1. Differential of a Function

The differential of a function $y=f(x)$ has the following form:

$$
d y=y^{\prime} d x=f^{\prime}(x) d x
$$

Example 1: Find the differential of the function $y=\cot \frac{\pi x}{4}$ at the point $x=1$. Determine the derivative of the given function:

$$
\begin{aligned}
y^{\prime} & =\left(\cot \frac{\pi x}{4}\right)^{\prime}=-\frac{1}{\sin ^{2}\left(\frac{\pi x}{4}\right)} \cdot \frac{\pi}{4}=-\frac{\pi}{4 \sin ^{2}\left(\frac{\pi x}{4}\right)^{\prime}} \\
& \Rightarrow y^{\prime}(1)=-\frac{\pi}{4 \sin ^{2}\left(\frac{\pi}{4}\right)}=-\frac{\pi}{4\left(\frac{\sqrt{2}}{2}\right)^{2}}=-\frac{\pi}{2}
\end{aligned}
$$

The differential has the following form:

$$
d y=y^{\prime} d x=-\frac{\pi}{2} d x
$$

Example 2: Find the differential of the function $y=x^{3}-3 x^{2}+4 x$ at the point $x=1$ when $d x=0.1$.

$$
\begin{gathered}
f^{\prime}(x)=\left(x^{3}-3 x^{2}+4 x\right)^{\prime}=3 x^{2}-6 x+4 \\
d y=f^{\prime}(x) d x=\left(3 x^{2}-6 x+4\right) d x
\end{gathered}
$$

Substituting the given values, we calculate the differential:

$$
d y=\left(3 \cdot 1^{2}-6 \cdot 1+4\right) \cdot 0,1=0,1
$$

For approximate calculations one sometimes uses the approximate equation

$$
\Delta y \approx d y
$$

or in expanded form

$$
f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x
$$

or

$$
f(x+\Delta x) \approx f(x)+f^{\prime}(x) \Delta x
$$

Example 3: Use differential to approximate the change in $y=\frac{1}{\sin x}$ as x changes from $\frac{\pi}{4}$ to $\frac{3 \pi}{10}$.

The differential $d y$ is defined by the formula

$$
d y=y^{\prime} d x=y^{\prime}\left(\frac{\pi}{4}\right) d x
$$

Take the derivative

$$
y^{\prime}=\left(\frac{1}{\sin x}\right)^{\prime}=-\frac{1}{(\sin x)^{2}} \cdot(\sin x)^{\prime}=-\frac{\cos x}{\sin ^{2} x}
$$

So,

$$
y^{\prime}\left(\frac{\pi}{4}\right)=-\frac{\cos \frac{\pi}{4}}{\sin ^{2} \frac{\pi}{4}}=-\frac{\frac{\sqrt{2}}{2}}{\left(\frac{\sqrt{2}}{2}\right)^{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}
$$

Calculate the differential $d x$:

$$
d x=\frac{3 \pi}{10}-\frac{\pi}{4}=\frac{6 \pi-5 \pi}{20}=\frac{\pi}{20}
$$

Hence,

$$
d y=y^{\prime}\left(\frac{\pi}{4}\right) d x=-\sqrt{2} \cdot \frac{\pi}{20}=-\frac{\sqrt{2} \pi}{20}
$$

The approximate value of the function at $x=\frac{3 \pi}{10}$ is

$$
\begin{gathered}
y\left(\frac{3 \pi}{10}\right) \approx y\left(\frac{\pi}{4}\right)+d y=\frac{1}{\sin \frac{\pi}{4}}-\frac{\sqrt{2} \pi}{20}=\frac{1}{\frac{\sqrt{2}}{2}}-\frac{\sqrt{2} \pi}{20}=\sqrt{2}-\frac{\sqrt{2} \pi}{20} \\
=\frac{\sqrt{2}}{20}(20-\pi)
\end{gathered}
$$

Example 4. Find the differential of the function $y=\sqrt{x^{3}+4 x}$ at a point $x=$ 2

Differentiate the given function:

$$
y^{\prime}=\left(\sqrt{x^{3}+4 x}\right)^{\prime}=\frac{1}{2 \sqrt{x^{3}+4 x}} \cdot\left(x^{3}+4 x\right)^{\prime}=\frac{3 x^{2}+4}{2 \sqrt{x^{3}+4 x}}
$$

At the point $x=2$ the derivative is equal to

$$
y^{\prime}(2)=\frac{3 \cdot 2^{2}+4}{2 \sqrt{2^{3}+4 \cdot 2}}=\frac{16}{2 \sqrt{16}}=2
$$

Hence, the differential of the function at this point is

$$
d y=y^{\prime}(2) d x=2 d x
$$

Example 5. Let us calculate the approximate value of $\sin 46^{\circ}$.
Let $f(x)=\sin x$, then $f^{\prime}(x)=\cos x$.
In this case the approximate equation takes the form

$$
\sin (x+\Delta x) \approx \sin x+\cos x \Delta x
$$

Setting $x=45^{\circ}=\frac{\pi}{4}, \Delta x=1^{\circ}=\frac{\pi}{180}$, and $x+\Delta x=\frac{\pi}{4}+\frac{\pi}{180}$.
Substituting all these into the equation we get

$$
\sin 46^{\circ} \approx \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \frac{\pi}{180} \approx 0.7071+0.7071 \cdot 0.0175=0.7191
$$

Example 6. The function $y(x)$ is defined by the parametric equations

$$
\left\{\begin{array}{c}
x=t^{2}+t+1 \\
y \quad=t^{3}-2 t
\end{array}\right.
$$

Find the differential of the function at the point $(-3,1)$
We calculate the corresponding values of the parameter t from the equation: $3=t^{2}+t+1$:

$$
t^{2}+t-2=0, \Rightarrow D=9, \Rightarrow t_{1,2}=\frac{-1 \pm 3}{2}=1,-2
$$

Make sure that the value $t=1$ satisfies the condition $y=-1$.

$$
y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(t^{3}-2 t\right)^{\prime}}{\left(t^{2}+t+1\right)^{\prime}}=\frac{3 t^{2}-2}{2 t+1}
$$

When $t=1$ the derivative has the following value:

$$
y_{x}^{\prime}(t=1)=\frac{3 \cdot 1^{2}-2}{2 \cdot 1+1}=\frac{1}{3} .
$$

Thus, the differential of the function at the point $(3,-1)$ is expressed by the formula

$$
d y=y_{x}^{\prime} d x=\frac{d x}{3}
$$

Example 7. Given the composite function $y=\ln u, u=\cos x$. Express the differential of y in an invariant form.

We write the differential of the "outer" function:

$$
d y=y_{u}^{\prime} d u=(\ln u)^{\prime} d u=\frac{1}{u} d u
$$

Similarly, we find the differential of the "inner" function:

$$
d u=u_{x}^{\prime} d x=(\cos x)^{\prime} d x=-\sin x d x
$$

Substituting the expression for $d u$ in the previous formula, we obtain the differential $d y$ in invariant form:

$$
d y=\frac{1}{u} d u=\frac{1}{u}(-\sin x) d x=-\frac{\sin x}{\cos x} d x=-\tan x d x
$$

2. Higher-Order Derivatives

$$
\begin{gathered}
\frac{d^{n} f}{d x^{n}}=\frac{d^{n} y}{d x^{n}}(\text { in Leibnitz's notation }) \\
f^{(n)}(x)=y^{(n)}(x)(\text { in Lagrange's notation }) . \\
y^{(n)}=\left(y^{(n-1)}\right)^{\prime}
\end{gathered}
$$

Example 1. Find the fourth derivative of the polynomial function

$$
y=3 x^{4}-2 x^{3}+4 x^{2}-5 x+1
$$

Take the first derivative using the power rule and the basic differentiation rules:

$$
y^{\prime}=12 x^{3}-6 x^{2}+8 x-5
$$

Differentiate once more to find the second derivative:

$$
y^{\prime \prime}=36 x^{2}-12 x+8
$$

Also,

$$
y^{\prime \prime \prime}=72 x-12
$$

Finally, $y^{I V}=72$

Example 2. Find $y^{\prime \prime}$ if $y=\cot x$.
The first derivative of the cotangent function is given by

$$
y^{\prime}=(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}
$$

Differentiate it again using the power and chain rules:

$$
\begin{gathered}
y^{\prime \prime}=\left(-\frac{1}{\sin ^{2} x}\right)^{\prime}=-\left((\sin x)^{-2}\right)^{\prime}=(-1) \cdot(-2) \cdot(\sin x)^{-3} \cdot(\sin x)^{\prime} \\
=\frac{2}{\sin ^{3} x} \cdot \cos x=\frac{2 \cos x}{\sin ^{3} x}
\end{gathered}
$$

Example 3. Find $y^{\prime \prime}$ if $y=x \ln x$.
Calculate the first derivative using the product rule:

$$
y^{\prime}=(x \ln x)^{\prime}=x^{\prime} \cdot \ln x+x \cdot(\ln x)^{\prime}=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1
$$

Now we can find the second derivative:

$$
y^{\prime \prime}=(\ln x+1)^{\prime}=\frac{1}{x}+0=\frac{1}{x}
$$

Example 4. The function $y=f(x)$ is given in parametric form by the equations

$$
x=t^{3}, y=t^{2}+1
$$

where $t>0$ Find $y_{x x}^{\prime \prime}$.
Determine the first derivative y_{x}^{\prime} :

$$
y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(t^{2}+1\right)_{t}^{\prime}}{\left(t^{3}\right)_{t}^{\prime}}=\frac{2 t}{3 t^{2}}=\frac{2}{3 t}
$$

Differentiate y_{x}^{\prime} again with respect to x

$$
y_{x x}^{\prime \prime}=\left(y_{x}^{\prime}\right)_{x}^{\prime}=\left(y_{x}^{\prime}\right)_{t}^{\prime} \cdot t_{x}^{\prime}=\left(\frac{2}{3 t}\right)_{t}^{\prime} \cdot \frac{1}{x_{t}^{\prime}}=\frac{2}{3}\left(t^{-1}\right)_{t}^{\prime} \cdot \frac{1}{x_{t}^{\prime}}=\frac{2}{3} \cdot(-1) t^{-2} \cdot \frac{1}{3 t^{2}}
$$

$$
=-\frac{2}{3 t^{2}} \cdot \frac{1}{3 t^{2}}=-\frac{2}{9 t^{4}}
$$

Example 5. The function $y=f(x)$ is given in parametric form by the equations

$$
x=t+\cos t, y=1+\sin t
$$

where $t \in(0,2 \pi)$. Find $y_{x x}^{\prime \prime}$.
Taking the first derivative of the parametric function, we have

$$
y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{(1+\sin t)_{t}^{\prime}}{(t+\cos t)_{t}^{\prime}}=\frac{\cos t}{1-\sin t}
$$

Now we differentiate both sides of the expression for y_{x}^{\prime} with respect to x This yields:

$$
\begin{aligned}
y_{x x}^{\prime \prime}=\left(y_{x}^{\prime}\right)_{x}^{\prime} & =\left(y_{x}^{\prime}\right)_{t}^{\prime} \cdot t_{x}^{\prime}=\left(\frac{\cos t}{1-\sin t}\right)_{t}^{\prime} \cdot t_{x}^{\prime}=\left(\frac{\cos t}{1-\sin t}\right)_{t}^{\prime} \cdot \frac{1}{x_{t}^{\prime}} \\
& =\frac{(-\sin t)(1-\sin t)-\cos t(-\cos t)}{(1-\sin t)^{2}} \cdot \frac{1}{1-\sin t} \\
& =\frac{-\sin t+\sin ^{2} t+\cos ^{2} t}{(1-\sin t)^{3}}=\frac{1-\sin t}{(1-\sin t)^{3}}=\frac{1}{(1-\sin t)^{2}}
\end{aligned}
$$

Example 6. Find the second derivative of the function given by the equation

$$
x^{3}+y^{3}=1
$$

We use implicit differentiation:

$$
\begin{aligned}
x^{3}+y^{3}=1 & \Rightarrow\left(x^{3}\right)^{\prime}+\left(y^{3}\right)^{\prime}=1^{\prime}, \Rightarrow 3 x^{2}+3 y^{2} y^{\prime}=0, \Rightarrow x^{2}+y^{2} y^{\prime}=0 \\
& \Rightarrow y^{\prime}=-\frac{x^{2}}{y^{2}}
\end{aligned}
$$

Differentiate again the equation $x^{2}+y^{2} y^{\prime}=0$:

$$
\begin{aligned}
x^{2}+y^{2} y^{\prime} & =0, \Rightarrow\left(x^{2}\right)^{\prime}+\left(y^{2} y^{\prime}\right)^{\prime}=0, \Rightarrow 2 x+2 y y^{\prime} y^{\prime}+y^{2} y^{\prime \prime}=0 \\
& \Rightarrow 2 x+2 y\left(y^{\prime}\right)^{2}+y^{2} y^{\prime \prime}=0, \Rightarrow y^{\prime \prime}=-\frac{2 x+2 y\left(y^{\prime}\right)^{2}}{y^{2}}
\end{aligned}
$$

Substitute the expression for the first derivative y^{\prime} found above

$$
\begin{gathered}
y^{\prime \prime}=-\frac{2 x+2 y\left(y^{\prime}\right)^{2}}{y^{2}}=-\frac{2 x+2 y\left(-\frac{x^{2}}{y^{2}}\right)^{2}}{y^{2}}=-\frac{2 x+2 y \cdot \frac{x^{4}}{y^{4}}}{y^{2}} \\
=-\frac{2 x+\frac{2 x^{4}}{y^{3}}}{y^{2}}=-\frac{\frac{2 x y^{3}+2 x^{4}}{y^{3}}}{y^{2}}=-\frac{2 x^{4}+2 x y^{3}}{y^{5}}=-\frac{2 x\left(x^{3}+y^{3}\right)}{y^{5}} \\
=-\frac{2 x \cdot 1}{y^{5}}=-\frac{2 x}{y^{5}} .
\end{gathered}
$$

Example 7. Find the second derivative of the function given by the equation

$$
x+y=e^{x-y}
$$

Differentiating both sides in x we obtain:

$$
\begin{gathered}
(x+y)^{\prime}=\left(e^{x-y}\right)^{\prime}, \Rightarrow 1+y^{\prime}=e^{x-y} \cdot(x-y)^{\prime}, \Rightarrow 1+y^{\prime}=e^{x-y}\left(1-y^{\prime}\right) \\
=e^{x-y}-e^{x-y} y^{\prime}, \Rightarrow y^{\prime}+e^{x-y} y^{\prime}=e^{x-y}-1, \Rightarrow \\
y^{\prime}=\frac{e^{x-y}-1}{e^{x-y}+1}
\end{gathered}
$$

Continuing the differentiation, we find the second derivative:

$$
y^{\prime \prime}=\left(\frac{e^{x-y}-1}{e^{x-y}+1}\right)^{\prime}=\frac{2 e^{x-y}\left(1-y^{\prime}\right)}{\left(e^{x-y}+1\right)^{2}}
$$

Substitute the expression for the first derivative:

$$
\begin{aligned}
y^{\prime \prime}=\frac{2 e^{x-y}\left(1-y^{\prime}\right)}{\left(e^{x-y}+1\right)^{2}}=\frac{2 e^{x-y}\left(1-\frac{e^{x-y}-1}{e^{x-y}+1}\right)}{\left(e^{x-y}+1\right)^{2}} \\
=\frac{2 e^{x-y} \cdot \frac{e^{x-y}+1-e^{x-y}+1}{e^{x-y}+1}}{\left(e^{x-y}+1\right)^{2}}=\frac{4 e^{x-y}}{\left(e^{x-y}+1\right)^{3}} .
\end{aligned}
$$

We now use the original equation, according to which

$$
e^{x-y}=x+y
$$

As a result, we obtain the following expression for the derivative $y^{\prime \prime}$

$$
y^{\prime \prime}=\frac{4 e^{x-y}}{\left(e^{x-y}+1\right)^{3}}=\frac{4(x+y)}{(x+y+1)^{3}}
$$

3. Leibniz Formula

$$
(u v)^{(n)}=\sum_{i=0}^{n}\binom{n}{i} u^{(n-i)} v^{(i)}
$$

where $\binom{n}{i}$ denotes the number of i-combinations of n elements: $\binom{n}{i}=\frac{n!}{i!(n-i)!}$
Example 1. Find the 3 rd derivative of the function

$$
y=e^{x} \cos x
$$

Let $u=\cos x, v=e^{x}$. Using the Leibniz formula, we have

$$
\begin{aligned}
& y^{\prime \prime \prime}=\left(e^{x} \cos x\right)^{\prime \prime \prime}=\sum_{i=0}^{3}\binom{3}{i}(\cos x)^{(3-i)}\left(e^{x}\right)^{(i)} \\
& \\
& \quad=\binom{3}{0}(\cos x)^{\prime \prime \prime} e^{x}+\binom{3}{1}(\cos x)^{\prime \prime}\left(e^{x}\right)^{\prime}+\binom{3}{2}(\cos x)^{\prime}\left(e^{x}\right)^{\prime \prime} \\
& \\
& \\
& \quad+\binom{3}{3} \cos x\left(e^{x}\right)^{\prime \prime \prime}
\end{aligned}
$$

The derivatives of cosine are
$(\cos x)^{\prime}=-\sin x ; \quad(\cos x)^{\prime \prime}=(-\sin x)^{\prime}=-\cos x ; \quad(\cos x)^{\prime \prime \prime}=$ $(-\cos x)^{\prime}=\sin x$.
All derivatives of the exponential function $v=e^{x}$ are e^{x}
Hence,

$$
\begin{gathered}
y^{\prime \prime \prime}=1 \cdot \sin x \cdot e^{x}+3 \cdot(-\cos x) \cdot e^{x}+3 \cdot(-\sin x) \cdot e^{x}+1 \cdot \cos x \cdot e^{x} \\
=e^{x}(-2 \sin x-2 \cos x)=-2 e^{x}(\sin x+\cos x)
\end{gathered}
$$

Example 2. Find all derivatives of the function

$$
y=e^{x} x^{2}
$$

Let $u=e^{x}$ and $v=x^{2}$. Then

$$
u^{\prime}=\left(e^{x}\right)^{\prime}=e^{x}, v^{\prime}=\left(x^{2}\right)^{\prime}=2 x, u^{\prime \prime}=\left(e^{x}\right)^{\prime}=e^{x}, v^{\prime \prime}=(2 x)^{\prime}=2
$$

It is easy to find the general formulas for the derivatives of order n :

$$
u^{(n)}=e^{x}, v^{\prime \prime \prime}=v^{I V}=\cdots=v^{(n)}=0
$$

Using the Leibniz formula, we obtain

$$
y^{(n)}=e^{x} x^{2}+n e^{x} \cdot 2 x+\frac{n(n-1)}{1 \cdot 2} e^{x} \cdot 2
$$

or

$$
y^{(n)}=e^{x}\left[x^{2}+2 n x+n(n-1)\right] .
$$

Example 3. Find the 10th-order derivative of the function

$$
y=\left(x^{2}+4 x+1\right) \sqrt{e^{x}}
$$

at the point $x=0$
We denote $u=\sqrt{e^{x}}, v=x^{2}+4 x+1$. The derivatives of these functions have the following form:

$$
\begin{gathered}
u^{\prime}=\left(\sqrt{e^{x}}\right)^{\prime}=\frac{1}{2 \sqrt{e^{x}}} \cdot\left(e^{x}\right)^{\prime}=\frac{e^{x}}{2 \sqrt{e^{x}}}=\frac{\sqrt{e^{x}}}{2}, u^{\prime \prime}=\left(\frac{\sqrt{e^{x}}}{2}\right)^{\prime}=\frac{\sqrt{e^{x}}}{4}, \ldots \\
\Rightarrow u^{(k)}=\frac{\sqrt{e^{x}}}{2^{k}} \\
v^{\prime}=\left(x^{2}+4 x+1\right)^{\prime}=2 x+4, v^{\prime \prime}=(2 x+4)^{\prime}=2
\end{gathered}
$$

The derivatives of the function v of order $i>2$ are obviously zero. Therefore, the expansion of the derivative $y^{(10)}$ is limited to only a few terms:

$$
\begin{gathered}
y^{(10)}=\sum_{i=0}^{10}\binom{10}{i} u^{(10-i)} v^{(i)} \\
=\binom{10}{0} \frac{\sqrt{e^{x}}}{2^{10}}\left(x^{2}+4 x+1\right)+\binom{10}{1} \frac{\sqrt{e^{x}}}{2^{9}}(2 x+4)+\binom{10}{2} \frac{\sqrt{e^{x}}}{2^{8}} \cdot 2= \\
\frac{10!}{10!0!} \cdot \sqrt{e^{x}} \cdot \frac{1}{2^{10}} \cdot\left(x^{2}+4 x+1\right)+\frac{10!}{9!1!} \cdot \sqrt{e^{x}} \cdot \frac{2}{2^{10}} \cdot(2 x+4)+\frac{10!}{8!2!} \cdot \sqrt{e^{x}} \cdot \frac{4}{2^{10}} \cdot \\
2=\frac{\sqrt{e^{x}}}{2^{10}} \cdot\left[x^{2}+4 x+1+20(2 x+4)+360\right]=\frac{\sqrt{e^{x}}}{2^{10}}\left(x^{2}+44 x+441\right)
\end{gathered}
$$

When $x=0$, the 10 th-order derivative is respectively equal to

$$
y^{(10)}(0)=\frac{441}{2^{10}}=\frac{441}{1024}=\left(\frac{21}{32}\right)^{2}
$$

Example 4. Find the n th-order derivative of the function

$$
y=x^{3} \sin 2 x
$$

Let $u=\sin 2 x, v=x^{3}$. Write the n th-order derivative by the Leibniz formula:

$$
\begin{aligned}
\left(x^{3} \sin 2 x\right)^{(n)} & =\sum_{i=0}^{n}\binom{n}{i} u^{(n-i)} v^{(i)}=\sum_{i=0}^{n}\binom{n}{i}(\sin 2 x)^{(n-i)}\left(x^{3}\right)^{(i)} \\
& =\binom{n}{0}(\sin 2 x)^{(n)} x^{3}+\binom{n}{1}(\sin 2 x)^{(n-1)}\left(x^{3}\right)^{\prime} \\
& +\binom{n}{2}(\sin 2 x)^{(n-2)}\left(x^{3}\right)^{\prime \prime}+\binom{n}{3}(\sin 2 x)^{(n-3)}\left(x^{3}\right)^{\prime \prime \prime}+\cdots
\end{aligned}
$$

Obviously, the remaining terms in the series expansion are zero since $\left(x^{3}\right)^{(i)}=0$ for $i>3$.
The n th-order derivative of the sine function was found on the Higher-Order Derivatives lecture. It is written in the form

$$
(\sin x)^{(n)}=\sin \left(x+\frac{\pi n}{2}\right)
$$

It can be shown that the derivative of $\sin 2 x$ is defined by the similar formula:

$$
(\sin 2 x)^{(n)}=2^{n} \sin \left(2 x+\frac{\pi n}{2}\right)
$$

Consequently, the remaining derivatives of $\sin 2 x$ are given by

$$
\begin{aligned}
(\sin 2 x)^{(n-1)} & =2^{n-1} \sin \left(2 x+\frac{\pi(n-1)}{2}\right)=2^{n-1} \sin \left(2 x+\frac{\pi n}{2}-\frac{\pi}{2}\right) \\
= & -2^{n-1} \cos \left(2 x+\frac{\pi n}{2}\right) \\
(\sin 2 x)^{(n-2)} & =2^{n-2} \sin \left(2 x+\frac{\pi(n-2)}{2}\right)=2^{n-2} \sin \left(2 x+\frac{\pi n}{2}-\pi\right) \\
= & -2^{n-2} \sin \left(2 x+\frac{\pi n}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
(\sin 2 x)^{(n-3)} & =2^{n-3} \sin \left(2 x+\frac{\pi(n-3)}{2}\right)=2^{n-3} \sin \left(2 x+\frac{\pi n}{2}-\frac{3 \pi}{2}\right) \\
= & 2^{n-3} \cos \left(2 x+\frac{\pi n}{2}\right)
\end{aligned}
$$

Substituting this into the formula for the nth derivative of the given function, we obtain:

$$
\begin{aligned}
&\left(x^{3} \sin 2 x\right)^{(n)} \\
&=\binom{n}{0} x^{3} 2^{n} \sin \left(2 x+\frac{\pi n}{2}\right)-\binom{n}{1} \cdot 3 x^{2} 2^{n-1} \cos \left(2 x+\frac{\pi n}{2}\right)-\binom{n}{2} \\
& \cdot 6 x 2^{n-2} \sin \left(2 x+\frac{\pi n}{2}\right)+\binom{n}{3} \cdot 6 \cdot 2^{n-3} \cos \left(2 x+\frac{\pi n}{2}\right) .
\end{aligned}
$$

Take into account that the combinations can be represented in the following form:

$$
\binom{n}{0}=1,\binom{n}{1}=n,\binom{n}{2}=\frac{n(n-1)}{2},\binom{n}{3}=\frac{n(n-1)(n-2)}{6} .
$$

Then

$$
\begin{aligned}
&\left(x^{3} \sin 2 x\right)^{(n)} \\
&=x^{3} 2^{n} \sin \left(2 x+\frac{\pi n}{2}\right)-3 x^{2} n 2^{n-1} \cos \left(2 x+\frac{\pi n}{2}\right)-6 x \\
& \cdot \frac{n(n-1)}{2} \cdot 2^{n-2} \sin \left(2 x+\frac{\pi n}{2}\right)+6 \cdot \frac{n(n-1)(n-2)}{6} \\
& \cdot 2^{n-3} \cos \left(2 x+\frac{\pi n}{2}\right) \\
&=2^{n}\left[x^{3}-\frac{3 x n(n-1)}{4}\right] \sin \left(2 x+\frac{\pi n}{2}\right)+2^{n}\left[\frac{n(n-1)(n-2)}{8}\right. \\
&\left.-\frac{3 x^{2} n}{2}\right] \cos \left(2 x+\frac{\pi n}{2}\right) .
\end{aligned}
$$

Example 5. Find the n th-order derivative of the function

$$
y=x \ln x
$$

Let $u=\ln x, v=x$. Then

$$
\begin{gathered}
y^{(n)}=(x \ln x)^{(n)}=\sum_{i=0}^{n}\binom{n}{i} u^{(n-i)} v^{(i)}=\sum_{i=0}^{n}\binom{n}{i}(\ln x)^{(n-i)} x^{(i)} \\
=\binom{n}{0}(\ln x)^{(n)} x+\binom{n}{1}(\ln x)^{(n-1)} x^{\prime}+\cdots
\end{gathered}
$$

The other terms of the series are equal to zero as $x^{(i)} \equiv 0$ for $i>1$.
Write the derivatives of $v=x$:

$$
v^{\prime}=x^{\prime}=1, v^{\prime \prime}=v^{\prime \prime \prime}=\cdots=v^{(n)} \equiv 0
$$

Compute the derivatives of $u=\ln x$:

$$
\begin{aligned}
u^{\prime}=(\ln x)^{\prime} & =\frac{1}{x}, u^{\prime \prime}=\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}, u^{\prime \prime \prime}=\left(-\frac{1}{x^{2}}\right)^{\prime}=\frac{2}{x^{3}}, u^{(4)}=\left(\frac{2}{x^{3}}\right)^{\prime} \\
& =-\frac{6}{x^{4}}, \ldots
\end{aligned}
$$

So, the nth derivative of the natural logarithm is written in the form

$$
u^{(n)}=\frac{(-1)^{n-1}(n-1)!}{x^{n}}
$$

Hence, the series expansion for $y^{(n)}$ is given by

$$
\begin{aligned}
y^{(n)}=\binom{n}{0} & (\ln x)^{(n)} \cdot x+\binom{n}{1}(\ln x)^{(n-1)} \cdot 1 \\
& =\frac{(-1)^{n-1}(n-1)!}{x^{n}} \cdot x+n \cdot \frac{(-1)^{n-2}(n-2)!}{x^{n-1}} \\
& =\frac{(-1)^{n-1} n!}{n x^{n-1}}+\frac{(-1)^{n-1}(-1)^{-1} n!}{(n-1) x^{n-1}}=\frac{(-1)^{n-1} n!}{x^{n-1}}\left(\frac{1}{n}-\frac{1}{n-1}\right) \\
& =\frac{(-1)^{n-1} n!}{x^{n-1}} \cdot \frac{x-1-x}{n(n-1)}=\frac{(-1)^{n}(n-2)!(n-1) x}{x^{n-1} \mathcal{x}(n-1)} \\
& =\frac{(-1)^{n}(n-2)!}{x^{n-1}} .
\end{aligned}
$$

4. Higher-Order Differentials

$$
d^{n} y=f^{(n)}(x) d x^{n}
$$

Let the functions u and v have the nth order derivatives. Then the following
properties are valid:

$$
\begin{gathered}
d^{n}(\alpha u+\beta v)=\alpha d^{n} u+\beta d^{n} v ; \\
d^{n}(u v)=\sum_{i=0}^{n} C_{n}^{i} d^{n-i} u d^{i} v
\end{gathered}
$$

Consider now the composition of two functions such that $y=f(u)$ and $u=$ $g(x)$. In this case, y is a composite function of the independent variable x

$$
\begin{gathered}
y=f(g(x)) . \\
d y=[f(g(x))]^{\prime} d x=f^{\prime}(g(x)) g^{\prime}(x) d x . \\
d^{2} y=f^{\prime \prime}(u) d u^{2}+f^{\prime}(u) d^{2} u \\
d^{3} y=f^{\prime \prime \prime}(u) d u^{3}+3 f^{\prime \prime}(u) d u d^{2} u+f^{\prime}(u) d^{3} u .
\end{gathered}
$$

It follows from the above that the higher order differentials are generally not invariant.

Example 1. Find the differential $d^{4} y$ of the function $y=x^{5}$.
The 4 th order differential is given by

$$
d^{4} y=f^{(4)}(x) d x^{4}=\left(x^{5}\right)^{(4)} d x^{4}
$$

We find the fourth derivative of this function by successive differentiation:

$$
\begin{gathered}
\left(x^{5}\right)^{\prime}=5 x^{4},\left(x^{5}\right)^{\prime \prime}=\left(5 x^{4}\right)^{\prime}=20 x^{3},\left(x^{5}\right)^{\prime \prime \prime}=\left(20 x^{3}\right)^{\prime}=60 x^{2} \\
\left(x^{5}\right)^{(4)}=\left(60 x^{2}\right)^{\prime}=120 x .
\end{gathered}
$$

Hence,

$$
d^{4} y=120 x d x^{4}
$$

Example 2. Find the second differential of the function

$$
y=x^{2} \cos 2 x
$$

Determine the second derivative of this function:

$$
\begin{aligned}
& y^{\prime}=\left(x^{2} \cos 2 x\right)^{\prime}=\left(x^{2}\right)^{\prime} \cos 2 x+x^{2}(\cos 2 x)^{\prime} \\
& \quad=2 x \cos 2 x+x^{2} \cdot(-2 \sin 2 x)=2 x \cos 2 x-2 x^{2} \sin 2 x
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}=\left(2 x \cos 2 x-2 x^{2} \sin 2 x\right)^{\prime}=2\left(x \cos 2 x-x^{2} \sin 2 x\right)^{\prime} \\
&=2\left[x^{\prime} \cos 2 x+x(\cos 2 x)^{\prime}\left(x^{2}\right)^{\prime} \sin 2 x-x^{2}(\sin 2 x)^{\prime}\right] \\
&=2\left[\cos 2 x-2 x \sin 2 x-2 x \sin 2 x-2 x^{2} \cos 2 x\right] \\
&=\left(2-2 x^{2}\right) \cos 2 x-4 x \sin 2 x
\end{aligned}
$$

Then the second-order differential is written in the form:

$$
d^{2} y=y^{\prime \prime} d x^{2}=\left[\left(2-2 x^{2}\right) \cos 2 x-4 x \sin 2 x\right] d x^{2}
$$

Example 3. Find $d^{3} y$ of the function $y=x \ln \frac{1}{x}$.
The third order differential is given by

$$
d^{3} y=y^{\prime \prime \prime}(x) d x^{3}
$$

We differentiate the given function successively:

$$
\begin{gathered}
y^{\prime}=\left(x \ln \frac{1}{x}\right)^{\prime}=x \cdot\left(\frac{1}{\frac{1}{x}}\right) \cdot\left(\frac{1}{x}\right)^{\prime}+1 \cdot \ln \frac{1}{x}=x^{2} \cdot\left(-\frac{1}{x^{2}}\right)+\ln \frac{1}{x}=\ln \frac{1}{x}-1 ; \\
y^{\prime \prime}=\left(\ln \frac{1}{x}-1\right)^{\prime}=\left(\frac{1}{\frac{1}{x}}\right) \cdot\left(\frac{1}{x}\right)^{\prime}=x \cdot\left(-\frac{1}{x^{2}}\right)=-\frac{1}{x} ; \\
y^{\prime \prime \prime}=\left(-\frac{1}{x}\right)^{\prime}=\frac{1}{x^{2}} .
\end{gathered}
$$

Hence,

$$
d^{3} y=y^{\prime \prime \prime}(x) d x^{3}=\frac{d x^{3}}{x^{2}}
$$

Example 4. Find the second differential $d^{2} y$ of the function (graph of which is known as asteroid) defined by the equation

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=R^{\frac{2}{3}}, R-\text { is constant }
$$

We compute successively the first and second derivatives of the function $y(x)$ describing the astroid. Differentiating both sides of the implicit equation with respect to x, we have:

$$
\begin{aligned}
\left(x^{\frac{2}{3}}+y^{\frac{2}{3}}\right)^{\prime} & =\left(R^{\frac{2}{3}}\right)^{\prime}, \Rightarrow \frac{2}{3} x^{-\frac{1}{3}}+\frac{2}{3} y^{-\frac{1}{3}} y^{\prime}=0, \Rightarrow x^{-\frac{1}{3}}+y^{-\frac{1}{3}} y^{\prime}=0, \Rightarrow y^{-\frac{1}{3}} y^{\prime} \\
& =-x^{-\frac{1}{3}} \Rightarrow y^{\prime}=-\left(\frac{x}{y}\right)^{-\frac{1}{3}}=-\left(\frac{y}{x}\right)^{\frac{1}{3}}
\end{aligned}
$$

Differentiate again, given that y is the function of x

$$
\begin{gathered}
y^{\prime \prime}=\left[-\left(\frac{y}{x}\right)^{\frac{1}{3}}\right]^{\prime}=-\frac{1}{3}\left(\frac{y}{x}\right)^{-\frac{2}{3}} \cdot\left(\frac{y}{x}\right)^{\prime}=-\frac{1}{3}\left(\frac{x}{y}\right)^{\frac{2}{3}} \cdot \frac{y^{\prime} x-y x^{\prime}}{x^{2}} \\
=-\frac{x^{\frac{2}{3}}}{3 y^{\frac{2}{3}}} \cdot \frac{y^{\prime} x-y}{x^{2}} .
\end{gathered}
$$

Substitute the expression for the first derivative y^{\prime} found above:

$$
\begin{aligned}
y^{\prime \prime}=-\frac{x^{\frac{2}{3}}}{3 y^{\frac{2}{3}}} & \cdot \frac{\left(-\left(\frac{y}{x}\right)^{\frac{1}{3}}\right) x-y}{x^{2}}=-\frac{x^{\frac{2}{3}}}{3 y^{\frac{2}{3}}} \cdot \frac{\left(-y^{\frac{1}{3}} x^{\frac{2}{3}}-y\right)}{x^{2}}=\frac{x^{\frac{2}{3}} y^{\frac{1}{3}}\left(x^{\frac{2}{3}}+y^{\frac{2}{3}}\right)}{3 y^{\frac{2}{3}} x^{2}} \\
& =\frac{R^{\frac{2}{3}}}{3 y^{\frac{1}{3}} x^{\frac{4}{3}}} .
\end{aligned}
$$

Then the second differential is given by

$$
d^{2} y=y^{\prime \prime} d x^{2}=\frac{R^{\frac{2}{3}} d x^{2}}{3 y^{\frac{1}{3}} x^{\frac{4}{3}}}
$$

Example 5. The function is given in parametric form by the equations

$$
\left\{\begin{array}{c}
x=t^{2}+t-1 \\
y=t^{3}-2 t
\end{array}\right.
$$

Find the second-order differential $d^{2} y$.
We determine the second-order differential by the formula

$$
d^{2} y=y^{\prime \prime}(x) d x^{2}
$$

Find the second derivative $y^{\prime \prime}(x)$. The first derivative is given by

$$
y^{\prime}(x)=y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(t^{3}-2 t\right)^{\prime}}{\left(t^{2}+t-1\right)^{\prime}}=\frac{3 t^{2}-2}{2 t+1}
$$

Then the second derivative can be expressed as follows:

$$
\begin{aligned}
y^{\prime \prime}(x)= & y_{x x}^{\prime \prime}=\left(y_{x}^{\prime}\right)_{x}^{\prime}=\frac{\left(y_{x}^{\prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}=\frac{\left(\frac{3 t^{2}-2}{2 t+1}\right)^{\prime}}{\left(t^{2}+t-1\right)^{\prime}} \\
& =\frac{\frac{\left(3 t^{2}-2\right)^{\prime}(2 t+1)-\left(3 t^{2}-2\right)(2 t+1)^{\prime}}{(2 t+1)^{2}}}{2 t+1} \\
& =\frac{6 t \cdot(2 t+1)-\left(3 t^{2}-2\right) \cdot 2}{(2 t+1)^{3}}=\frac{12 t^{2}+6 t-6 t^{2}+4}{(2 t+1)^{3}} \\
& =\frac{6 t^{2}+6 t+4}{(2 t+1)^{3}}
\end{aligned}
$$

Calculate the differential $d x^{2}$:

$$
\begin{aligned}
& d x^{2}=(d x)^{2}=\left(d\left(t^{2}+t-1\right)\right)^{2}=((2 t+1) d t)^{2}=(2 t+1)^{2}(d t)^{2} \\
& =(2 t+1)^{2} d t^{2}
\end{aligned}
$$

Thus, the differential of the 2 nd order of the original function is given by

$$
d^{2} y=y^{\prime \prime}(x) d x^{2}=\frac{6 t^{2}+6 t+4}{(2 t+1)^{3}} \cdot(2 t+1)^{2} d t^{2}=\frac{6 t^{2}+6 t+4}{2 t+1} d t^{2}
$$

