝑓(𝑥)  is not known, but information about its derivatives is 

known. This occurs more often than one might think, especially in the 

study of differential equations. 

 

In both situations, a critical piece of information to have is "How good is 

my approximation?'' If we use a Taylor polynomial to compute  cos 2 , how 

do we know how accurate the approximation is? he following theorem gives 

similar bounds for Taylor (and hence Maclaurin) polynomials. 

 

Taylor's Theorem. Let  𝑓(𝑥)  be a function whose  (𝑛 + 1)th  derivative 

exists on an interval  I  and let  𝑥 = 𝑎  be in  I. Then, for each  x  in  I , there 

exists  𝜃  between  x  and  a  such that 

  𝑓(𝑥) ≈ 𝑃𝑛(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ +  

  
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥) (3) 

where 

  𝑅𝑛(𝑥) =
𝑓(𝑛+1)(θ)

(𝑛+1)!
(𝑥 − 𝑎)(𝑛+1), 𝑥 ≤ θ ≤ 𝑎 (4) 

In doing so, an estimation is valid 

|𝑅𝑛(𝑥)| ≤
𝑚𝑎𝑥|𝑓(𝑛+1)(θ)|

(𝑛 + 1)!
|(𝑥 − 𝑎)(𝑛+1)| 

 

The first part of Taylor's Theorem states that 𝑓(𝑥) = 𝑃𝑛(𝑥) + 𝑅𝑛(𝑥) or 

𝑓(𝑥) − 𝑃𝑛(𝑥) = 𝑅𝑛(𝑥), where 𝑃𝑛(𝑥) is the nth order Taylor polynomial and 

𝑅𝑛(𝑥) is the remainder, or error given in the Lagrange form in the Taylor 

approximation. 



The second part gives bounds on how big that error can be. If the  (𝑛 + 1)th  

derivative is large, the error may be large; if  x  is far from  a , the error may 

also be large. However, the  (𝑛 + 1)! term in the denominator tends to 

ensure that the error gets smaller as  n  increases. 

 

Note. This is at first a little mysterious and difficult to use, which is why 

we’ll be doing some practice. The exact value of θ will depend on a, x, n 

and 𝑓(𝑥) and will not be known. However, it will always be between x and 

a. This means we can often get bounds. We might know, for example, that 

𝑓𝑛+1(𝑥) is always positive on [𝑥, 𝑎] and is greatest at a, which would lead 

to 

𝑃𝑛(𝑥) ≤ 𝑥 ≤ 𝑃𝑛(𝑥) +
𝑓(𝑛+1)(𝑎)

(𝑛 + 1)!
(𝑥 − 𝑎)(𝑛+1) 

 Example. Use the Theorem to find error bounds when approximating  

ln 1.5  and  ln 2 with  𝑃6(𝑥) , the Taylor polynomial of degree 6 of  𝑓(𝑥) =

ln 𝑥  at  𝑥 = 1 

 We start with the approximation of  ln 1.5 with 𝑃6(𝑥). We can compute 

𝑃6(𝑥)  using our work above: 

𝑃6(𝑥) = (𝑥 − 1) −
1

2
(𝑥 − 1)2 +

1

3
(𝑥 − 1)3 −

1

4
(𝑥 − 1)4 +

1

5
(𝑥 − 1)5 

−
1

6
(𝑥 − 1)6. 

Since 𝑃6(𝑥) approximates ln 𝑥 well near 𝑥 = 1, we approximate 𝑙𝑛 1.5 ≈

𝑃6(𝑥): 

𝑃6(1.5) = (1.5 − 1) −
1

2
(1.5 − 1)2 +

1

3
(1.5 − 1)3 −

1

4
(1.5 − 1)4 + 

+
1

5
(1.5 − 1)5 −

1

6
(1.5 − 1)6 =

259

640
≈ 0.404688. 

The Theorem references an open interval I that contains both x and a. The 

smaller the interval we use the better; it will give us a more accurate (and 

smaller!) approximation of the error. We let  𝐼 = (0.9,1.6 , as this interval 

contains both 𝑎 = 1 and 𝑥 = 1.5. 

The theorem references 𝑚𝑎𝑥|𝑓(𝑛+1)(θ)|. In our situation, this is asking 



"How big can the 7th derivative of 𝑦 = ln 𝑥  be on the interval  (0.9,1.6) ?'' 

The seventh derivative is 𝑦(7)(𝑥) = −
6!

𝑥7. The largest value it attains on I is 

about 1506. Thus we can bound the error as: 

|𝑅6(1.5)| ≤
𝑚𝑎𝑥|𝑓(7)(θ)|

7!
|(1.5 − 1)7| ≤

1506

5040
⋅

1

27
≈ 0.0023 

We computed 𝑃6(1.5)=0.404688; using a calculator, we find 

ln1.5≈0.405465, so the actual error is about  0.000778 , which is less than 

our bound of  0.0023 . This affirms Taylor's Theorem; the theorem states 

that our approximation would be within about 2 thousandths of the actual 

value, whereas the approximation was actually closer. 

 

Here is another example. 

 

Example. Approximating an unknown function: A function 𝑦 = 𝑓(𝑥) is 

unknown save for the following two facts. 



1)  𝑦(0) = 𝑓(0) = 1  2)  𝑦′ = 𝑦2 

Find the degree 3 Maclaurin polynomial  𝑃3(𝑥) of  𝑦 = 𝑓(𝑥). 

 One might initially think that not enough information is given to find 

𝑃3(𝑥). However, note how the second fact above actually lets us know what 

𝑦′(0) is: 

𝑦′ = 𝑦2 ⇒ 𝑦′(0) = 𝑦2(0). 

Since  𝑦(0) = 1 , we conclude that  𝑦′(0) = 1 . 

Now we find information about  𝑦′′ . Starting with  𝑦′ = 𝑦2 , take 

derivatives of both sides, with respect to  𝑥 . That means we must use 

implicit differentiation. 

𝑦′ = 𝑦2 
𝑑

𝑑𝑥
(𝑦′) =

𝑑

𝑑𝑥
(𝑦2)  𝑦′′ = 2𝑦 ⋅ 𝑦′ 

Now evaluate both sides at  𝑥 = 0: 

𝑦′′(0) = 2𝑦(0) ⋅ 𝑦′(0)  𝑦′′(0) = −2 

We repeat this once more to find 𝑦′′′(0) . We again use implicit 

differentiation; this time the Product Rule is also required. 
𝑑

𝑑𝑥
(𝑦′′) =

𝑑

𝑑𝑥
(2𝑦𝑦′)  𝑦′′′ = 2𝑦′ ⋅ 𝑦′ + 2𝑦 ⋅ 𝑦′′ 

Now evaluate both sides at  𝑥 = 0: 

𝑦′′′(0) = 2𝑦′(0)2 + 2𝑦(0)𝑦′′(0)  𝑦′′′(0) = 2 + 4 = 6 

In summary, we have: 

𝑦(0) = 1, 𝑦′(0) = 1, 𝑦′′(0) = 2, 𝑦′′′(0) = 6. 

 

We can now form 𝑃3(𝑥) 



𝑃3(𝑥) = 1 + 𝑥 +
2

2!
𝑥2 +

6

3!
𝑥3 = 1 + 𝑥 + 𝑥2 + 𝑥3 

It turns out that the differential equation we started with,  𝑦′ = 𝑦2 , where 

𝑦(0) = 1 , can be solved without too much difficulty:  𝑦 =
1

1−𝑥
. Figure 

shows this function plotted with  𝑃3(𝑥). Note how similar they are near  𝑥 =

0. 

 

Also, in a neighborhood of the point  𝑥0, a function can be expanded in a 

Taylor series with Peano's form of remainder: 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥0) + 𝛼

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛+1, 

that is proportional to (𝑥 − 𝑥0)𝑛+1. 

 

 


