
Lecture #25: Using the Derivative to Graph Functions 

Given a particular function, we are often interested in creating its accurate 

graph by using an analytical method. The derivatives can be effectively used 

to build the graph for a function. The secret to creating a graph lies in 

properly carrying on appropriate steps and learning how to read it. 

 

 25.1 Increasing and Decreasing Function 

Definition 1: Let 𝑦 =  𝑓 (𝑥) be a differentiable function on an interval 

(𝑎, 𝑏). If for any two points 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) such that 𝑥1 <  𝑥2, there holds 

the inequality 𝑓(𝑥1) ≤  𝑓(𝑥2), the function is called increasing (or non-

decreasing) in this interval.  

  

If this inequality is strict, i.e. 𝑓(𝑥1) <  𝑓(𝑥2), then the function 𝑦 =  𝑓 (𝑥) 

is said to be strictly increasing on the interval (𝑎, 𝑏). 

 This concept can be formulated in a more compact form. A function 

 𝑓 (𝑥) is called increasing (or non-decreasing) on this interval (𝑎, 𝑏) if  

∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏): 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) ≤ 𝑓(𝑥2); 

 A function  𝑓(𝑥) is called strictly increasing on this interval (𝑎, 𝑏) if 

∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏): 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) < 𝑓(𝑥2) 

Similarly, we define 

Definition 2: Let 𝑦 =  𝑓 (𝑥) be a differentiable function on an interval 

(𝑎, 𝑏). If for any two points 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) such that 𝑥1 <  𝑥2, there holds 



the inequality 𝑓(𝑥1) ≥  𝑓(𝑥2), the function is called decreasing (or non- 

increasing) in this interval, i.e. 

∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏): 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) ≥ 𝑓(𝑥2); 

 If this inequality is strict, i.e. 𝑓(𝑥1) >  𝑓(𝑥2), then the function 𝑦 =

 𝑓 (𝑥) is said to be strictly decreasing on the interval (𝑎, 𝑏), i.e. 

∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏): 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) > 𝑓(𝑥2). 

Note: If a function 𝑓 (𝑥) is differentiable on the interval (𝑎, 𝑏) and belongs 

to one of the four considered types (i.e. it is increasing, strictly increasing, 

decreasing, or strictly decreasing), this function is called monotonic on this 

interval. 

 

Alternatively, the concept of increasing and decreasing functions can also 

be defined for a single point 𝑥0. In this case, we consider a small -

neighborhood (𝑥0 − 𝛿, 𝑥0 + 𝛿) of this point.  

Definition 3: A function 𝑦 =  𝑓 (𝑥) is strictly increasing at 𝑥0 if there 

exists a number 𝛿 > 0 such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓(𝑥) < 𝑓(𝑥0); 

∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓(𝑥) > 𝑓(𝑥0). 

 Similarly, we can define  

Definition 4: A function 𝑦 =  𝑓 (𝑥), which is strictly decreasing at the 

point 𝑥0 if there exists a number 𝛿 > 0 such that: 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓(𝑥) > 𝑓(𝑥0); 

∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓(𝑥) < 𝑓(𝑥0). 

 Criteria for Increasing and Decreasing Functions 

Again consider a function 𝑦 =  𝑓 (𝑥) assuming it is differentiable on an 

interval (𝑎, 𝑏). To determine if the function is increasing or decreasing on 

the interval, we use the sign of the first derivative of the function. 

Theorem 1. In order for the function 𝑦 =  𝑓 (𝑥)  to be increasing on the 

interval (𝑎, 𝑏) it is necessary and sufficient that the first derivative of the 

function be non-negative everywhere in this interval: 



𝑓′(𝑥) ≥ 0∀𝑥 ∈ (𝑎, 𝑏). 

A similar criterion applies to the case of a function that is decreasing on the 

interval: 

𝑓′(𝑥) ≤ 0   ∀𝑥 ∈ (𝑎, 𝑏). 

 We prove both (necessary and sufficient) parts of the theorem for the 

case of an increasing function. 

Necessary condition. Consider an arbitrary point 𝑥0 ∈ (𝑎, 𝑏). If the function 

𝑦 =  𝑓 (𝑥) is increasing on (𝑎, 𝑏) then by definition, we can write: 

∀𝑥 ∈ (𝑎, 𝑏): 𝑥 > 𝑥0 ⇒ 𝑓(𝑥) > 𝑓(𝑥0); 

∀𝑥 ∈ (𝑎, 𝑏): 𝑥 < 𝑥0 ⇒ 𝑓(𝑥) < 𝑓(𝑥0). 

Thus, there exists the sign preservation of the fraction: 

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
≥ 0,   where   𝑥 ≠ 𝑥0. 

In the limit as 𝑥 → 𝑥0, the left-hand side of the inequality is equal to the 

derivative of the function at the point 𝑥0 that is by the limit sign preservation 

property: 

𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
= 𝑓′(𝑥0) ≥ 0. 

This relationship is valid for any 𝑥0 ∈ (𝑎, 𝑏). 

Sufficient condition. Consider the sufficient condition, that is the converse 

statement. Suppose that the derivative 𝑓′(𝑥) of a function 𝑦 =  𝑓 (𝑥) is 

non-negative in the interval (𝑎, 𝑏) 

𝑓′(𝑥0) ≥ 0   ∀𝑥 ∈ (𝑎, 𝑏). 

If 𝑥1 and 𝑥2 are two arbitrary points of the interval such that 𝑥1 < 𝑥2, then 

by Lagrange's theorem we can write: 

𝑓(𝑥2) − 𝑓(𝑥1) = 𝑓′(𝑐)(𝑥2 − 𝑥1), 

where 𝑐 ∈ [𝑥1, 𝑥2], ⇒ 𝑐 ∈ (𝑎, 𝑏). 

Since 𝑓′(𝑐) ≥ 0, then the right-hand side of the equality is non-negative. 

Consequently, 

𝑓(𝑥2) ≥ 𝑓(𝑥1). 

i.e. the function 𝑦 =  𝑓 (𝑥)  is increasing in the interval (𝑎, 𝑏). 

 



 Consider now the cases of a strictly increasing and strictly decreasing 

function. There exists a similar theorem that describes the necessary and 

sufficient conditions. Omitting the proof, we state it for the case of a strictly 

increasing function. 

 

Theorem 2. Suppose that a function 𝑦 =  𝑓 (𝑥) is differentiable on an 

interval (𝑎, 𝑏). In order for the function to be strictly increasing in this 

interval, it is necessary and sufficient that the following conditions are 

satisfied: 

1) 𝑓′(𝑥) ≥ 0  ∀𝑥 ∈ (𝑎, 𝑏); 

2) 𝑓′(𝑥) is not identically equal to zero at any interval [𝑥1, 𝑥2] ∈ (𝑎, 𝑏). 

 

Remark: The condition 1 is contained in Theorem 1 and is an indication of 

a non-decreasing function. The additional condition 2 is required in order to 

exclude the intervals of constancy, in which the derivative of 𝑓(𝑥) is 

identically zero. 

 In practice (when finding the intervals of monotonicity), the sufficient 

condition for a strictly increasing or a strictly decreasing function is 

commonly used. Theorem 2 implies the following sufficient criterion: 

If the condition 𝑓′(𝑥) > 0 is satisfied for all 𝑥 ∈ (𝑎, 𝑏), except perhaps 

only a few distinct points where 𝑓′(𝑥) = 0, then the function 𝑓(𝑥) is 

strictly increasing in this interval. 

Accordingly, the condition 𝑓′(𝑥) < 0 defines a strictly decreasing 

function for all 𝑥 ∈ (𝑎, 𝑏), except perhaps only a few distinct points 

where 𝑓′(𝑥) = 0. 

The number of points where 𝑓′(𝑥) = 0 is usually finite. According to 

Theorem 2 they cannot tightly fill any subinterval of the interval  

 

We also give a criterion for increasing/decreasing functions at a point: 

Theorem 3. Let 𝑥0 ∈ (𝑎, 𝑏). 

If 𝑓′(𝑥0) > 0, then the function 𝑓(𝑥) is strictly increasing at the point 𝑥0 

If 𝑓′(𝑥0) < 0, then the function 𝑓(𝑥) is strictly decreasing at the point 𝑥0 



 25.2 Local Extrema of Functions 

 25.2.1 Definition of Local Maximum and Local Minimum 

Definition 1. Let a function 𝑦 =  𝑓 (𝑥) be defined in a δ-neighborhood of 

a point 𝑥0, where 𝛿 >  0. The function 𝑓 (𝑥) is said to have a local (or 

relative) maximum at the point 𝑥0, if for all points 𝑥 ≠  𝑥0 belonging to the 

neighborhood (𝑥0–  𝛿, 𝑥0 +  𝛿) the following inequality holds: 

𝑓(𝑥) ≤ 𝑓(𝑥0). 

If the strict inequality holds for all points 𝑥 ≠  𝑥0 in some neighborhood of 

𝑥0: 

𝑓(𝑥) < 𝑓(𝑥0), 

then the point 𝑥0 is a strict local maximum point. 

Similarly,  

Definition 2. We define a local (or relative) minimum of the function 𝑦 =

 𝑓 (𝑥). In this case, the following inequality is valid for all points 𝑥 ≠ 𝑥0 of 

the δ -neighborhood (𝑥0 − 𝛿, 𝑥0 + 𝛿) of the point 𝑥0 

𝑓(𝑥) ≥ 𝑓(𝑥0). 

Accordingly, a strict local minimum at the point 𝑥0 is described by the 

inequality 

𝑓(𝑥) > 𝑓(𝑥0), 

 

 25.2.2 Stationary and Critical Points 

Definition. The points at which the derivative of the function 𝑓(𝑥) is equal 

to zero are called the stationary points. 

Definition. Let 𝑓(𝑥) be a function and let 𝑥0 be a point in the domain of the 

function. The point 𝑥0 is called a critical point of 𝑓 (𝑥) if either 𝑓 ′(𝑥0)  =

 0 or 𝑓 ′(𝑥0) does not exist. 

Consequently, the stationary points are a subset of the set of critical points.  

 25.2.3 Necessary Condition for an Extremum 

Theorem. A necessary condition for an extremum is formulated as follows: 

If the point 𝑥0 is an extremum point of the function 𝑓(𝑥) then the derivative 

at this point either is zero or does not exist. In other words, the extrema of a 



function are contained among its critical points. 

 The proof of the necessary condition follows from Fermat's theorem. 

Note that the necessary condition does not guarantee the existence of an 

extremum. A classic illustration here is the cubic function 𝑓(𝑥) = 𝑥3 

Despite the fact that the derivative of the function at the point 𝑥 = 0 is zero: 

𝑓′(0) = 3 ∙ 02 = 0 this point is not an extremum. 

 Thereby, local extrema of differentiable functions exist when the 

sufficient conditions are satisfied.  

 These conditions are based on the use of the first-, second-, or higher-

order derivative. Respectively, three sufficient conditions for local extrema 

are considered. Now we turn to their formulation and proof. 

 25.2.4 First Derivative Test 

Theorem 1. Let the function 𝑓(𝑥) be differentiable in a neighborhood of 

the point 𝑥0, except perhaps at the point 𝑥0 itself, in which, however, the 

function is continuous. Then: 

1) If the derivative 𝑓′(𝑥) changes sign from minus to plus when passing 

through the point 𝑥0 (from left to right), then 𝑥0 is a strict minimum point 

(Figure 1). In other words, in this case there exists a number 𝛿 > 0 such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) < 0, and ∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓′(𝑥) > 0. 

2) If the derivative 𝑓′(𝑥) on the contrary, changes sign from plus to minus 

when passing through the point 𝑥0 then 𝑥0 is a strict maximum point (Figure 

2). In other words, there exists a number 𝛿 > 0 such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) > 0, and ∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓′(𝑥) < 0. 

  

Figure 1 Figure 2 



Proof. We confine ourselves to the case of the minimum. Suppose that the 

derivative 𝑓′(𝑥) changes sign from minus to plus when passing through the 

point 𝑥0. To the left from the point 𝑥0 the following condition is satisfied: 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) < 0. 

By Lagrange's theorem, the difference of the values of the function at the 

points x and 𝑥0 is written as 

𝑓(𝑥) − 𝑓(𝑥0) = 𝑓′(𝑐)(𝑥 − 𝑥0), 

where the point c belongs to the interval (𝑥0 − 𝛿, 𝑥0), in which the 

derivative is negative, i.e. 𝑓′(𝑐) < 0. Since 𝑥 − 𝑥0 < 0 to the left of the 

point 𝑥0 then 

𝑓(𝑥) − 𝑓(𝑥0) > 0   for all    𝑥 ∈ (𝑥0 − 𝛿, 𝑥0). 

Likewise, it is established that 

𝑓(𝑥) − 𝑓(𝑥0) > 0    for all     𝑥 ∈ (𝑥0, 𝑥0 + 𝛿). 

(to the right of the point 𝑥0). 

Based on the definition, we conclude that 𝑥0 is a strict minimum point of 

the function  

 Similarly, we can prove the first derivative test for a strict maximum. 

Note that the first derivative test does not require the function to be 

differentiable at the point 𝑥0. If the derivative at this point is infinite or does 

not exist (i.e. the point 𝑥0 is critical, but not stationary), the first derivative 

test can still be used to investigate the local extrema of the function. 

 25.2.5 Second Derivative Test 

Theorem 2. Let the first derivative of a function 𝑓(𝑥) at the point 𝑥0 be 

equal to zero: 𝑓(𝑥0) = 0, that is 𝑥0 is a stationary point of  Suppose also 

that there exists the second derivative  at this point. Then 

1) If 𝑓′′(𝑥0) > 0, then 𝑥0 is a strict minimum point of the function ; 

2) If 𝑓′′(𝑥0) < 0, then 𝑥0 is a strict maximum point of the function  

Proof. In the case of a strict minimum 𝑓′′(𝑥0) > 0. Then the first derivative 

is an increasing function at the point 𝑥0. Consequently, there exists a 

number 𝛿 > 0  such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) < 𝑓′(𝑥0), 

∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓′(𝑥) > 𝑓′(𝑥0). 



Since 𝑓′′(𝑥0) = 0 (because 𝑥0 is a stationary point), therefore the first 

derivative is negative in the 𝛿 -neighborhood to the left of the point , and is 

positive to the right, i.e. the derivative changes sign from minus to plus 

when passing through the point 𝑥0. By the first derivative test, this means 

that 𝑥0 is a strict minimum point. 

 The case of the maximum can be considered in a similar way. 

Note. The second derivative test is convenient to use when calculation of 

the first derivatives in the neighborhood of a stationary point is difficult. On 

the other hand, the second test may be used only for stationary points (where 

the first derivative is zero) − in contrast to the first derivative test, which is 

applicable to any critical points. 

 Example 1. Investigate the function 132
8

3 234  xxxy  for 

extremum.  

1. Let us find the first derivative  

   2223 2
2

3
44

2

3
66

2

3
 xxxxxxxxy . 

2. Find the real roots of the derivative. The derivative vanishes at two 

points*): 01 x  and 22 x , Fig. It means that these points are critical ones. 

The derivative is everywhere continuous and so there are no other critical 

points. 

3. Investigate the character of the critical points and record the results. 

Since   02
2
x  for all х, then value y  changes its sign with «–» on 

«+» in moving from left to right through the point 

0x . Hence the function has minimum at the point 

0x  (   10 y ). In moving from left to right through 

the point 2x  sign of derivative y  doesn’t change, 

because on the left and on the right from this point it 

will be 0y . Consequently the function has no 

extremum at the point 2x , Fig. 

                                                 
*) A Point is called stationary one if derivative of a function vanishes at this point.  
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 Example 2. Investigate the function 23 32 xxy   for extremum. Let 

us find a derivative and stationary points  

 1666 2  xxxxy , 

thus the stationary points are: 1,0 21  xx . Further find the second 

derivative  

612  xy  

and calculate its values at these points 

    061,060  yy . 

Consequently the function has maximum at the 

point 0x  and minimum at 1x  (Fig.) 

 25.2.6 Third Derivative Test 

Theorem 3. Let the function 𝑓(𝑥) have derivatives at the point 𝑥0 up to the 

nth order inclusively. Then if 

𝑓′(𝑥0) = 𝑓′′(𝑥0) = ⋯ = 𝑓(𝑛−1)(𝑥0) = 0  and  𝑓(𝑛)(𝑥0) ≠ 0, 

the point 𝑥0 for even n is 

1) a strict minimum point if 𝑓(𝑛)(𝑥0) > 0, and 

2) a strict maximum point if 𝑓(𝑛)(𝑥0) < 0. 

For odd n the extremum at 𝑥0 does not exist. 

 It is clear that for 𝑛 = 2, we obtain as a special case the second 

derivative test for local extrema considered above. To avoid such a 

transition, the third derivative test implies that 𝑛 > 2. 

 

 25.3 Convex Functions 

 25.3.1 Definition of Convexity of a Function 

Definition 1. Consider a function 𝑦 =  𝑓 (𝑥), which is assumed to be 

continuous on the closed interval [𝑎, 𝑏]. The function 𝑦 =  𝑓 (𝑥) is called 

convex downward (or concave upward) if for any two points 𝑥1 and 𝑥2 in 

[𝑎, 𝑏], the following inequality holds: 

𝑓(
𝑥1 + 𝑥2

2
) ≤

𝑓(𝑥1) + 𝑓(𝑥2)

2
 

If this inequality is strict for any 𝑥1, 𝑥2 ∈  [𝑎, 𝑏], such that 𝑥1 ≠  𝑥2, then the 

 x 

 O 

 y 

Fig.  

 -1 

 1 



function 𝑓(𝑥) is called strictly convex downward on the interval [𝑎, 𝑏]. 

Similarly, we define a concave function.  

Definition 2. A function 𝑓 (𝑥) is called convex upward (or concave 

downward) if for any two points 𝑥1 and 𝑥2 in the interval [𝑎, 𝑏], the 

following inequality is valid: 

𝑓(
𝑥1 + 𝑥2

2
) ≥

𝑓(𝑥1) + 𝑓(𝑥2)

2
 

If this inequality is strict for any 𝑥1, 𝑥2 ∈  [𝑎, 𝑏], such that 𝑥1 ≠  𝑥2, then the 

function 𝑓 (𝑥) is called strictly convex upward on the interval [𝑎, 𝑏]. 

 

 The introduced concept of convexity has a simple geometric 

interpretation. 

 If a function is convex downward (Figure 1), the midpoint B of each 

𝐴1𝐴2 chord lies above the corresponding point 𝐴0 of the graph of the 

function or coincides with this point. Similarly,  

 If a function is convex upward (Figure 2), the midpoint B of each chord 

𝐴1𝐴2 is located below the corresponding point 𝐴0 of the graph of the 

function or coincides with this point. 

  

Figure 1 Figure 2 

 Also, convex functions have another obvious property, which is related 

to the location of the tangent to the graph of the function.  

Definition 3. The function 𝑓(𝑥) is convex downward on the interval [𝑎, 𝑏] 

if and only if its graph does not lie below the tangent drawn to it at any point 

𝑥0 of the segment [𝑎, 𝑏] (Fig. 3). 



  

Figure 3 Figure 4 

 Accordingly,  

Definition 4. The function 𝑓(𝑥) is convex upward (or concave downward) 

on the interval [𝑎, 𝑏] if and only if its graph does not lie above the tangent 

drawn to it at any point 𝑥0 of the segment [𝑎, 𝑏] (Figure 4). 

 These properties represent a theorem and can be proved using the 

definition of convexity: 

 25.3.2 Sufficient Conditions for Convexity/Concavity  

Theorem. Suppose that the first derivative 𝑓′(𝑥) of a function 𝑓(𝑥) exists 

in a closed interval [𝑎, 𝑏], and the second derivative 𝑓′′(𝑥) exists in an open 

interval (𝑎, 𝑏). Then the following sufficient conditions for 

convexity/concavity are valid: 

1) If 𝑓′′(𝑥) ≥ 0 for all 𝑥 ∈ (𝑎, 𝑏), then the function 𝑓(𝑥) is convex 

downward (or concave upward) on the interval [𝑎, 𝑏]; 

2) If 𝑓′′(𝑥) ≤ 0 for all 𝑥 ∈ (𝑎, 𝑏),  then the function  is convex upward 

(or concave downward) on the interval [𝑎, 𝑏]. 

In the cases where the second derivative is strictly greater (or less) than zero, 

we say, respectively, about the strict convexity downward (or strict 

convexity upward). 

 We prove the theorem for the case of convexity downward. Let the 

function 𝑓(𝑥) have a non-negative second derivative on the interval (𝑎, 𝑏): 

𝑓′′(𝑥) ≥ 0. Let 𝑥0 be the midpoint of the interval [𝑥1, 𝑥2]. Suppose that the 



length of this interval is equal to 2ℎ. Then the coordinates 𝑥1 and 𝑥2 can be 

written as 

𝑥1 = 𝑥0 − ℎ, 𝑥2 = 𝑥0 + ℎ. 

Expand the function 𝑓(𝑥) at 𝑥0 in the Taylor series with the remainder in 

the Lagrange form. We obtain the following expressions: 

𝑓(𝑥1) = 𝑓(𝑥0 − ℎ) = 𝑓(𝑥0) − 𝑓′(𝑥0)ℎ +
𝑓′′(𝜉1)ℎ2

2!
, 

𝑓(𝑥2) = 𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + 𝑓′(𝑥0)ℎ +
𝑓′′(𝜉2)ℎ2

2!
, 

where 𝑥0 − ℎ < 𝜉1 < 𝑥0, 𝑥0 < 𝜉2 < 𝑥0 + ℎ. 

Add the two equations: 

𝑓(𝑥1) + 𝑓(𝑥2) = 2𝑓(𝑥0) +
ℎ2

2
[𝑓′′(𝜉1) + 𝑓′′(𝜉2)]. 

Since 𝜉1, 𝜉2 ∈ (𝑎, 𝑏), then the second derivatives in the right-hand side are 

non-negative. Consequently, 

𝑓(𝑥1) + 𝑓(𝑥2) ≥ 2𝑓(𝑥0) 

or 

𝑓(
𝑥1 + 𝑥2

2
) ≤

𝑓(𝑥1) + 𝑓(𝑥2)

2
, 

that is according to the definition, the function 𝑓(𝑥) is convex downward. 

 

Note that the necessary condition for convexity (for example, the 

implication when from the convexity downwards it follows that 𝑓′′(𝑥) ≥

0) holds only for the non-strict inequality. In the case of strict convexity, 

the necessary condition is generally not valid. For example, the function 

𝑓(𝑥) = 𝑥4 is strictly convex downward. However, its second derivative is 

zero at 𝑥 = 0, that is the strict inequality 𝑓′′(𝑥) > 0 does not hold in this 

case. 

 25.3.3 Inflection Points 

Definition: Consider a function 𝑦 =  𝑓 (𝑥), which is continuous at a point 

𝑥0. The function 𝑓(𝑥) can have a finite or infinite derivative 𝑓 ′(𝑥0) at this 

point. If, when passing through 𝑥0, the function changes the direction of 



convexity, i.e. there exists a number 𝛿 >  0 such that the function is convex 

upward on one of the intervals (𝑥0–  𝛿, 𝑥0) or (𝑥0, 𝑥0 +  𝛿), and is convex 

downward on the other, then 𝑥0 is called a point of inflection of the function 

𝑦 =  𝑓 (𝑥). 

 The geometric meaning of an inflection point is that the graph of the 

function 𝑓(𝑥) passes from one side of the tangent line to the other at this 

point, i.e. the curve and the tangent line intersect (see Figure). 

 

 Necessary Condition for an Inflection Point 

Theorem. If 𝑥0 is a point of inflection of the function 𝑓(𝑥), and this 

function has a second derivative in some neighborhood of 𝑥0 which is 

continuous at the point 𝑥0 itself, then 

𝑓′′(𝑥0) = 0. 

 Proof. Suppose that the second derivative at the inflection point 𝑥0 is 

not zero: 𝑓′′(𝑥0) ≠ 0. Since it is continuous at 𝑥0 then there exists a 𝛿 

neighborhood of the point 𝑥0 where the second derivative preserves its sign, 

that is 

𝑓′′(𝑥0) < 0 or  𝑓′′(𝑥0) < 0  ∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿). 

In this case, the function is either strictly convex upward (when 𝑓′′(𝑥) < 0) 

or strictly convex downward (when 𝑓′′(𝑥) > 0). But then the point 𝑥0 is not 

an inflection point. Hence, the assumption is wrong and the second 

derivative of the inflection point must be equal to zero. 

 

 1st Sufficient Condition for an Inflection Point (Second Derivative Test) 



Theorem 1. If the function 𝑓(𝑥) is continuous and differentiable at a point 

𝑥0, has a second derivative 𝑓′′(𝑥0) in some deleted 𝛿-neighborhood of the 

point 𝑥0 and if the second derivative changes sign when passing through the 

point 𝑥0 then 𝑥0 is a point of inflection of the function 𝑓(𝑥) 

 Proof. Suppose, for example, that the second derivative 𝑓′′(𝑥) changes 

sign from plus to minus when passing through the point 𝑥0. Hence, in the 

left 𝛿 -neighborhood (𝑥0 − 𝛿, 𝑥0), the inequality 𝑓′′(𝑥) > 0, holds, and in 

the right 𝛿 -neighborhood (𝑥0, 𝑥0 + 𝛿), the inequality 𝑓′′(𝑥) < 0 is valid. 

 In this case, according to the sufficient conditions for convexity, the 

function 𝑓(𝑥) is convex downward in the left 𝛿-neighborhood of the point 

𝑥0 and is convex upward in the right 𝛿-neighborhood. 

 Consequently, the function changes the direction of convexity at the 

point 𝑥0 that is by definition, 𝑥0 is a point of inflection. 

 

 2nd Sufficient Condition for an Inflection Point (Third Derivative Test) 

Theorem 2. Let 𝑓′′(𝑥0) = 0, 𝑓′′′(𝑥0) ≠ 0. Then 𝑥0 is a point of inflection 

of the function 𝑓(𝑥) 

 Proof. As 𝑓′′′(𝑥0) ≠ 0, the second derivative is either strictly 

increasing at 𝑥0 (if 𝑓′′′(𝑥0) > 0) or strictly decreasing at this point (if 

𝑓′′′(𝑥0) < 0). Because 𝑓′′(𝑥0) = 0, then the second derivative for some 

𝛿 > 0 has different signs in the left and right 𝛿-neighborhood of 𝑥0. Hence, 

on the basis of the previous theorem, it follows that  is a point of inflection 

of the function 𝑓(𝑥) 

 25.4 Asymptotes 

Definition: An asymptote of a curve 𝑦 =  𝑓 (𝑥) that has an infinite branch 

is called a line such that the distance between the point (𝑥, 𝑓 (𝑥)) lying on 

the curve and the line approaches zero as the point moves along the branch 

to infinity. 

Asymptotes can be vertical, oblique (slant) and horizontal. A horizontal 

asymptote is often considered as a special case of an oblique asymptote. 



 25.4.1 Vertical Asymptote 

Definition: The straight line 𝑥 =  𝑎 is a vertical asymptote of the graph of 

the function 𝑦 =  𝑓 (𝑥) if at least one of the following conditions is true: 

𝑙𝑖𝑚
𝑥→𝑎−0

𝑓(𝑥) = ±∞, 𝑙𝑖𝑚
𝑥→𝑎+0

𝑓(𝑥) = ±∞. 

 In other words, at least one of the one-sided limits at the point 𝑥 =  𝑎 

must be equal to infinity. 

 A vertical asymptote occurs in rational functions at the points when the 

denominator is zero and the numerator is not equal to zero (i.e. at the points 

of discontinuity of the second kind). 

 

𝑙𝑖𝑚
𝑥→0−0

1

𝑥
= −∞, 𝑙𝑖𝑚

𝑥→0+0

1

𝑥
= +∞. 

 

 25.4.2 Oblique Asymptote 

Definition: The straight line 𝑦 = 𝑘𝑥 + 𝑏 is called an oblique (slant) 

asymptote of the graph of the function 𝑦 = 𝑓(𝑥) as 𝑥 → +∞ (Figure ) if 

𝑙𝑖𝑚
𝑥→+∞

[𝑓(𝑥) − (𝑘𝑥 + 𝑏)] = 0. 

 

Similarly, we introduce oblique asymptotes as 𝑥 → −∞. 



 The oblique asymptotes of the graph of the function 𝑦 = 𝑓(𝑥) may be 

different as 𝑥 → +∞ and 𝑥 → −∞ 

 Therefore, when finding oblique (or horizontal) asymptotes, it is a good 

practice to compute them separately. 

 

 The coefficients k and b of an oblique asymptote 𝑦 = 𝑘𝑥 + 𝑏 are 

defined by the following theorem: 

Theorem. A straight line 𝑦 = 𝑘𝑥 + 𝑏 is an asymptote of a function 𝑦 =

𝑓(𝑥) as 𝑥 → +∞ if and only if the following two limits are finite: 

𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥)

𝑥
= 𝑘   and   𝑙𝑖𝑚

𝑥→+∞
[𝑓(𝑥) − 𝑘𝑥] = 𝑏. 

 Proof. Necessity 

A straight line 𝑦 = 𝑘𝑥 + 𝑏 is an asymptote of a graph of a function 𝑦 =

𝑓(𝑥) as 𝑥 → +∞. Then the following condition is true: 

𝑙𝑖𝑚
𝑥→+∞

[𝑓(𝑥) − (𝑘𝑥 + 𝑏)] = 0 

or equivalently  

𝑓(𝑥) = 𝑘𝑥 + 𝑏 + 𝛼(𝑥),     where  𝑙𝑖𝑚
𝑥→+∞

𝛼(𝑥) = 0. 

Dividing both sides of the equation by x we obtain: 

𝑓(𝑥)

𝑥
=

𝑘𝑥 + 𝑏 + 𝛼(𝑥)

𝑥
,   ⇒    

𝑓(𝑥)

𝑥
= 𝑘 +

𝑏

𝑥
+

𝛼(𝑥)

𝑥
. 

Consequently, in the limit as 𝑥 → +∞ we have 

𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→+∞
[𝑘 +

𝑏

𝑥
+

𝛼(𝑥)

𝑥
] = 𝑘, 

𝑙𝑖𝑚
𝑥→+∞

[𝑓(𝑥) − 𝑘𝑥] = 𝑙𝑖𝑚
𝑥→+∞

[𝑏 + 𝛼(𝑥)] = 𝑏. 

Sufficiency. Suppose that there are finite limits 

𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥)

𝑥
= 𝑘     and    𝑙𝑖𝑚

𝑥→+∞
[𝑓(𝑥) − 𝑘𝑥] = 𝑏. 

The second limit can be written as 

𝑙𝑖𝑚
𝑥→+∞

[𝑓(𝑥) − (𝑘𝑥 + 𝑏)] = 0, 

that meets the definition of an oblique asymptote. Thus, the straight line 𝑦 =

𝑘𝑥 + 𝑏 is an asymptote of the function 𝑦 = 𝑓(𝑥). 

 Similarly we can prove the theorem for the case of 𝑥 → −∞ 



 25.4.3 Horizontal Asymptote 

Definition: In particular, if 𝑘 = 0, we obtain a horizontal asymptote, which 

is described by the equation 𝑦 = 𝑏. The theorem on necessary and sufficient 

conditions for the existence of a horizontal asymptote is stated as follows: 

Theorem. A straight line 𝑦 = 𝑏 is an asymptote of a function 𝑦 = 𝑓(𝑥) as 

𝑥 → +∞, if and only if the following limit is finite: 

𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥) = 𝑏. 

 The case 𝑥 → −∞ is considered in the same way. 

Example. Since
2

arctan lim





x
x

, 
2

arctan lim





x
x

, then curve 

xy arctan   has two horizontal asymptotes: 
2


y  and 

2


y , (Fig.). 

 

 25.5 Curve Sketching 

Now, we summarize all the items considered above together for sketching 

a function graph. The following steps are taken in the process of curve 

sketching: 

1. Domain: Find the domain of the function and determine the points of 

discontinuity (if any). 

2. Intercepts: Determine the 𝑥 − and 𝑦 −intercepts of the function, if 

possible. To find the x-intercept, we set 𝑦 =  0 and solve the equation for 

𝑥. Similarly, we set 𝑦 =  0 to find the y-intercept. Find the intervals where 

the function has a constant sign (𝑓(𝑥)  >  0 and 𝑓(𝑥) <  0). 

3. Symmetry: Determine whether the function is even, odd, or neither, and 

check the periodicity of the function. If 𝑓(−𝑥) = 𝑓(𝑥) for all 𝑥 in the 

domain, then 𝑓(𝑥) is even and symmetric about the 𝑦 −axis. If 𝑓(−𝑥) =

−𝑓(𝑥) for all 𝑥 in the domain, then 𝑓(𝑥) is odd and symmetric about the 

 x 
O 

 y 

  

  



origin. 

4. Asymptotes: Find the vertical, horizontal and oblique (slant) asymptotes 

of the function. 

5. Intervals of Increase and Decrease: Calculate the first derivative 𝑓′(𝑥) 

and find the critical points of the function. (Remember that critical points 

are the points where the first derivative is zero or does not exist.) Determine 

the intervals where the function is increasing and decreasing using the First 

Derivative Test. 

6. Local Maximum and Minimum: Use the First or Second Derivative Test 

to classify the critical points as local maximum or local minimum. Calculate 

the 𝑦 −values of the local extrema points. 

7. Concavity/Convexity and Points of Inflection: Using the Second 

Derivative Test, find the points of inflection (at which 𝑓′′(𝑥) = 0). 

Determine the intervals where the function is convex upward (𝑓′′(𝑥) < 0) 

and convex downward (𝑓′′(𝑥) > 0) 

8. Graph of the Function: Sketch a graph of 𝑓(𝑥) using all the information 

obtained above. 

Note. It is useful to classify points calculated during this procedure: 

 



Further we use this algorithm for the investigation of functions. 

Example. Let us investigate the function 
2

3

3 x

x
y


  

1.Obvious that The function is defined for all real values of 𝑥 except the 

points 3x  where it has discontinuities. 

2. Since the equality    xfxf  : 

  )(
3 2

3

xf
x

x
xf 


  

 is valid, the function is odd, i.e. symmetric with respect to the origin.  

3. Find the 𝑦 −intercept:  

𝑦(0) =
03

3 − 02
= 0. 

Find the 𝑥 −intercepts: 

𝑥3

3−𝑥2 = 0  𝑥 = 0 

4. Look for vertical asymptote near 3x : 

;
3

lim
2

3

03


 x

x

x
 ;

3
lim

2

3

03


 x

x

x
 

;
3

lim
2

3

03


 x

x

x
 

 2

3

03 3
lim

x

x

x
. 

There are two vertical asymptotes at 3x . 

5. To find an oblique asymptote, we need to calculate the following limits: 

 
;1

3
lim

2

3





 xx

x
k

x
 

   
0

3

3
lim

3
lim

2

33

2

3



























 x

xxx
x

x

x
b

xx
. 

Hence the function has an oblique asymptote xy  . 

5. Let us investigate the function for extremum. 

Take the first derivative: 

 
     22

42

22

442

22

422

3

9

3

239

3

233

x

xx

x

xxx

x

xxx
y














  

Determine the critical points: 

𝑦′(𝑥) = 0, ⇒ 
 

0
3

9
22

42






x

xx
    ,09 22  xx  



Thus, the function has two critical points: 

3,3,3,0 5,4321  xxxx  

Draw a sign chart for the first derivative: 

Calculating their 𝑦 −coordinates, we can illustrate the obtained results in 

Table 1: 

Table 1 
 

x  , 3   -3  3, 3   3   3,0  0  0, 3  3   3,3  3  3,  

/y
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4.5

y 
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Does 

not 

exist 

 

 

max 

5,4

max



y
 

 

 

 

The point 𝑥 = −3 is a local maximum, and the point 𝑥 = 3 is a local 

minimum. 

6. To investigate a curve for convexity and concavity, the second derivative 

is written as 

      
 







42

422223

3

92323418

x

xxxxxxx
y  

    
 







32

2222

3

92)3(292

x

xxxxx
 

 
 

 
 

 
 32

2

32

2

32

4242

3

96

3

3272

3

218215272

x

xx

x

xx

x

xxxxx














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Determine the critical points: 

𝑦′′(𝑥) = 0, ⇒ 
 

 
0

3

96
32

2






x

xx
 

Solving the equation, leads to the points: 

3,0 3,21  xx  

   0   

+ + + + – – 

 x 



Draw a sign chart for the second derivative: 

Calculating their 𝑦 −coordinates, we can illustrate the obtained results in 

Table 2: 

Table 2 

x  , 3   3   3,0  0  0, 3  3   3,  

//y  + 
Does 

not 
– 0 + 

Does 

not 
– 

y Concave exist Convex 

Point of 

inflection 

0y  
Concave exist Convex 

 

The point 𝑥 = 0 is an inflection point, 

7. Now we can sketch a graph of the function:  

  

  0  

- + + – 

 x 

 3  –3 O 

 

4,5 

 – 4,5 

 x 

 y  

 



 25.6 Global Extrema of Functions: the greatest and the smallest 

values of a function on an interval 

Given a particular function, we are often interested in determining the 

largest and smallest values of the function. This information is important in 

creating accurate graphs. Finding the maximum and minimum values of a 

function also has practical significance because we can use this method to 

solve optimization problem 

 

Let a function  xf  be continuous on an interval  ba, . Since it is 

opened interval then this function  xf  could not reach the largest and 

smallest values on it. However the following theorem is valid.  

Theorem. If a function  xf  has only extremum on an interval  ba, , then 

corresponding value of this function is either the largest or the smallest 

value of  xf  on this interval  ba, . 

■ Suppose that a function has extremum at the point 0x . And this extremum 

is maximum (Fig. ). Assume that there exists another point  bax ,1   such 

that    01 xfxf  . Let us consider the segment    baxx ,, 10  . By the 2-

nd Weierstrass’ theorem the function  xf  takes its the smallest value on 

the interval  10 , xx  at some point  102 , xxx  . It is obvious that the point 2x  

does not coincide with 0x , and what is more 

with point 1x , consequently a point 2x  is 

interior one of the segment  10 , xx . But then 

the function  xf  has minimum at the point 2x

, that contrary to extremum unique of this 

function on the interval  ba, . It proves that the value  0xf  is the largest 

value of the function  xf  on the interval  ba, . □ 

Let a function  xf  be continuous on closed interval  ba, . In this case 

the function reaches its greatest and smallest values on an interval. If a 

function takes its largest (smallest) value at interior point of an interval, then 

this point is maximum (minimum) point. But the function could reach the 

 x 

 y 

 O 

Fig.  

 b  a  x2  x0  x1 



largest (smallest) value at one of the end points of the interval as well.  

Consequently, from the foregoing we get the following rule: if it is 

required to find the greatest 
 

 xfM
ba,

max  and the smallest 
 

 xfm
ba,

min  

values of continuous function on closed interval  ba,  the following steps 

should be done: 

1. Find all maxima and minima of a function on the interval. 

2. Calculate the values of the function  xf  at the end points а and b, 

that is, calculate    bfaf , . 

3. Choose the greatest and the smallest values of all the obtained ones. 

Example. Determine the greatest and the smallest values of the function 

11232 23  xxxy  on the interval  2,4 . 

Solution. The first let us find the 

stationary points  

1266 2  xxy . 

0y , 

or 

022  xx , 

roots of this equation are: 2,1 21  xx

. 

Calculate the values: 

        52,314,212,61  ffff . 

Hence     31min,21max
42


 xx

xfxf  (on Fig. for conveniently it 

is taken different scales on axis Ox  and Oy ). 

Note. Let us indicate separate cases when the maximum (minimum) value 

at the stationary point is obviously the greatest (the smallest) one on the 

given interval (finite or infinite). Let the following information be known.*) 

                                                 
*) This and similar situation appears in many applied problems.  

 x 
O 

 y 

Fig.  

 -31 

 21 

 2 

 -4 

-2 

 1 



1. A function  xf  vanishes at end points of the 

interval  ba, . 

2.   0xf  for all  bax , . 

3. A function is differentiable at all interior points 

of the interval  ba, . 

4. There is only stationary point 0x  within of the 

interval  ba, . 

Then it is obvious that  0xf  is the greatest value 

 xf  on the interval  ba,  (Fig. 1). Another similar 

case is possible Fig. 2: 

    


xfxf
bxax 00

lim,lim ; 

conditions 3 и 4 are fulfilled from previous case. Then  0xf  is the smallest 

value of the function  xf  on the interval  ba, . 
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